典型信号的傅里叶变换
典型信号的傅里叶变换
![典型信号的傅里叶变换](https://img.taocdn.com/s3/m/8544b4e4fc0a79563c1ec5da50e2524de518d0b7.png)
f
t 非 周周 期期
统一的分析方法:傅里叶变换
由欧拉公式
cos0t
1 2
e j0t
e j0t
sin0t
1 2j
e j0t
e j0t
已知
1 2π
由频移性质
1 ej 0 t 2 0
1 ej0 t 2 0
cos0t
同理
1 2
2π
0
2π
0
π
0
π
0
sin0t jπ 0 jπ 0
dt
t
2
E
ejt d t E
e
j
t
e
jt
dt
E
e
j
t
e
jt
dt
2
4
4
ESa
E
2
Sa
π
E
2
Sa
π
F
E sin
1
2
π
E Sa
1 2
π
F
E
E
2
O π 2π 3π
其频谱比矩形脉冲更集中。
4π
•冲激函数 •冲激偶 •单位阶跃函数
F( ) t ej t d t 1
f t
1
O
t
F
1
O
t看作
1 的矩形脉冲,
0时, B
冲激函数积分是有限值,可以用公式求。而u(t)不
满足绝对可积条件,不能用定义求。
(t) 1 ( ) 1
2π
f t
1
O
t
F
1
O
F
1
O
1 f t
信号与系统(郑君里第二版)讲义第三章 傅里叶变换
![信号与系统(郑君里第二版)讲义第三章 傅里叶变换](https://img.taocdn.com/s3/m/3dd89d651ed9ad51f01df2f7.png)
t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0
∫
∫
t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n
∞
jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2
−
T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
――傅里叶变换
![――傅里叶变换](https://img.taocdn.com/s3/m/b8afe61fb5daa58da0116c175f0e7cd1842518ed.png)
第三章傅里叶变换(一)三角函数形式的傅里叶级数满足狄利赫里条件的周期函数f。
)可由三角函数的线性组合来表示,若f(t)的周期为T,角频率3 =之,频率f =',傅里叶级数展开表达式 1 1 T 1 T1 1为f (t)= a +£[a cos(〃3t)+ b sin (〃3t)n=1各谐波成分的幅度值按下式计算a = —f t o+T1 f (t)dto T t o a =」t o+T1 f (t)cos (n3 t)dt n T t1ob = — j t o+ T1 f (t)sin(n3 t)dt n T t1o其中n = 1,2, •••狄利赫里条件:(1)在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2)在一个周期内,极大值和极小值的数目应是有限个;(3)在一个周期内,信号是绝对可积的,即』t o+T|f (t)dtt等于有限值。
t o(二)指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即f (t)= £F (n3)ej n31 n1n二一8其中F = — f t o+T1f 0-加3 t dt n T1 t o 其中n为从一8到+8的整数。
3.1m号的傅里叶级!瞬析(三)函数的对称性与傅里叶系数的关系(1)偶函数由于f。
