第五章 冒口设计

合集下载

完整版铸钢件冒口的设计与计算

完整版铸钢件冒口的设计与计算

§4铸钢件冒口设计设计步骤:1〕确定冒口的安放位置2〕初步确定冒口数量3〕划分每个冒口的补缩区域,选择冒口类型4〕计算冒口的具体尺寸冒口计算方法:模数法+比例法+补缩液量法〔参考资料〕一模数法1计算原理要保证冒口晚于铸件凝固,需冒口的模数大于铸件被补缩部位的模数.即 廿件对于铸钢件,冒口、冒口颈、铸件的模数应满足以下比例关系:明】页冒口1M 产〔1.1-L2〕 M 什 暗侧冒口;〞伸:M M 也产1:1.1:1.2 钢液通过胃口浇注:M 鼠M.电:〔1-L03〕:L2 式中 M 虾M 件一分别为冒口、冒口颈和铸件被补缩处的模数0为了保证冒口中有足够的金属液补充铸件的收缩,还应该满足以下条件3W V 〔旷件+「皆〕忘%平式中央——冒口所能补缩的铸件体积;% 一 -冒口体积:0 --- 合金的体收缩率,具体数值,参见表4.3;斗——冒口的补缩效率.各种冒口的补缩效率值,见表4~4.表4.3确定铸钢体收缩率⑶的国袤 合金锅的体收缩率 口 二—普通碳制相同,UJ 由左图中查卅各合金先蜜体收编量相总跳枸为邑=工尢卬式中:中 合金铜中各含金无素狗含里.电分别表示出、g …E 霁合金元素对体收缩率的除正累鞋,由卜一栏中直出r 各元素分别为t1、缸、h …划:EX =以ML** Ml +&g 十品阴- ,合金兀素W Ni Mn Cr Si Al 修正系数人0.53 ■ 0.0354 +0.05 S5 M12 +1.03 -1.70 普通城飒体收埒率fi-fr总结:M冒=1.2M件P127式4-5,左边为总收缩量,右边为由冒口补充量2计算步骤1〕计算铸件模数根据铸件需补缩部位,划分补缩区,分别计算铸件的模数.计算方法:公式计算+图表计算—表4-5 〔p128-130〕.2〕计算冒口及胃口颈模数.根据热节的位置,确定胃口的类型,再根据式〔4-2〕或式〔4-3〕、式〔4-4〕. 即可计算出国口及冒口颈模数计算举例;铸钢件在下部法上处放置暗冒口补缩. 如图4-3三所示.求吩和利用表4・5中上形体计算公式,法兰处o=200mm, b—lOOnun*非散热面可得:“*0x20 …M 社=—j ---- ——cm = 3.636cm件2〔10 + 20〕-5因浇口通过冒口,故:1.05Mr = 374 cm 加冒=L2A/件=436 cmS 中左边的冒口颈…W R=〔22X 10X2〔22+10〕]四4一箝补缩铸钢件法兰的目口颈cm- 3.43cm,小于3.74cm,不能满足补缩要求,在铸件热节处将出现缩松口采用右边的冒口颈,必=Q0X 12V[2QO+I2〕]crti=3.75cm,满足了要求.计算M件用L形体计算公式,为什么不用法兰体公式去套呢?〔法兰体高度b无法确定〕图4-33B-B剖面图中200应改为220,因计算M B时用的数值是220;另外, 冒口直径为〔|〕220,其冒口颈宽也应为220.〔A-A剖面图中200改否.〕采用右边的A-A剖面冒口颈满足了要求,A-A剖面冒口颈尺寸怎么得来的呢?不要瞎懵,可列式M仝^=3.74=20X/[2 〔20+X〕],求出X=12.生产中可根据M冒数值查出标准侧冒口,得冒口尺寸〔直径、高等〕,冒口颈尺寸,冒口体积、重量,能补缩的铸件体积及重量〔 M冒结合一查〕.3〕确定铸钢件体收缩率由表4-3求出.例如,ZG270-500的平均W C=0.35%,假设浇注温度为1560℃,可从表4-3 查出=4.7%〔碳钢e V= e C〕.£V如何查出的呢?浇注温度为1560 C; W C=0.40%, ev=5%; W C=0.20%,&V=3.8%;据此列式〔5-3.8〕 / 〔0.4-0.2〕 = 〔5-X〕 / 〔0.4-0.35〕,解出X=4.7 〔插入法,比例法〕4〕确定冒口形状和尺寸查相关表格.5〕确定冒口数目6〕校核冒口的最大补缩水平.二比例法〔热节圆法〕使冒口根部直径大于铸件被补缩处热节圆直径或壁厚, 再以冒口根部直径来确定其他尺寸.D=cd式中D ……冒口根部直径;c ••…比例系数,参见表4-6;〔查表步骤〕d ……铸件被补缩热节处内切圆直径.可用作图法画出图4-34热节圆直件a 〕壁厚均匀b 〕壁面和交查表步骤:1〕选取比例系数c 〔先按铸件结构选择冒口类型,再选比例系数〕2〕确定冒口高度〔根据直径 D 确定〕;3〕确定每个冒口长度或冒口个数〔根据冒口延伸度确定〕.三铸件工艺出品率的校核表4-7说明校核方法.采用普通冒口时,冒口尺寸 可根据表中数值进行验算 和调整,即将冒口重量代入 计算后,假设工艺出品率低于 表中数值,那么冒口尺寸偏 大,可适当减小冒口高度; 假设高于表中数值,那么应加大 冒口尺寸或增加冒口个数.四冒口计算举例 见p133例题.图535 ZG35SiMn 铸钢齿轮铸件1模数法工艺出品率= 铸件重量铸件重量+浇铸系统重 量+冒口重量轮缘与轮辐的交接处为热节,其直径d按作图法得50〔大于轮缘厚40〕;按作图法且考虑热节增大,见P126图4-31,dy=d+〔10~30〕,取d=60 〔见P134比例法〕.轮缘热节处按表4-5应为板与杆的相交体,由图4-35可得a=d=60mm, b=180mm,c=24mm.2比例法〔热节圆法〕作业:如下列图铸钢齿圈坯件ZG25,为一圆环,中径〔|〕920,厚80,高240, 有三种补缩方案:3个6190冒口, 3个6190冒口和3个冷铁,尺寸为:宽100X厚50X高240, 6个6190冒口.按有效补缩距离检验,冒口数目是否足够?。