)为偶函数,所以f(t)sin(旭t)为奇函数,则1b = — J t o+ T i f (t)sin (n① t)dt = 0 n T t11 0所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(2) 奇函数由于f (t)为奇函数,所以f(t)cos (n o t )为奇函数,则1a =— J t0+T f (tb t = 00 T t10a = — J t0+T1 f (t)cos (n0 t)dt = 0 n T t11t0所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3)奇谐函数(f (t )=-f [ t + T ])I 27半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。
信号课件第三章傅里叶变换
![信号课件第三章傅里叶变换](https://img.taocdn.com/s3/m/520ee8d96f1aff00bed51e1b.png)
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
3.5-7 典型非周期信号的傅里叶变换
![3.5-7 典型非周期信号的傅里叶变换](https://img.taocdn.com/s3/m/595a41ff0242a8956bece47b.png)
X ( jω ) 称 为 x ( t )的 频 谱
ω +a
2
2
;
X ( jω ) = − tan ( ) a
2a ω 2 + a2
= EτSa(
ω
u (t ) ← X ( jω ) = →
( t ≤ τ2 ) ( t > τ2 )
← F( jω) →
ωτ
2
)=
sin(
ωτ
2
)
ωτ
2
补充:
1, sin Bt x(t ) = ← X ( jω ) → πt 0, | ω |< B | ω |> B
F( jω)
δ (t )
t
1
jω 单位冲激函数的频谱等于常数,也就是说, 单位冲激函数的频谱等于常数,也就是说,在整个频率 范围内频谱是均匀的。这种频谱常常被叫做“均匀谱” 范围内频谱是均匀的。这种频谱常常被叫做“均匀谱”或 白色频谱” “白色频谱”。 矩形方波演变成冲激函数.exe 单位冲激函数可矩形脉冲取极限 单位冲激函数.exe 其傅立叶变换也可类似推得. 得到 其傅立叶变换也可类似推得
∞
− jωt
dω = ∫−∞ F ( x)e
∞
− jxt
dx
2πf (−ω) = ∫−∞ F( x)e− jxω dx
∞ ∞ − jωt
x ⇒t
= ∫−∞ F(t )e dt ↔ F(t )
若f (t)为偶函数,则f (−ω) = f (ω)
所以有: 所以有:若
f (t ) ↔ F(ω)
则 F(t ) ↔2π f (ω)
为偶函数, 若f(t)为偶函数,则时域和频域完全对称。 为偶函数 则时域和频域完全对称。 直流和冲激函数的频谱的对称性是一例子。 直流和冲激函数的频谱的对称性是一例子。
8个典型信号的傅里叶变换
![8个典型信号的傅里叶变换](https://img.taocdn.com/s3/m/3e8526b677eeaeaad1f34693daef5ef7ba0d128f.png)
8个典型信号的傅里叶变换1. 常数信号(直流信号)这个常数信号啊,就像一个超级稳定的家伙,一直保持一个值不变。
它的傅里叶变换可有趣啦,就是一个冲激函数(狄拉克函数)在频率为0的地方。
你可以想象啊,常数信号就只有一个频率成分,那就是0频率,就像一个静止不动的状态在频率域里的表示呢。
2. 正弦信号。
正弦信号就像一个有规律的摇摆舞者。
它的傅里叶变换呢,是在正负它的角频率处有两个冲激函数。
比如说一个正弦函数Asin(ω_0t),在频率ω = ω_0和ω=-ω_0的地方有两个冲激。
这就好像在说,正弦信号就只有一个频率在那欢快地跳动,这个频率就是它自己的角频率ω_0,一正一负就像在频率轴上对称地站着两个代表它的小尖刺。
3. 余弦信号。
余弦信号跟正弦信号是近亲呢。
Acos(ω_0t)的傅里叶变换也是在正负它的角频率处有两个冲激函数。
不过和正弦信号有点小区别,就像是两个风格相似但又有点不同的舞者。
余弦信号的傅里叶变换,那两个冲激函数就像是在频率轴上标记着它自己独特的角频率ω_0的两个小灯塔。
4. 单位冲激信号(狄拉克函数)这个单位冲激信号啊,就像一个超级突然的小爆炸,瞬间爆发然后就没了。
它的傅里叶变换可神奇了,是一个常数1。
你想啊,这个小爆炸包含了所有频率成分,就像一个超级大杂烩,在频率域里就变成了一个平坦的1,就好像所有频率都被它平等对待,一股脑儿地全在里面了。
5. 矩形脉冲信号。
矩形脉冲信号就像一个突然冒出来又突然消失的小方块。
它的傅里叶变换是Aτ Sa((ωτ)/(2)),这里的A是脉冲的幅度,τ是脉冲的宽度,Sa函数是(sin x)/(x)。
这个变换就像是把矩形脉冲信号这个小方块在时间域的信息,分散到了频率域里,就像把一个集中的小方块打散成了好多频率成分,那些频率成分按照Sa函数的规律分布着。
6. 三角脉冲信号。
三角脉冲信号就像一个小山峰。
它的傅里叶变换是Aτfrac{Sa^2((ωτ)/(2))}{ω^2}。
傅立叶变换(FT)
![傅立叶变换(FT)](https://img.taocdn.com/s3/m/9f3b48da4693daef5ef73dbf.png)
t
(a)FS项数越多,合成波形误 差越小; (b)低频分量组成方波的主体,高频分 量主要影响脉冲前沿; (c)不论n为多大,在间断点总有9% 的 偏差,称为吉布斯现象。
n=5 n=3
9% E
0
/2
t
§2-3 非周期信号频谱分析— 傅里叶变换(FT)
2.3-1 FT 定义 周期信号的频谱谱线的间隔为 周期信号的频谱谱线的长度为
(4) 带宽只与脉冲脉宽有关,而与脉高和周期均无关。信号 带宽定义为=0~2/ 这段范围,即 B=2/ 或 f B=1/
(5) 时域参数对频谱的影响
f(t)
E
2E 5
傅里叶频谱
cn
T1=5
- /2 0 /2
T1
2 T1
t
E 5
0
2/
4/
6/
- /2 0 /2
f (t )e jn t dt
1
F (ω) lim F (nω1 )T1 lim
T1
F (ω) f (t )e jt dt
T 1 2 T1 2
f (t )e jn t dt
FT变换
f(t)
F(n1)
傅立叶变换FT
F(0)
…
-T1 - /2 0 /2 T1
1 jn 1t f (t )e dt T1
2
Ee jn 1t dt
2
Eτ T1
sin(
nτ ) T1 nω1τ Eτ Sa ( ) nτ T1 2 T1
1
所以
nω1 jn t Eτ j f (t ) Sa( )e | Fn | e e jn t T 2 n 1 n
常用信号的傅里叶变换
![常用信号的傅里叶变换](https://img.taocdn.com/s3/m/7c5adb1abf23482fb4daa58da0116c175f0e1e93.png)
常用信号的傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学工具。
它是以法国数学家傅里叶的名字命名的,用于分析信号的频谱成分。
在信号处理和通信领域,傅里叶变换被广泛应用于信号的频谱分析、滤波、解调和压缩等方面。
1. 正弦信号的傅里叶变换正弦信号是最简单的周期信号之一,它可以表示为一个频率和幅度确定的正弦函数。
对于一个正弦信号,它的傅里叶变换是一个由两个峰值组成的频谱图。
其中一个峰值位于正弦信号的频率上,另一个峰值位于负频率上,其幅度与正弦信号的幅度相等。
2. 方波信号的傅里叶变换方波信号是一种以方波函数为基础的周期信号。
方波信号可以表示为一系列正弦信号的叠加,其傅里叶变换是一个由多个峰值组成的频谱图。
频谱图上的峰值对应于方波信号中各个频率的成分。
3. 矩形脉冲信号的傅里叶变换矩形脉冲信号是一种在有限时间内突然变化的信号。
它在时域上表现为一个宽度有限的矩形脉冲,其傅里叶变换是一个以脉冲宽度为主要参数的频谱图。
频谱图上的峰值表示了矩形脉冲信号中各个频率的成分。
4. 高斯信号的傅里叶变换高斯信号是一种以高斯函数为基础的连续非周期信号。