第五章 冒口设计

第五章  冒口设计

5.补贴的应用
为了实现顺序性凝固和增强补贴效果,铸造工艺人员 在靠近冒口的铸件壁厚上补加的倾斜的金属块称为补贴 (增肉)。冒口附近有热节或铸 件尺寸超过冒口补贴距离时, 利用补贴可造成向冒口的补 贴通道,实现补缩。应用补 贴可消除铸件下部热节处的 缩孔,还可延长补缩距离, 减少冒口数目。
补贴分类:
第二节 铸钢件冒口的设计与计算
铸钢件冒口属于通用冒口,其计算原理适用于实行顺序 凝固的一切合金铸件。通用冒口的计算方法很多,现仅介绍 几种常用的冒口计算方法。
一.模数法
1.模数的定义
在铸件材质、铸型性质和浇注条件确定之后,铸件的凝 固时间主要决定于铸件的结构形状和尺寸。而千差万别的铸 件形体,对凝固时间的影响主要表现在铸件体积和表面积的 关系上。铸件体积愈大,则金属液愈多,它所包含的热量也 愈多,凝固时间就长。铸件体积相等,液体金属的重量及所 含的热量就相等,如果铸件的结构不一样,则散热表面积就 不相等。显然,表面积愈大,散热就愈快,凝固时间愈短; 反之,表面积愈小,凝固时间就愈长。
第五章
冒口设计
第一节 冒口的种类及补缩原理
冒口是铸型内用以储存金属液的空腔,在铸件的 形成时补给金属,有防止缩孔、缩松、排气和集渣的 作用.习惯上把冒口所铸成的金属实体也称为冒口。
一、冒口的种类
顶冒口 依位置分 普通冒口 侧冒口 明冒口 暗冒口
依顶部覆盖分
通用冒口 (传统)
依加压方式分
特种冒口
冒口 依加热方式分 易割冒口
r
式中: Mr、Mc—分别为冒口模数和铸件模数; Kr、Kc—冒口、铸件的凝固系数。 对于普通冒口,Kr=Kc,因而上式可写成Mr= f Mc 式中 f —冒口的安全系数,f≥1。
在冒口补给铸件的过程中,冒口中的金属逐渐减少,顶面形成 缩孔使散热表面积增大,因而冒口模数不断减小;铸件模数由 于得到炽热的金属液的补充,模数相对地有所增大。根据试 验,冒口模数相对减小值约为原始模数的17%,一般取安全 系数f=1.2。安全系数过大,将使冒口尺寸增大,浪费金属, 加重铸件热裂和偏析倾向。 对于碳钢、低合金钢铸件,其冒口、冒口颈和铸件的模数 关系应符合下列关系。 对于侧冒口 Mc:Mn:Mr=1:1.1:1.2 (3-5-3) 内浇道通过冒口 Mc:Mn:Mr=1:(1~1.03):1.2 (3-5-4) 对于顶冒口 Mr=(1.2~1)Mc (3-5-5) Mn---为冒口颈的模数。

可锻铸铁件冒口设计

可锻铸铁件冒口设计

可锻铸铁件冒口设计铸铁是一种常用的材料,广泛应用于制造行业。

在铸铁制品的生产中,冒口设计是至关重要的,它直接影响到产品质量和加工成本。

正确的冒口设计可以有效地避免缺陷的产生,提高产品的成形质量,同时也可以降低后续加工的难度和成本。

本文将介绍可锻铸铁件冒口设计的相关知识,并提出一种合理的冒口设计方案。

一、可锻铸铁件的特点可锻铸铁是一种含碳量较高的铸铁材料,其强度和硬度较高,具有较好的可锻性,适用于锻造和精密加工。

可锻铸铁件通常用于制造汽车零部件、机械零件等需要高强度和耐磨性的工件。

由于可锻铸铁的成分和性能特点,其在铸造过程中对冒口设计有着特殊的要求。

二、冒口设计原则1.冒口位置:冒口应设置在可锻铸铁件的最高点,以便将浮渣和气泡排除。

通常情况下,冒口位置应位于铸件的上部,离毛口处一定距离。

2.冒口形状:冒口应设计成易于开启和清理的形状,避免产生断口和裂纹。

常见的冒口形状有圆形、方形和椭圆形等,根据铸件的形状和结构来选择合适的冒口形状。

3.冒口尺寸:冒口的尺寸应根据铸件的大小和结构来确定,通常情况下,冒口的面积越大,排气和排渣效果越好。

但是也要避免过大的冒口导致浪费材料和增加加工成本。

4.冒口数量:根据可锻铸铁件的结构和复杂程度,确定冒口的数量和位置。

通常情况下,大型和复杂结构的铸件需要设置多个冒口,以确保浇注材料充分进入铸型腔。

5.冒口连接:冒口应与铸件的毛口连接,以确保铸注产物的完整性和一致性。

冒口的连接处应设计成光滑和密封的结构,避免产生漏料和漏底等问题。

三、可锻铸铁件冒口设计方案针对可锻铸铁件的特点和冒口设计原则,提出一种合理的冒口设计方案:1. 冒口位置:冒口设置在铸件的最高点,离毛口处约5-10mm,以便排气和排渣。

冒口位置应经过精确计算和模拟,确保冒口的位置准确无误。

2.冒口形状:冒口设计为圆形或椭圆形,便于开启和清理。

冒口的形状应光滑和密封,减少产生断口和裂纹的可能性。

3.冒口尺寸:根据铸件的大小和结构确定冒口的尺寸,通常情况下,冒口的直径或长宽比应为1:3-1:5、冒口尺寸的选择应考虑到浇注材料的流动性和铸件的充实度。

冒口

冒口
整理后得
Vf Vr (Vr VC )
根据平方根定律有
Mr r Kr Mc c Kc
2
2
又根据模数等于体积除以散热表面积得基 本概念,对于铸件有
Mc
(Vc Vc )
Ac
பைடு நூலகம்
对于冒口,由上面分析可知,决定其凝固时 间得体积因素V=Vf,至于散热表面积则随凝 固得进行而增大,与Vf相对应取冒口凝固终 了得散热表面积为A=Af,则
c. 冒口和铸件受补缩部位之间要保持一定的 温度梯度,以保证补缩通道的畅通。
2. 冒口设计方法及冒口方程式 利用计算机计算铸件冒口尺寸,比较合适的方 法是三次方程法。用该方法推导冒口方程式如 下: 根据补缩要求,冒口的凝固时间应大于或等于 受补缩部位的凝固时间,若用 r 、c 分别表 示冒口和铸件被补缩部位的凝固时间,则有:
式中 数; 数;
求得上述三次方程中各参数之后,即可用牛 顿诒代法求解方程。
Cc , c , c
Cr , r , r
--铸件周围介质的参
--冒口周围介质的参
3. 保温冒口的影响
保温冒口通常采用蓄热系数非常小的材料制 成。当时用保温冒口时,降低了冒口的散热,相 当于冒口有效冷却表面减小,引起冒口模数系数 的变化。 设a和b分别为使用保温材料后,冒口侧面和 顶面散热面积降低系数,则加保温材料后冒口的 模数变为
最迟的,冒口的设置的部位应使凝固的顺序 朝着冒口。
b 冒口的有效补缩距离--冒口中液体不能供 给太远的部位,只限制在冒口周围的某些范 围内。在确定冒口的位置和个数之前,应先 考虑液体金属能供给的有效范围。
c 去除冒口的方便程度--为了降低清理工序 的成本,希望将冒口设置在容易去除的部位。