高斯信号在时域上呈钟形分布,其傅里叶变换是一个以高斯函数为形状的频谱图。
频谱图上的峰值表示了高斯信号中各个频率的成分。
5. 三角波信号的傅里叶变换三角波信号是一种以三角函数为基础的周期信号。
三角波信号可以表示为一系列正弦信号的叠加,其傅里叶变换是一个以基频为主要参数的频谱图。
频谱图上的峰值对应于三角波信号中各个频率的成分。
6. 音频信号的傅里叶变换音频信号是一种连续时间的信号,它可以通过傅里叶变换转换为频域信号进行分析。
音频信号的傅里叶变换可以得到音频信号的频谱图,从而可以对音频信号进行频谱分析、滤波和合成等操作。
7. 语音信号的傅里叶变换语音信号是一种声音信号,它可以通过傅里叶变换转换为频域信号进行分析。
语音信号的傅里叶变换可以得到语音信号的频谱图,从而可以对语音信号进行声音分析、语音识别和语音合成等操作。
tf(t)傅里叶变换
![tf(t)傅里叶变换](https://img.taocdn.com/s3/m/7c2c7d65ce84b9d528ea81c758f5f61fb7362832.png)
tf(t)傅里叶变换傅里叶变换(Fourier Transform,下文简称FT)是一种经典的信号处理方法,它可以将一个时间信号转换为频域中的频率分量表示。
FT的应用非常广泛,包括声音信号处理、图像处理、通信系统设计等等领域。
在介绍FT的具体内容之前,我们需要先解决一个问题:为什么要考虑时间信号的频域表示呢?设连续信号$f(t)$是包含许多不同频率分量的信号,那么它的频域表示$f(\omega)$可以描述这些不同频率分量的信息。
因此,当我们需要对信号进行滤波、降噪等处理时,频域表示可以提供非常有用的信息,例如哪些频率需要保留、哪些频率需要消除等等。
另外,FT还可以用于分析信号的周期性,例如音频信号中的基音频率就是一种典型的周期分量。
下面,我们来介绍FT的基本定义和性质。
一、傅里叶变换的定义设连续信号$f(t)$的傅里叶变换为$F(\omega)$,则有:$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$$其中,$j=\sqrt{-1}$。
在这个公式中,$e^{-j\omega t}$是一个复指数函数,它在时间轴上是一个旋转的单位圆,频率$\omega$表示每秒旋转的圈数。
将$f(t)$乘以$e^{-j\omega t}$,相当于对$f(t)$进行一个预处理,使得这个信号在频率轴上的值变成了$f(\omega)$。
因此,$F(\omega)$可以看做是$f(t)$在频域上的值,也称为$f(t)$的频谱。
注意,为了避免数学上的复杂性,我们在这里讨论的都是连续信号的傅里叶变换。
对于离散信号的傅里叶变换(Discrete Fourier Transform,下文简称DFT),定义和性质与连续信号的傅里叶变换并不完全一致,但本质相同。
1. 线性性质傅里叶变换具有线性性,即:$$\begin{aligned} &\text{若}\quadf_1(t)\xrightarrow{\text{FT}}F_1(\omega),\quadf_2(t)\xrightarrow{\text{FT}}F_2(\omega)\\ &\text{则}\quadaf_1(t)+bf_2(t)\xrightarrow{\text{FT}}aF_1(\omega)+bF_2(\omega) \end{aligned}$$其中,$a$和$b$为常数。
信号与系统第3章傅里叶变换
![信号与系统第3章傅里叶变换](https://img.taocdn.com/s3/m/2d5767b5240c844769eaee9c.png)
*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中
信号与系统第3章 傅里叶变换
![信号与系统第3章 傅里叶变换](https://img.taocdn.com/s3/m/d244952749d7c1c708a1284ac850ad02de800730.png)
P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2
得
2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1
34典型非周期信号的傅里叶变换
![34典型非周期信号的傅里叶变换](https://img.taocdn.com/s3/m/b87d0b9d866fb84ae45c8d96.png)
X ( j)
0
()
2
0
2
0
1 1 j j
j2 2 2
x(t)
1
0
t
1
X ( j)
1
0
2
四、单位阶跃信号
因为单位阶跃信号不满足绝对可积的条件,不能直接 由正变换的公式求得其傅里叶变换。
u(t) lim etu(t) 0
ℱ u(t)ℱ lim etu(t) 0
lim ℱ etu(t) 0
1 lim
x(t)
1
0
t
0
X ( j) x(t)e jt dt ete jt dt ete jt dt
0
0
e( j)t dt
1
j
ℱ x(t)
2
1
11 j j
2 2 2
0
2、奇对称 x(t) etu(t) etu(t)
X ( j) x(t)e jt dt
0
ete jt dt ete jt dt
二、单边指数信号 x(t) etu(t) 0
x(t)
X ( j) ℱ etu(t) ete jtdt
1
0
0
t
e( j)t dt
e( j)t |0 ( j)
0
1 j
1
jarctg ( )
e
2 2
X ( j)
1
1 2
0
2
三、对称单边指数信号 1、偶对称
x(t) e t etu(t) etu(t)
0 j
lim[
0
2
2
j
2
2 ]
u(t)
1
0
t
当Ω≠0, α→0,上式前一项 于是
傅里叶变换在信号处理中的实例
![傅里叶变换在信号处理中的实例](https://img.taocdn.com/s3/m/55caa1326d85ec3a87c24028915f804d2a16876b.png)
傅里叶变换在信号处理中的实例引言:傅里叶变换是一种非常重要的数学工具,在信号处理中被广泛应用。
通过将信号从时域转换到频域,傅里叶变换可以帮助我们分析信号的频谱特性,从而实现滤波、去噪、信号合成等一系列信号处理任务。
本文将通过几个实例来介绍傅里叶变换在信号处理中的应用。
1. 语音信号处理语音信号是一种典型的时变信号,其中包含了丰富的频谱信息。
通过对语音信号进行傅里叶变换,我们可以将其转换成频域信号,从而实现对语音信号的分析与处理。
例如,可以通过傅里叶变换来提取语音信号中的共振峰信息,用于语音识别、语音合成等应用。
2. 图像处理图像可以看作是一个二维的离散信号,通过对图像进行傅里叶变换,可以将其转换成频域图像。
频域图像可以帮助我们分析图像中的频谱特性,例如图像的纹理、边缘等信息。
在图像处理中,傅里叶变换被广泛应用于图像滤波、图像增强、图像压缩等领域。
例如,可以通过傅里叶变换来实现图像的低通滤波,去除图像中的高频噪声,从而实现图像的平滑处理。
3. 信号压缩信号压缩是一种重要的信号处理任务,可以将信号的冗余信息去除,从而实现信号的高效存储与传输。
傅里叶变换在信号压缩中起到了关键作用。
通过对信号进行傅里叶变换,我们可以将信号从时域转换到频域,然后通过量化和编码等技术对频域信号进行压缩。
例如,JPEG图像压缩算法就是基于傅里叶变换的频域压缩算法。
4. 信号滤波信号滤波是信号处理中常见的任务之一,可以通过滤波技术去除信号中的噪声或无用信息,从而提取出感兴趣的信号成分。
傅里叶变换在信号滤波中具有重要的作用。
通过将信号从时域转换到频域,我们可以很方便地设计各种滤波器来实现不同的滤波效果。
例如,可以通过傅里叶变换来设计一个低通滤波器,去除信号中的高频成分,从而实现信号的平滑处理。
5. 音频信号处理音频信号处理是一种常见的信号处理任务,可以应用于音乐、语音、声音等领域。
傅里叶变换在音频信号处理中具有重要的应用价值。
通过将音频信号从时域转换到频域,我们可以分析音频信号中的频谱特性,例如音调、音色、音量等信息。