铸造工艺学冒口设计

铸造工艺学冒口设计

铸造工艺学是一门 研究金属材料成型 规律和工艺方法的 科学
铸造工艺学涉及到 金属材料的性能、 组织结构、成分和 加工方法等方面
铸造工艺学是机械 制造领域中重要的 分支之一
铸造工艺学在汽车 、航空航天、能源 等领域有着广泛的 应用
铸造工艺学的研究对象和内容
添加标题
研究对象:铸造工艺学是研究铸造生产过程及其相关技术的一门学科,包括铸造材料、铸造设备、铸造工 艺等方面的内容。
置,以获得最佳补缩效果
注意浇注温度对冒口的影响
浇注温度过低可能导致冒口 补缩不足,产生缩孔、缩松 等缺陷
合适的浇注温度需要根据合 金种类、铸件结构、浇注系
统等因素固,影响补缩效果
在实际生产中,可以通过调 整浇注温度来优化冒口设计,
提高铸件质量
注意浇注时间对冒口的影响
优化冒口位置: 将冒口设置在 铸件的非重要 部位或应力集 中区域,以减 少后续加工或 修复工作量。
考虑环保因素: 选择环保型冒 口材料,减少 废弃物对环境 的影响,降低
处理成本。
05 冒口设计的具体方法
确定冒口的位置
确定冒口的位置:根据铸件的结构和尺寸,选择合适的冒口位置,以保证铸件的质量和生产效 率。
球墨铸铁材质的冒口设计实例
材质特性:球墨铸 铁具有高强度、高 韧性、耐磨性等特 点
冒口设计原则:根 据铸造工艺要求, 确定冒口的位置、 大小和形状
实例分析:以某实 际生产中的球墨铸 铁零件为例,详细 介绍冒口的设计过 程和优化方案
效果评估:通过对 比分析,阐述优化 后的冒口设计对提 高铸件质量、降低 废品率等方面的作 用
添加 标题
壁厚对冒口尺寸的影响:壁厚越大,需要的 冒口体积也越大,以补偿铸件凝固过程中的 收缩。

液态成形中铸件补缩原理及冒口设计

液态成形中铸件补缩原理及冒口设计
曲线4是阶梯式注入,合金液 先从底部进入,液流平稳可避免 飞溅,当液面上升到一定高度后 再从上一层内浇口进入热合金液 ,这样就在铸型不同高度上逐层 引进热的合金液。它既可防止合 金液的飞溅和氧化,又能获得自 下而上顺序凝固的温度分布,但 是它的缺点是切割麻烦,金属消 耗量大。
(4)采用回转铸型法的浇注工艺。在某些情况下(如铸件形状复杂, 合金液易氧化等)必须采用底注式,但底注式又无法造成冒口补缩 所需的凝固顺序。
宽结晶温度范围的合金倾向于糊状凝固,结晶始点波 较快到达铸件断面中心,结晶骨架迅速布满整个断面, 使冒口的补缩通道受到阻碍,顺序凝固的原则就较难实 现。
顺序凝固原则容易使铸件不同部位存在较大的温差,使 铸件出现裂纹、残留应力和变形等缺陷倾向增大。

2)同时凝固(contemporaneous solidification)的原则
合理地确定浇注系统和浇注工艺,不仅影响铸型内的温度场 分布和冒口的补缩效果,而且对防止其他各种缺陷(如气孔、夹 砂、冷隔、氧化夹渣、应力裂纹等)均有很大影响。因此,究竟 采用怎样的浇注系统和浇注工艺,必须根据铸件的结构特点, 合金的凝固特性以及铸件的技术要求综合地考虑,并且在生产 实践中不断地总结和改进,才能不断提高产品质量。
对某一具体铸件而言,到底应该采取顺序凝固原则 还是同时凝固原则,还应当根据该铸件的合金特点,具 体铸件结构及其技术要求,以及可能出现的其它缺陷 (如残留应力、变形、裂纹)等综合考虑,找出矛盾的 主要方面,才能最后合理地加以确定。
5.2确定合理浇注系统及浇注工艺
要获得良好的补缩条件,得到健全的铸件,首先必须合 理地确定浇注系统,主要包括如何选择浇口在铸件上的引 入位置,确定浇口和冒口的相对位置,确定浇注系统的类 型等,这些对铸件凝固时的温度场分布有着显著的影响。 (1)浇口从铸件厚实处引入以加强铸件的顺序凝固。

球墨铸铁件冒口设计

球墨铸铁件冒口设计

2.控制压力冒口(又称释压冒口)
特点:利用部分共晶膨胀量来补偿铸件的凝固收缩 浇注结束,冒口补给铸件的冒口以释放“压力”
应用合理的冒口颈尺寸或一定的暗冒口容积控制回 填程度使铸件内建立适中的内压来克服凝固收缩, 从而获得既无缩孔、缩松又能避免胀大变形的铸件
M颈M冒 (㎝)
图4-40 M冒和M件的关系图 1—冶金质量差 2—冶金质量好
图4-41 需要补缩金属液量和铸件模数的关系 VT—设置冒口部位铸件或热节体积 VC—铸件需补缩体积
(2)冒口的补缩距离 指由凝固部位向冒口
输送回填铁液的距离 与铁水的冶金质量和
铸件的模数密切相关
图4-42 铁液输送距离和冶金质量及铸件模数的关系 1—冶金质量好 2—冶金质量中等 3—冶金质量很差
口体积,只有这部分金属液才能对铸件起补缩作用
冒口有效体积依铸件液态 收缩体积而定,一般比铸件 所需补缩的铁液量大
共晶成分的铸铁,冒口有 效体积取铸件体积的5%
碳当量低的铸件,冒口有 效体积取铸件体积的6%
图4-36 铸铁的ε—t浇曲线 ε—液态体收缩率 t浇—浇注温度
1—CE=4.3% 2—CE=3.6%
冒口颈模数M颈的确定:
M颈t浇 t浇 1111550cl0M件(cm )
式中 M颈 ——冒口颈模数(cm) M件——设置冒口部位的铸件模数(cm) t浇——浇注温度(℃) c ——铁液比热容,c与铁液温度有关,在 1150~1350℃范围内,c为835~963 J/(kg·℃) l ——铸铁结晶潜热为(193~247)×103J/kg
实用冒口的工艺出品率高,铸件质量好,更实用
原理:利用冒口来补缩铸件的液态收缩,而当液态收缩
冒口有效体积依铸件液态收缩体积而定,一般比铸件所需补缩的铁液量大

冒口系统设计

冒口系统设计

冒口系统设计一﹑冒口设计1. 冒口设计的基本原则1)冒口的凝固时间应大于或等于铸件(被补缩部分)的凝固时间。

2)冒口应有足够大的体积,以保证有足够的金属液补充铸件的液态收缩和凝固收缩,补缩浇注后型腔扩大的体积。

3)在铸件整个凝固的过程中,冒口与被补缩部位之间的补缩通道应该畅通,即使扩张角始终向着冒口。

对于结晶温度间隔较宽、易于产生分散性缩松的合金铸件,还需要注意将冒口与浇注系统、冷铁、工艺补贴等配合使用,使铸件在较大的温度梯度下,自远离冒口的末端区逐渐向着冒口方向实现明显的顺序凝固2. 冒口设计的基本内容1)冒口的种类和形状(1)冒口的种类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩顶冒口依位置分侧冒口贴边冒口普通冒口明冒口依顶部覆盖分暗冒口大气压力冒口依加压方式分压缩空气冒口通用冒口(传统)发气压力冒口保温冒口发热冒口特种冒口依加热方式分加氧冒口电弧加热冒口,煤气加热冒口易割冒口直接实用冒口(浇注系统当铸铁件的实用冒口(均衡凝固)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩冒口)控制压力冒口冒口无补缩 图1 冒口分类(2)冒口的形状常用的冒口有球形、圆柱形、长方体形、腰圆柱形等。