第四章-傅里叶变换
![第四章-傅里叶变换](https://img.taocdn.com/s3/m/7f2c8424336c1eb91a375dc0.png)
离散傅里叶级数涉及到的都是有限项求和,因此只要 ~x(n) 是有 界的,即对所有的 n,都有 |~ x(n)|,则 DFS 的收敛不存在任 何问题。或者说,只要在一个周期内 ~x(n) 的能量是有限的,即
则 DFS 一定收敛。
|~x(n)|2
nN
1. 连续和离散傅里叶级数
周期信号用截短了的傅里叶级数近似:
如果把周期信号 ~x(t)和 ~x(n) 分别展成它们的 CFS 和 DFS,并把
无限项的 CFS 和有限项的 DFS 在某一处截断,分别得到:
~xM(t)
M
X(kΩ0)ejkΩ0t
kM
~ x M (n )2 M 1 1 k M M X ~ (k0 )ej k 0 n , (2 M 1 ) N
nN
这两个公式表明,任意周期序列 ~x(n)都可以表示为与其重复频率 ω0 成谐波关系的一系列复正弦序列 ejω0n 的线性组合,每个 ejω0n 的复数幅度就是离散傅里叶级数的系数 X(kω0)。 CFS 与 DFS 的区别: CFS 是一个无穷级数,而周期为 N 的周 期序列的 DFS 却是一个有限级数,它只有 N 项,即:
(2N1+1)
…
…
─N
0
N
k
1.连续和离散傅里叶级数
周期信号频谱的特点: 1. 连续时间和离散时间周期信号的频谱都是离散频谱,两条
谱线之间的间隔等于重复频率( Ω0 =2π/T 或 ω0 =2π/N)。 2. 连续时间周期信号包含无穷多条谱线,即有无穷多个成谐
波关系的复正弦分量组成;离散时间周期信号的谱线具有 周期性,在频域上为 2π,在 k 域上为 N。
x(t) akejkt
k
x(n) akejkn
傅里叶变换的典型案例介绍
![傅里叶变换的典型案例介绍](https://img.taocdn.com/s3/m/d2fa94b04793daef5ef7ba0d4a7302768e996fc2.png)
傅里叶变换的典型案例介绍
傅里叶变换是一种将一个时域函数转换成频域函数的数学工具,广泛应用于信号处理、图像处理、音频处理等领域。
下面介绍几个傅里叶变换的典型案例:
1. 音频处理:傅里叶变换在音频处理中扮演着重要的角色。
通过对音频信号进行傅里叶变换,可以将其分解成不同频率的复杂振动的叠加。
这样可以实现音频频谱分析、降噪和滤波等处理。
2. 图像处理:傅里叶变换在图像处理中也有广泛应用。
通过对图像进行傅里叶变换,可以得到图像的频域表示。
这对于图像压缩、去噪和边缘检测等处理非常有帮助。
例如,在JPEG图
像压缩算法中,傅里叶变换用于将图像转换成频域表示,并进行量化和编码。
3. 信号处理:傅里叶变换在信号处理中也有重要作用。
通过对信号进行傅里叶变换,可以将信号分解成不同频率的复杂波的叠加。
这对于信号分析、滤波和频谱估计等具有重要意义。
例如,在通信系统中,傅里叶变换被广泛应用于频谱分析和信道估计。
4. 数学分析:傅里叶变换在数学分析中也有广泛应用。
例如,在解微分方程和积分方程时,傅里叶变换可以将问题转换成频域上的简单运算,使得问题的求解更加方便和有效。
此外,傅里叶变换还在概率论、统计学和量子力学等领域中有重要的应用。
总之,傅里叶变换是一种强大的工具,它能够将时域信号转换成频域信号,从而提供了信号的频谱信息。
这使得它在音频处理、图像处理、信号处理和数学分析等领域中得到了广泛应用。
3.5 典型非周期信号的傅里叶变换
![3.5 典型非周期信号的傅里叶变换](https://img.taocdn.com/s3/m/655ef7687e21af45b307a81f.png)
2
或B f
1
四、钟形脉冲信号
t
2
f (t) Ee
其傅里叶变换为:
F ()
e E
,
2
2
F
()
() 0
(正实函数)
e E
2
2
e f (t) E
t
2
E
e e j 2
j 2
.