对于具体铸件,冒口形状的选择主要应考虑以下几方面:a)球形 b)球顶圆柱形 c)圆柱形 d)腰圆柱形(明) e)腰圆柱形(暗)图2 常用的冒口形状①冒口的补缩效果: 冒口的形状不同,补缩效果也不同,常用冒口模数(M)的大小来评定冒口的补缩效果(M=冒口体积/冒口散热面积),在冒口体积相同的情况下,球形冒口的散热面积最小,模数最大,凝固时间最长,补缩效果最好,其它形状冒口的补缩效果,依次为圆柱形,长方体形等。

②铸件被补缩部位的结构情祝: 冒口形状的选泽还要考虑铸件被补缩部位的结构形状和造型工艺是否方便。

铸造冒口、冷铁与铸肋

铸造冒口、冷铁与铸肋

第三节 铸肋
铸肋又称工艺肋,分两类。 一类是 用于 ; 另一类是 用于 。 ,只有在不影响铸件使用并 得到用货单位同意的条件下才允许保留在铸件上 。而
一、割肋
.显然, ,而 。常用的割肋形式有 等,
铸件在凝固收缩时, 。


。依实践经验,当 a/b>(1~2),l/b<2或a/b>(2~3),l/b<1 时,可以不设割肋。超出上述范围就应设割肋 以防热裂
五、冒口有效补缩距离的确定
• 冒口的有效补缩距离为冒
口作用区与末端区长度之 和,它是确定冒口数目的
依据,与铸件结构、合金
成分及凝固特性、冷却条 件、对铸件质量要求的高
低等多种因素有关,简称
为冒口补缩距离。
板形铸钢件冒口补缩距离
外冷铁的影响
工艺补贴的应用
六、铸钢件冒口的设计
• 铸钢件冒口属于通用冒口,其计算原理适用于实行顺序凝固的一切合金铸件。通用冒 口的计算方法很多,现仅介绍几种常用的冒口计算方法。
• 3、在凝固期间,冒口和被补缩部位之间存在补缩通道,扩张
角向着冒口。
三、冒口形状
• 冒口的形状有圆柱形、球顶圆柱形、长(腰)圆柱形、球形 及扁球形等多种。
四、选择冒口位置的原则
• 1. 冒口应就近设在铸件热节的上方或侧旁; • 2. 冒口应尽量设在铸件最高、最厚的部位; • 3. 冒口不应设在铸件重要的、受力大的部位,以防组织 粗大降低强度; • 4. 冒口位置不要选在铸造应力集中处,应注意减轻对铸 件的收缩阻碍,以免引起裂纹; • 5. 尽量用一个冒口同时补缩几个热节或铸件; • 6. 冒口布置在加工面上,可节约铸件精整工时,零件外 观好; • 7. 不同高度上的冒口,应用冷铁使各个冒口的补缩范围 隔开。

铸钢件冒口的设计与计算-推荐下载

铸钢件冒口的设计与计算-推荐下载

§4 铸钢件冒口设计设计步骤:1)确定冒口的安放位置2)初步确定冒口数量3)划分每个冒口的补缩区域,选择冒口类型4)计算冒口的具体尺寸冒口计算方法:模数法+比例法+补缩液量法(参考资料)一模数法1 计算原理要保证冒口晚于铸件凝固,需冒口的模数大于铸件被补缩部位的模数。

总结:M冒=1.2M件P127式4-5,左边为总收缩量,右边为由冒口补充量。

2 计算步骤1)计算铸件模数根据铸件需补缩部位,划分补缩区,分别计算铸件的模数。

计算方法:公式计算+图表计算-表4-5(p128-130)。

计算M件用L形体计算公式,为什么不用法兰体公式去套呢?(法兰体高度b无法确定)图4-33B-B剖面图中200应改为220,因计算M B时用的数值是220;另外,冒口直径为φ220,其冒口颈宽也应为220。

(A-A剖面图中200改否.)采用右边的A-A剖面冒口颈满足了要求,A-A剖面冒口颈尺寸怎么得来的呢?不要瞎懵,可列式M颈=3.74=20X/[2(20+X)],求出X=12.生产中可根据M冒数值查出标准侧冒口,得冒口尺寸(直径、高等),冒口颈尺寸,冒口体积、重量,能补缩的铸件体积及重量(M冒结合εV查)。

3)确定铸钢件体收缩率由表4-3求出。

例如,已知ZG270-500的平均W C=0.35%,若浇注温度为1560°C,可从表4-3查出εV=4.7%(碳钢εV=εC)。

如何查出的呢?浇注温度为1560°C;W C=0.40%,εV=5%;W C=0.20%,εV=3.8%;据此列式(5-3.8)/(0.4-0.2)=(5-X)/(0.4-0.35),解出X=4.7(插入法,比例法)4)确定冒口形状和尺寸查相关表格。

5)确定冒口数目6)校核冒口的最大补缩能力。

二比例法(热节圆法)见p133例题。

1 模数法轮缘与轮辐的交接处为热节,其直径d按作图法得50(大于轮缘厚40);按作图法且考虑热节增大,见P126图4-31,dy=d+(10~30),取d=60(见P134比例法)。

铸造工艺学冒口设计方案

铸造工艺学冒口设计方案

保温作用:冒口可 以减缓铸件凝固速 度,提高铸件质量
冒口的设计原则
保证补缩量:根据铸件的结 构、尺寸、壁厚等确定冒口 的补缩量
便于操作:冒口的位置应便 于操作,以便于浇注和清理
减少金属消耗:在保证补缩 量的前提下,尽量减少冒口 的金属消耗
避免形成热节:冒口的设计 应避免形成热节,以防止铸 件产生缩孔和缩松等缺陷
计算法
冒口体积计算 冒口直径计算 冒口高度计算 冒口材料选择
实验法
实验目的:确定最 佳冒口尺寸和位置
实验步骤:设计多 种方案,进行实际 铸造实验
实验结果:观察铸 件质量,分析实验 数据
结论:根据实验结 果,确定最佳冒口 设计方案
05 冒口的设计优化
减小冒口体积
优化冒口结构: 采用合理的冒 口结构,如分 片式、组合式 等,以减
冒口的设计原则: 根据铸件的结构、 尺寸、材质等因 素进行设计
冒口的设计方法: 根据铸造工艺学 原理,采用合适 的冒口尺寸、形 状和位置
冒口设计的实际 应用:在铸铁件 生产中,根据实 际情况选择合适 的冒口设计方案, 提高铸件质量和 生产效率
铝合金铸件的冒口设计
口体积
降低冒口高度: 通过减小冒口 高度,减少冒 口体积,同时 保证补缩效果
减小冒口直径: 采用较小的冒 口直径,以减 小冒口体积, 同时保证补缩
效果
改进冒口材料: 采用轻质、高 强度、低热膨 胀系数的材料 制作冒口,以 减小冒口体积
提高冒口补缩效率
确定冒口的位置和数量 选择合适的冒口类型 优化冒口尺寸和形状 控制冒口补缩时间
铸造工艺学冒口设计 方案
,a click to unlimited possibilities
汇报人:

铸造工艺学冒口设计方案

铸造工艺学冒口设计方案

铸造工艺学冒口设计方案引言铸造作为一种重要的制造工艺,在工业领域中得到广泛应用。

冒口设计是决定铸件质量的关键要素之一。

合理的冒口设计可以提高铸件的质量,减少缺陷率,提高生产效率。

本文将介绍铸造工艺学中的冒口设计方案。

冒口设计的基本原则冒口设计的基本原则是确保铸液顺利进入铸型腔体,并使气体和杂质得以排出,同时避免冒口产生不良缺陷。

以下是冒口设计的基本原则:1.冒口应位于铸件最后凝固的部位,以避免冒口残留在最终铸件中。

2.冒口位置应选择在铸件上部,以利于铸液的顺利流入铸型腔体。

3.冒口的形状应考虑冷却过程中的热传递和凝固规律,以避免冷挤缩并保证铸件的凝固完整性。

4.冒口尺寸应根据铸件的大小和冷却速率进行合理的选择。

冒口设计的步骤进行冒口设计时,需要按照以下步骤进行:1.确定铸件的凝固模式:根据铸件的形状和材料特性,确定铸件的凝固模式,例如自上而下凝固、自下而上凝固等。

2.确定冒口位置:根据铸件的凝固模式和形状,选择冒口位置,使冒口尽量位于铸件的上部,以利于铸液的顺利流入铸型腔体。

3.确定冒口形状:根据铸件的形状和凝固规律,选择合适的冒口形状,例如斗形冒口、圆形冒口等。

4.确定冒口尺寸:根据铸件的大小和冷却速率,选择合理的冒口尺寸,以确保铸液足够流动,并使冷却过程中的缩孔最小化。

冒口设计的优化方法为了进一步提高冒口设计的准确性和效果,可以采用以下优化方法:1.模拟计算:利用铸造工艺学软件进行模拟计算,通过模拟铸造过程,预测冒口设计的效果,以减少试验次数和成本。

2.经验参数法:根据类似铸件的经验参数,选择合适的冒口尺寸和形状。

3.图形化分析法:通过绘制铸件的凝固曲线和冷却曲线,分析冒口设计的合理性,并进行必要的调整和优化。

结论冒口设计是铸造工艺学中的重要环节,对铸件的质量和生产效率具有直接的影响。

合理的冒口设计可以提高铸件的质量,减少缺陷率。

在冒口设计过程中,需要根据铸件的凝固模式、形状和材料特性,选择合适的冒口位置、形状和尺寸。

材料成型技术-铸造四(冒口设计)

材料成型技术-铸造四(冒口设计)

一、冒口的作用
由于冒口的设计不当所造成的缺陷主要有缩孔和 由于冒口的设计不当所造成的缺陷主要有缩孔和 缩松。 缩松。缩孔和缩松的存在减少了铸件的有效受力 面积,降低了铸件的强度。 面积,降低了铸件的强度。特别是隐藏在铸件内 部的缩孔,对质量要求高, 部的缩孔,对质量要求高,机械加工量大的铸件 危险很大,有些要求耐压的铸件, 危险很大,有些要求耐压的铸件,因缩孔的存在 经受不住液体的压力而发生渗漏现象 以致报废。 发生渗漏现象, 经受不住液体的压力而发生渗漏现象,以致报废。 冒口的作用: 2.冒口的作用: 冒口的主要作用是补缩铸件 补缩铸件; 1)冒口的主要作用是补缩铸件; 此外还有出气和集渣的作用。 出气和集渣的作用 2)此外还有出气和集渣的作用。
碳钢铸件冒口的有效补缩距离
2、碳钢铸件冒口的有效补缩距离
杆形与板形的区别: 宽厚比大于 4 : 1 为板件 , 为板件, 杆形与板形的区别 : 宽厚比大于4 小于4 的为杆件。 小于 4 : 1 的为杆件 。 对两端都用冒口补缩的板 形或杆形铸钢件, 形或杆形铸钢件 , 在靠近末端方向冒口的有效 补缩距离不变, 而板形b= b=4 补缩距离不变 , 而板形 b=4.5a , 而冒口之间因 少一个散热端面, 有效补缩距离稍小一些, 少一个散热端面 , 有效补缩距离稍小一些 , 对 板形b= b=4 同样地, 板形 b=4a 。 同样地 , 对杆形靠近末端方向和冒 口之间的有效补缩距离分别为: 口之间的有效补缩距离分别为:
二 、冒口的种类及位置
3、冒口的位置: 冒口的位置: 冒口的位置设置不当, 冒口的位置设置不当 , 就不能有效的消除缩孔和 缩松,有时还会引起裂纹等铸造缺陷。 缩松,有时还会引起裂纹等铸造缺陷。 在确定浇注位置时就应考虑冒口的位置, 在确定浇注位置时就应考虑冒口的位置 , 应以下面的 基本原则确定冒口的位置: 基本原则确定冒口的位置: 1)冒口应尽量放在铸件补 缩部分的上部或热节点的旁边。 缩部分的上部或热节点的旁边。 2)冒口应放置在铸件最高 最厚的部位, 最厚的部位,以便利用金属液 的自重力补缩。 的自重力补缩。

球铁件冒口设计热节圆发热节圆法

球铁件冒口设计热节圆发热节圆法

球铁件冒口设计热节圆发热节圆法1. 引言球铁件是一种常见的金属制品,广泛应用于汽车、机械、航空航天等领域。

在球铁件的制造过程中,冒口设计是非常重要的一步。

冒口的设计合理与否直接影响到产品质量和生产效率。

本文将介绍球铁件冒口设计中的热节圆发热节圆法。

2. 球铁件冒口设计概述在球铁件的生产过程中,为了排除气体和杂质,并使金属液顺利注入模型腔内,需要设置冒口。

冒口的位置、形状和尺寸都需要经过合理的设计才能满足产品质量要求。

3. 热节圆发热节圆法原理热节圆发热节圆法是一种常用的球铁件冒口设计方法。

其基本原理是根据金属液凝固时产生的收缩缺陷特点,在模型腔壁上设置一个或多个具有收缩作用的发热节圆,通过这些发热节圆来控制金属液的凝固过程,以达到优化冒口设计的目的。

4. 热节圆发热节圆法步骤热节圆发热节圆法的具体步骤如下:步骤一:确定冒口位置根据球铁件的形状和结构特点,确定合适的冒口位置。

通常情况下,冒口应设置在球铁件上部或侧面。

步骤二:计算冒口尺寸根据球铁件的体积和凝固收缩率等参数,计算出合适的冒口尺寸。

一般来说,冒口尺寸应足够大,以确保金属液能够顺利注入模型腔内,并能在凝固过程中提供足够的液态金属供给。

步骤三:设置发热节圆在模型腔壁上设置一个或多个具有收缩作用的发热节圆。

发热节圆通常由耐火材料制成,其直径和数量根据球铁件的大小和形状进行确定。

这些发热节圆会在凝固过程中产生热量,通过控制金属液的凝固速度和收缩方向,优化冒口设计。

步骤四:模拟凝固过程利用数值模拟或实验方法,模拟球铁件的凝固过程。

通过观察和分析凝固过程中的温度场、凝固收缩等参数变化,评估冒口设计的合理性,并进行必要的调整。

步骤五:验证冒口设计根据实际生产情况,制作样品进行试验验证。

通过对试验样品的质量检测和分析,评估冒口设计的效果,并对冒口位置、形状和尺寸进行进一步优化。

5. 热节圆发热节圆法的优势与传统的直线型、斜线型等冒口设计方法相比,热节圆发热节圆法具有以下优势:•收缩控制:通过设置发热节圆,可以有效控制金属液在凝固过程中产生的收缩缺陷,提高产品质量。