2 2 j
E
sin
2
2
E Sa
2
幅度频谱: F E Sa 2
相位频谱:
0
4n
22n
22n 1
1 22n
2
j
符号函数的频谱图
sgnt
2
j2
2
j
e2
j
F
2 2
2
F 是偶函数
tg 1
2
0
/ 2, / 2,
0 0
F ( )
2
OFra bibliotek 2
O
2
是奇函数
2 2
0,
,
F E
F 0
相位频谱: tg1
0,
0
,
2
第三章3典型信号傅里叶变换 性质1
![第三章3典型信号傅里叶变换 性质1](https://img.taocdn.com/s3/m/27e4b21b52ea551811a68715.png)
f (t) 1 F ()e jtd
2
1 F () e d j[t ()]
2
1
F () cos[ t ()]d
2
j
F () sin[ t ()]d
2
f (t) 1
F () cos[ t ()]d
2
1
F() cos[ t ()]d
0
F () d
0 cos[ t ()]
2 , f 1 , B f 1
2
(4)符号函数
sgn(t)
1 (t 0) f (t) sgn(t) 0 (t 0)
实奇函数 1 (t 0)
1
0
t
1
符号函数信号不满足绝对可积条件,但它却存在 傅里叶变换。可以利用它和奇双边指数的关系:
f
(t
)
sgn(t
)
lim
a0
eat ea
1.信号在时间轴上的平移对应频域中的相移 (相位谱产生附加相移)
2.信号在时间轴上的平移不会影响信号的幅频 特性
例题:写出下列信号的傅里叶变换
f1(t)
2
0
4 6t
f3 (t )
2 1
0 1 2 3t
f 2 (t )
24
0
t
2
课本例题131页: 例题3-2 3-3
主要内容
典型信号的傅里叶变换 信号频谱的概念:幅度谱和相位谱 信号频谱带宽的概念:信号幅度谱的带宽,
0
t
F()
2a
a2
2,
F ()
2a
a2 2
() 0
正实偶函数
1
e f (t) a t
(a 0)
傅里叶变换详细解释
![傅里叶变换详细解释](https://img.taocdn.com/s3/m/b8bcdd9748649b6648d7c1c708a1284ac85005d1.png)
傅里叶变换详细解释
傅里叶变换是数学中的一种重要分析工具,用于将一个函数表示为一系列复指数的加权和。
它得名于法国数学家约瑟夫·傅
里叶。
简单来说,傅里叶变换可以将一个函数或信号从时域(即时间域)转换到频域(即频率域),从而揭示出了信号中不同频率分量的强弱情况。
傅里叶变换的数学表示如下:
F(ω) = ∫[−∞,+∞] f(t) e^(−jωt) dt
其中,F(ω)表示频率为ω的复指数分量的权重,f(t)表示输入
函数或信号,e^(−jωt)表示复指数函数。
傅里叶变换将输入函
数或信号f(t)与复指数函数相乘,并对结果进行积分,得到频
率域的表示。
傅里叶变换可以将任意复数函数f(t)分解为多个复指数函数的
加权和,每个复指数函数的频率和权重由变换结果F(ω)确定。
所以,傅里叶变换可以将时域的函数转换为频域的复数表示。
傅里叶变换的应用非常广泛,尤其在信号处理、图像处理和通信领域中发挥着重要作用。
它可以帮助我们理解和分析信号的频域特性,如频率分量的强度、相位关系和频谱形状。
此外,傅里叶变换还可以用于信号滤波、频率分析、谱估计、图像压缩等方面。
总之,傅里叶变换通过将函数或信号从时域转换到频域,使我
们能够更好地理解和处理信号的频率特性,并在许多应用中发挥着重要的作用。
傅里叶变换基础知识
![傅里叶变换基础知识](https://img.taocdn.com/s3/m/6cecbba0ad02de80d5d84093.png)
傅里叶变换基础知识1•傅里叶级数展幵最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
1.1周期信号的傅里叶级数在有限区间上,任何周期信号双/)只要满足狄利克雷(dmclilet)条件,都可以展开成傅里叶级数。
1・1・1狄利克雷(duichlet)条件狄利克雷(duichlet)条件为:(1)信号双/)在一个周期内只有有限个第一类间断点(当t从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2 )信号/ (t)在一周期内只有有限个极人值和极小值;(3 )信号在一个周期内是绝对可积分的,即应为有限值。
1.1.2间断点在非连续函数y二f{・x)中某点处心处有中断现彖,那么,兀就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(兀令分母为零时等情况);b.跳跃间断点:函数在该点左极限、右极限存在,但不相等(y = lxl/x°在点x = 0处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
1.13傅里叶级数三角函数表达式傅里叶级数三角函数表达式为X X0=仇+乞(①cos“q/ +加• • •J1-1式中:心为信号的常值分量;色为信号的余弦信号幅值:你为信号的正弦信号幅值。
%、心、》分别表示为:==J :) cosncootdtx{ t )sinncootdt式中:7;为信号的周期;。
为信号的基频,即角频率,$=2龙/7;「=1,2,3...。
合并同频项也可表示为X (t)二% + 艺 A cos (gf + q)H-l式中:信号的幅值人和初相位q分别为人=虫+丐2 =arcnm (・b” /心)1.1.4频谱的相矢概念(1) 信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化矢系,即信号的结构,是(或&・/)和q 厂3 (或2・/)的统称;(2) 信号的幅频谱:周期信号幅值人随e (或/)的变化尖系,用(或A ・/>表示; (3) 信号的相频谱:周期信号相位仇随e (或f )的变化矢系,用0,弋。
傅里叶变换 - 维基百科,自由的百科全书
![傅里叶变换 - 维基百科,自由的百科全书](https://img.taocdn.com/s3/m/f424559151e79b896802265e.png)
代表狄拉克δ函数分布.这 个变换展示了狄拉克δ函数的重 要性:该函数是常函数的傅立叶 变换
变换23的频域对应
由变换3和24得到.
由变换1和25得到,应用了欧拉 公式:
由变换1和25得到
这里, 是一个自然数. 是狄拉克δ函数分布的
阶微分。这个变换是根据变换7 和24得到的。将此变换与1结合 使用,我们可以变换所有多项 式。
7/8
三元函数
时域信号
角频率表示 的
傅里叶变换
参见
正交变换 傅里叶级数 连续傅里叶变换 离散时间傅里叶变换 离散傅里叶变换 傅里叶分析 拉普拉斯变换 小波变换
参考资料
弧频率表示的 傅里叶变换
注释
此球有单位半径;fr是频率矢量的量值 {fx,fy,fz}.
1. ^ 林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974
时频分析变换
小波变换,chirplet转换和分数傅里叶变换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确 定性原理的限制。
傅里叶变换家族
下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连 续则意味着在对应域的信号的非周期性.
来自“/w/index.php?title=傅里叶变换&oldid=24462958”
其中an和bn是实频率分量的振幅。
傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广 过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。
解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。
依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式
()2
04cos T km A f t k tdt T
ω=
⎰ 计算A km 。
对图上的波形图可以写出
()04
42
T A t f t T T A t ⎧ <⎪⎪=⎨⎪- <⎪⎩≤≤
将上式代入A km ,便得
4
2044cos cos T T km T A A k tdt A k tdt T ωω⎡⎤=-⎢
⎥⎣⎦⎰⎰ 42
0444cos cos T T T A A k tdt k tdt T T
ωω=-⎰⎰ {}
42044sin sin T T T A k k Tk ωωω
=- 41,5,9,43,7,11A
k k A k k ππ
⎧ =⎪⎪=⎨
⎪- =⎪
⎩
于是,信号的傅里叶级数
()4111
cos cos3cos5cos 7357A f t t t t t ωωωωπ⎛⎫
=
-+-+ ⎪⎝⎭
图9.3 方波信号 图9.4 三角波信号
例9.2 试求图9.4所示三角波信号的傅里叶级教。
解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。
因此,其傅里叶级数仅由正弦奇次谐波分量组成。
由于
()404
4242
A
T t t T
f t A T T t A t T ⎧⎪⎪=⎨⎪-+⎪⎩≤≤≤≤
故有
4044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω⎛⎫
=
-- ⎪⎝⎭
⎰⎰ 参照积分公式
211
sin sin cos x axdx ax x ax a a
=
-⎰ 可算出
22
22
81,5,9,83,7,11km A
k k B A k k ππ⎧=⎪⎪=⎨
⎪-=⎪
⎩
于是所欲求的傅里叶级数
()2222
8111
sin sin 3sin 5sin 7357
A f t t t t t ωωωωπ⎛⎫
=
-+-+ ⎪⎝⎭。
例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。
图9.5 例9.3用图
解 此信号对原点对称,是奇函数,且又是半波横轴对称,所以其傅里叶级数仅是正弦奇次谐波分量组成。
由于
()022
T A t f t T A t T
⎧
<⎪⎪=⎨⎪-<⎪⎩≤≤
故有
{
}20
044sin cos T T km A
B A k tdt k t
T Tk ωωω==-⎰
41,3,5,7,A
k k π
== 于是,所求级数
()4111
sin sin 3sin 5sin 7357A f t t t t t ωωωωπ⎛⎫
=
++++ ⎪⎝⎭。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。