铸造工艺第五章

铸造工艺第五章

IV 特别重要的重型 铸件 齿轮 齿圈 >5000 100 100~500 >500 1000 >1000 >1000
V
VI VII
外形或内表面加 工的圆筒活塞
§5-3 铸铁件冒口的设计与计算
一、球墨铸铁件的冒口设计
通用(传统)冒口设计:遵循定向凝固原则,依靠冒口的金属
液柱重力补偿凝固收缩,冒口和冒口 颈迟于铸件凝固,铸件进入共晶膨胀 期会把多余的铁水挤回冒口
(1.5~1.6)D
(1.8~2.0)D (2.0~2.5) D (2.0~2.5)D
(1.3~1.5)D (1.4~1.8)D
35~40 30~35 30~35
100 100 100 100
瓦盖
(1.3~1.5)D (1.1~1.3)D (1.3~1.5)D
1.1D
0.3H 0.3H 15~20 15~20
<20 20~50 >50
工艺出品率(%)
明冒口 54~62 53~60 52~58
52~58 51~57 50~56
半球型暗冒口 59~67 58~65 57~63
57~63 56~62 55~61
特别重要的小 铸件
<100
组别
名 称 一般重要的中 等铸件
铸件重量 /kg 100~150
大部分铸件壁 厚 / mm
冒口 铸件 冒口
浇 道 a)补缩同一铸件上的三个热节 b)补缩多个铸件上的热节
一个冒口补缩几个热节
(三)冒口的有效补缩距离
1、冒口有效补缩距离 冒口有效补缩距离为冒口作用 区与末端区长度之和,它是确定冒 口数目的依据。
铸件结构
影 响 因 素 合金成分 凝固特性 冷却条件 对铸件质量要求

冒口系统设计PPT课件

冒口系统设计PPT课件
2 一般在热节上方,厚壁部分设置; 3 冒口应比铸件晚凝固,最后凝固才能补缩; 4 冒口在满足补缩条件下,尺寸尽量小, 5 防止裂纹产生,冒口不设在铸件应力集中处
(阻碍收缩),防止引起裂纹; 6 尽可能地将冒口设在方便和容易消除冒口残
根的地方; 7 冒口的补缩距离要大于冒口的有效补缩范围。
图3-3-8 平板铸件用冒口补缩时出现缩松区的情况 b-有效补缩区 c-冒口补缩区 e- 末端边角激冷区 f- 缩松区
Mc=1.92cm
Mr=1.2Mc=2.3cm
查标准圆柱形暗冒口表:当Mr=2.38cm, 收缩 率为5%、每个暗冒口能补缩的最大铸件体积 为 4.1L ( 重 量 32kg ) 时 , 冒 口 的 尺 寸 为 ¢ 120mm×188mm(h) (h=1.5d) 。 可 见 设 计一个冒口已经足够。

• 1、外冷铁 -直接外冷铁、间接外冷铁
• 外冷铁是自铸件外壁施加激冷作用,它不与铸 件表面溶接,可以回收重用。所以外冷铁的材 料以选择导热性好、有足够高的熔点的为好。
• 直接外冷铁 - 金属激冷材料直接与铸件相接 触称为直接外冷铁
• 间接外冷铁 - 金属激冷材料通过一薄层非金 属材料(如砂子、涂料等厚度在10-15mm) 与铸件相接触称为间接冷铁
对于逐层凝固产生集中缩孔的合金,设 置适当容积、足够的温度梯度的冒口,就 可以有效地防止缩孔和缩松。
对于糊状凝固的合金,冒口的作用很小, 适当设置小冒口,可以在一定限度上减少 缩孔缺陷和减少缩松缺陷。
• 二、冒口的类型及设计原理 • 冒口种类 • 1)按冒口在铸件上的位置分
• ① 顶冒口:位于铸件的最高处 • ② 侧冒口:设置在铸件的热节点处 • ③ 补贴冒口:方向凝固 • ④ 局部冒口 •

铸钢件冒口的设计规范.

铸钢件冒口的设计规范.

铸钢件冒口的设计规范钢水从液态冷却到常温的过程中,体积发生收缩。

在液态和凝固状态下,钢水的体积收缩可导致铸件产生缩孔、缩松。

冒口的作用就是补缩铸件,消除缩孔、缩松缺陷。

另外,冒口还具有出气和集渣的作用。

1、冒口设计的原则和位置1.1冒口设计的原则1.1.1、冒口的凝固时间要大于或等于铸件(或铸件被补缩部分)的凝固时间。

1.1.2、冒口所提供的补缩液量应大于铸件(或铸件被补缩部分)的液态收缩、凝固收缩和型腔扩大量之和。

1.1.3、冒口和铸件需要补缩部分在整个补缩的过程中应存在通道。

1.1.4、冒口体内要有足够的补缩压力,使补缩金属液能够定向流动到补缩对象区域,以克服流动阻力,保证铸件在凝固的过程中一直处于正压状态,既补缩过程终止时,冒口中还有一定的残余金属液高度。

1.1.5、在放置冒口时,尽量不要增大铸件的接触热节。

1.2、冒口位置的设置1.2.1、冒口一般应设置在铸件的最厚、最高部位。

1.2.2、冒口不可设置在阻碍收缩以及铸造应力集中的地方。

1.2.3、要尽量把冒口设置在铸件的加工面或容易清除的部位。

1.2.4、对于厚大件一般采用大冒口集中补缩,对于薄壁件一般采用小冒口分散补缩。

1.2.5、应根据铸件的技术要求、结构和使用情况,合理的设置冒口。

1.2.6、对于清理冒口困难的钢种,如高锰钢、耐热钢铸件的冒口,要少放或不放,非放不可的,也尽量采用易割冒口或缩脖型冒口。

2、设置冒口的步骤与方法冒口的大小、位置及数量对于铸钢件的质量至关重要。

对于大型铸钢件来说,必须把握技术标准及使用情况,充分了解设计意图,分清主次部位,集中解决关键部位的补缩。

以模数法为例,冒口设计的步骤如下:2.1、对于大、中型铸钢件,分型面确定之后,首先要根据铸件的结构划分补缩范围,并计算铸件的模数(或铸件被补缩部分的模数)M铸。

2.2、根据铸件(或铸件被补缩部分)的模数M铸,确定冒口模数M冒。

2.3、计算铸件的体收缩ε。

2.4、确定冒口的具体形状和尺寸。

第五章 冒口工艺及出气孔

第五章  冒口工艺及出气孔

3)保温冒口 采用保温材料作冒口套,顶部采用保温剂
的冒口
(1)保温材料选择;(2)保温冒口套厚度;(3)模数
法确定冒口尺寸
12
M V A
5.6 灰铸铁件的冒口设计
1 灰铸铁铸造工艺性能 结晶范围窄,接近于逐层凝固,石墨化膨胀,
凝固收缩小,不易产生缩松,Mc≦1cm的铸件可不设置
冒口 2 通用(传统)冒口设计 1)比例法 (1)侧冒口 (2)顶冒口和暗侧冒口 2)压边浇冒口 3)冒口有效补缩距离 (1)根据冒口有效补缩距离L与冒口直径DR的比值,确定
也可采用蓄热系数比石英砂大的石墨等非金属材料
19
M V A
5.8 出气孔
1 出气孔作用 排除铸型型腔内气体,改善液态合金的 充型能力,监视液态合金充满程度。
2 出气孔位置和结构类型
1)空间位置 出气孔一般设在铸件的顶部及难于排气的 “死角”处等部位,避免设在铸件厚壁处。出气孔包括 明出气孔和暗出气孔
灰铸铁件、球墨铸铁件,且铸型强度足够高 3)灰铸铁件实用冒口(内压控制冒口)
灰铸铁件内压控制冒口的种类分为加压冒口, 减压冒口和无冒口工艺;其种类及设计方法同于球墨铸 铁件,差别在于所适用的铸件模数范围不同
14
M V A
5.6 球墨铸铁件冒口设计
1 球墨铸铁铸造工艺性能
凝固收缩小,呈糊(粥)状凝固,流动性差,
径的模数③确定冒口的类型和形状尺寸; ④确定冒口的 数量;⑤校核冒口的最大补缩能力 3 比例法 1)比例法的概念
比例法是在大量工艺实践的基础上总结出的 冒口尺寸经验确定方法。 2)比例法设计冒口基本步骤
选择冒口的类型和形状,查取相关图、表, 确定冒口尺寸和铸件壁厚或热节圆半径的比例关系,计 算冒口尺寸

铸钢件冒口的设计规范

铸钢件冒口的设计规范

铸钢件冒口的设计规范冒口是钢铸件的重要部分,它起到保证铸件质量的作用。

冒口的设计需要考虑到以下几个方面的因素:冷却塑性因素、浇筑工艺性因素、铸件缺陷因素和经济因素。

首先,冷却塑性因素是决定冒口尺寸和形状的重要因素之一、冒口的尺寸和形状需满足以下要求:1)在钢液凝固过程中保持适当的冷却速率,避免过快或过慢导致的铸件内部缺陷;2)冷却速率不宜太大,以免引起应力过大,导致铸件变形或开裂;3)冷却速率应相对均匀,以避免冷却速率不一致引起铸件组织不均匀。

其次,浇筑工艺性因素也是冒口设计的重要考虑因素。

浇筑工艺条件包括浇注温度、冒口位置、浇注速度等。

冒口位置应选择在钢液最后凝固的位置上,这样能保证整个铸件在冷却时钢液能从冒口处逆向凝固,确保铸件的内部质量。

浇注温度需要根据具体情况来确定,一般要保持较高的浇注温度,避免冷却过快导致液流不畅或气体夹杂。

同时,浇注速度也要适当,控制在钢液在凝固过程中能充分填充整个型腔,并能排除气体等杂质。

第三,铸件缺陷因素也需要考虑在冒口设计中。

冒口应避免引入气孔、夹杂和收缩孔等缺陷。

冒口应设置在铸件上部或侧部,以确保铸件内部的气体和杂质能够顺利排出,并避免在冒口处形成气孔和夹杂。

同时,冒口还要满足杂质排除和液流畅通的要求,以避免收缩缺陷的生成。

最后,经济因素也是冒口设计必须考虑的因素之一、冒口设计要考虑到冒口的材料成本、制造成本、施工方便性以及可回收利用性。

同时,还要综合考虑冒口数量、形状和尺寸的合理性,以降低冒口制造的成本,并提高冒口的使用寿命。

总结起来,铸钢件冒口的设计规范应满足冷却塑性因素、浇筑工艺性因素、铸件缺陷因素和经济因素的要求。

冒口设计的合理与否直接影响到铸件的质量和成本,因此在实际工程中需要根据具体情况综合考虑以上各方面因素,合理设计冒口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.40
38.10 50.80
114.3
127.0
165.1
228.6
可锻铸铁冒口的补缩距离为4~4.5倍壁厚。
3.有色合金冒口补缩距离
锡青铜和磷青铜合金凝固范围一般较宽,呈糊状凝固 特性,冒口的有效补缩距离短,易出现分散缩松;无锡青 铜和黄铜一般凝固范围窄,其冒口补缩距离大。铜合金冒 口的补缩距。
大气压力冒口 压缩空气冒口 发气压力冒口 保温冒口 发热冒口 加氧冒口 电弧加热冒口、煤气加热冒口
直接实用冒口(浇注系统当冒口)
铸铁件的实用冒 口(均衡凝固)
控制压力冒口 冒口无补偿
冒口的种类有圆柱形、球顶圆柱形、长(腰)圆 柱 形、球形及扁球形等多种。图3-5-1为常用冒口种类。
二、通用冒口补缩原理
当生产条件同上述试验条件有差别时,如用于杆件(断面宽 厚比<5:1),采用低注式浇注系统,高合金钢铸件等, 都需要将图3-5-13给出的补贴厚度数据乘以补偿系数。铸 钢件垂直补贴的补偿系数见表3-5-3。
表3-5-3
补偿原因
垂直补贴的补偿系数
补偿条件 补偿系数 4:1 1.0 1.25 1.5
杆件断面厚度比 杆件比板件的冒口补缩距 离小,有较大的补贴厚度 才能保证铸件致密。 3:1 2:1
ε(Vc+Vr)+Ve≤Vrη
2.铸件形状系数的影响
以Chvorinov 公式为基础的模数法忽略了铸件形状对凝 固时间的影响,而实际上,在其他条件(模数、合金、铸型等) 相同时,球体件凝固时间最短。圆柱体次之,平板件最长。这 一结论已被铸件凝固传热计算证明。铸件凸形表面的凝固层增 长速度高于平面和凹形表面。说明铸件形状对其凝固和补缩有 影响。 铸件形状系数(shape coefficent)q又名周界商,定 义为铸件体积Vc与其模数 Vc3 之比值,即: M c3 q=Vc/ M c3 (3-5-7) q值使铸件形状数量化,q值的大小表明了铸件形状的特征 —形状越接近于简单的实心球体,q值越小;反之,铸件形状 越接近展开的大平板,q 值越大。实心球体q值最小,这时候 qmin=113。而大平板件q 值非常之大。生产中铸件的q 值多
2.铸铁件通用冒口的补缩距离
灰铸铁件通用冒口的补缩距离如图3-5-8所示。高牌 号灰铸铁的共晶度低,结晶温度范围宽,共晶转变前析出奥 氏体阻碍补缩,故冒口补缩距离较小。
球墨铸铁具有糊状凝固特性,采用通用冒口补缩效果较差。 应指出:只在用湿型或壳型铸造较厚的球铁件时才有必 要使用传统的冒口补缩。这是由于铸型刚度差,无法充分利 用石墨化共晶膨胀压力来克服缩松。球铁冒口的补缩距离参 看表3-5-1中数据。
5.补贴的应用
为了实现顺序性凝固和增强补贴效果,铸造工艺人员 在靠近冒口的铸件壁厚上补加的倾斜的金属块称为补贴 (增肉)。冒口附近有热节或铸 件尺寸超过冒口补贴距离时, 利用补贴可造成向冒口的补 贴通道,实现补缩。应用补 贴可消除铸件下部热节处的 缩孔,还可延长补缩距离, 减少冒口数目。
补贴分类:
K (0.9~1.26) 10
3米 / 秒1 / 2
(或K 0.75~ 0.98厘米 / 分1 / 2 )
2. 基本原理
遵守顺序凝固的基本条件。首先,冒口的凝固时间τr 应大于于铸件被补缩部位年凝固时间τc。运用Chvorinov 公式τ =(Mr/Kr)2和τc=(Mc/Kc)2 ,于是得:
第二节 铸钢件冒口的设计与计算
铸钢件冒口属于通用冒口,其计算原理适用于实行顺序 凝固的一切合金铸件。通用冒口的计算方法很多,现仅介绍 几种常用的冒口计算方法。
一.模数法
1.模数的定义
在铸件材质、铸型性质和浇注条件确定之后,铸件的凝 固时间主要决定于铸件的结构形状和尺寸。而千差万别的铸 件形体,对凝固时间的影响主要表现在铸件体积和表面积的 关系上。铸件体积愈大,则金属液愈多,它所包含的热量也 愈多,凝固时间就长。铸件体积相等,液体金属的重量及所 含的热量就相等,如果铸件的结构不一样,则散热表面积就 不相等。显然,表面积愈大,散热就愈快,凝固时间愈短; 反之,表面积愈小,凝固时间就愈长。
其次,冒口必须能提供足够的金属液,以补偿铸件和冒 口在凝固完毕前的体收缩和因型腔移动而扩大的容积,使缩 孔不致伸入铸件内,为满足此条件应有:
(3-5-6) 式中: Vc、Vr、Ve—铸件体积、冒口体积和因型壁移动 而扩大的体积。Ve值对舂砂紧实的干型近似为零。对受热后 易软化的铸型或松软的湿型,应根据实际情况确定; ε—金属从浇完到凝固完毕的体收缩,具体值见表3-5-4、 表3-5-5。 η—冒口的补缩效率, η=(补缩体积/冒口体积)×100%。 各种冒口的补缩效率值见表3-5-6。 ε、η值对冒口体积的影响如图3-5-15所示。 通常依公式(3-5-3~5)确定冒口尺寸,而用公式(35-6)校核冒口的补缩能力。此外,保证冒口和被补缩之间 存在补缩通道,扩张角应向冒口敞开。利用补贴和冷铁常可 实现这一目的。
6. 冒口布置在加工面上,可节约铸件精整工时,零件外观 好。 7. 不同高度上的冒口,应用冷铁使各个冒口的补缩范围隔 开 (图3-5-4)。
(三)冒口有效补缩距离的确定
冒口有效补缩距离=冒口作用区与末端区长度之 和。 它是确定冒口数目的依据。
有效补缩距离与铸件结构、合金成分、凝固特性、冷 却条件、对铸件质量要求的高低等多种因素有关,简称为 冒口补缩距离。
在113~5000范围内。在其他条件相同时, q值大则冒口 补缩效率高。表3-5-7为保温冒口补缩效率η和铸件形状系 数q的关系。在设计和校核冒口时,q值大的铸件应选取冒口 补缩效率的上限值;对q值小的铸件应选取η的下限值。
表3-5-7
铸件形状系数q 冒口补缩效率η(%)
保温冒口补缩效率η与铸件形状系数q的关系
1.5:1
1.1:1 低注式
1.7
2.0 1.25 1.251.25X1.25=1. 58 1.25X1.25=1.58
充型方式和化学成分不同
顶注式 底注式
球铁曲轴工艺冷铁
铸件充型过程色温图
铸件凝固过程色温图
铸件凝固过程液相分布图
在铸件上确定局部热节补贴的方法—滚圆法
对于重要部位的热节用扩大滚圆法;而对于次要部位的 热节用不扩大滚圆法。图3-5-14示出铸齿轮毛坯的轮缘和 轮毂处补贴的具体方法。
(二)选择冒口位置的原则
1. 冒口就近设在铸件热节的上方或侧旁。 2. 冒口应尽量设在铸件 最高、最厚的部位。对 低处的热节增设补贴或 使用冷铁(见图3-5-2) 造成补缩的有利条件。
3. 冒口不应设在铸件重要的、受力大的部位,以防 止组织粗大降低强度。 4. 冒口位置不要选在铸 造应力集中处,应注 意减轻对铸件的收缩 阻碍,以免引起裂纹。 5. 尽量用一个冒口同时 补缩几个热节或铸件 (图3-5-3)。
表3-5-1
铸件壁厚
6.35 12.70 15.86 19.05 101.6~ 127.0 139.7~ 152.4 228.6 101.6~ 114.3 湿 型
球铁冒口的补缩距离(mm)
水 平 湿 壁 型 厚 湿 型 垂直补贴 壳 型
31.75 101.6 88.9 127.0 133.4 88.9
r
式中: Mr、Mc—分别为冒口模数和铸件模数; Kr、Kc—冒口、铸件的凝固系数。 对于普通冒口,Kr=Kc,因而上式可写成Mr= f Mc 式中 f —冒口的安全系数,f≥1。
在冒口补给铸件的过程中,冒口中的金属逐渐减少,顶面形成 缩孔使散热表面积增大,因而冒口模数不断减小;铸件模数由 于得到炽热的金属液的补充,模数相对地有所增大。根据试 验,冒口模数相对减小值约为原始模数的17%,一般取安全 系数f=1.2。安全系数过大,将使冒口尺寸增大,浪费金属, 加重铸件热裂和偏析倾向。 对于碳钢、低合金钢铸件,其冒口、冒口颈和铸件的模数 关系应符合下列关系。 对于侧冒口 Mc:Mn:Mr=1:1.1:1.2 (3-5-3) 内浇道通过冒口 Mc:Mn:Mr=1:(1~1.03):1.2 (3-5-4) 对于顶冒口 Mr=(1.2~1)Mc (3-5-5) Mn---为冒口颈的模数。
<200 25 250 30 300 33 400 35 500~1000 40 >1000 45
3. 冒口设计步骤
1)把铸件划分为几个补缩区,计算各区的铸件模数Mc。 2)计算冒口及颈的模数。 3)确定冒口形状和尺寸(应尽量采用标准系列冒口尺寸) 4)检验顺序凝固条件,如补缩距离是否足够,补缩通道是 否畅通。 5)校核冒口补缩能力。
1.铸钢件冒口的补缩距离
碳钢铸件的冒口补缩距离如图3-5-5所示。更精确的 数据可依图3-5-6曲线查出。这些曲线是用Wc=0.2%~ 0.3%的碳铸钢件的试验取得的。(注意有效补缩距离)
扩张角φ1与φ2
结果表明,冒口区长度和末端区长度都随铸件厚度增大 而增加,且随截面的宽厚比减少而减少。说明薄壁件比厚壁 件更难于消除轴线缩松 ,而杆件比板件补缩难度大。 阶梯形铸钢件冒口补缩距离比板形件的大(见图3-5-7)。 冒口的垂直补缩距离至少等于冒口的水平补缩距离。
(一)基本条件
通用冒口适用于所有合金铸件,它遵循顺序凝固的 基本条件: 1. 冒口凝固时间大于或等于铸件(被补缩部分)的凝固时 间。 2. 有足够的金属液补充铸件的液态收缩和凝固收缩,补 偿浇注后型腔扩大的体积。 3. 在凝固期间,冒口的被补缩部位之间存在补缩通道, 扩张角向着冒口。 为实现顺序凝固,要注意冒口位置的选择,冒口有 效补缩距离是否足够,并充分利用补贴和冷铁的作用。
表3-5-2 铜合金冒口的补缩距离(mm)
合金种类 锡锌青铜 Sn8%,Zn4% 锰铁黄铜 Cu55%,Mn3%Fe1 % 铝铁青铜 Al9%,Fe4% 铸件形状 板件 杆件 板件 末端区长 4T 10T 5T 冒口区长 0 2.5T 补缩距离 4T 10T 7.5T
相关文档
最新文档