第三章 多维随机变量的函数的分布

合集下载

第3章 多维随机变量及其分布

第3章 多维随机变量及其分布

第23页
解:
P{( X ,Y ) D}

2x 3y 6
y
2 2x+3y=6

p(x, y )dxdy
1 (6 2 x ) 3 0
2 x
dx
0
3 0
3
6e
(2 x 3 y )
dy
dx
0
3
x
6 e
3 0
1 e 3 y 3
e )dx
第三章 多维随机变量及其分布
第26页
三、二维均匀分布
若二维连续随机变量 (X, Y) 的联合密度为: 其中SD为D的面积. 则称 (X, Y) 服从 D 上的均匀分布, 记为 (X, Y) U (D) .
7/5/2018
第三章 多维随机变量及其分布
第27页
四、二维正态分布
若二维连续随机变量 (X, Y) 的联合密度为:
(4) 当a<b, c<d 时,有 (非负性) F(b, d) F(b, c) F(a, d) + F(a, c) 0. 注意:上式左边 = P(a<Xb, c<Y d).
7/5/2018
第三章 多维随机变量及其分布
第7页
3.1.3 联合分布列 二维离散随机变量
若(X, Y) 的可能取值为有限对、或可列对, 则称(X, Y)为二维离散随机变量.
7/5/2018
第三章 多维随机变量及其分布
第12页
列表为:
X
0 1 2 3 4 Y 0 1 2 3 4 0 0 0 0 1/16 0 0 0 1/4 0 0 0 6/16 0 0 0 1/4 0 0 0 1/16 0 0 0 0

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布

本讲主要内容:1.二维离散随机变量2.二维连续随机变量(重点)3.二维随机变量函数的分布(重点)设X与Y为两个随机变量,那么我们称二元组(X,Y)为二维随机变量.一、二维离散随机变量定义7:设X与Y均为离散随机变量,取值分别x1, x2,…, x i,…,y1, y2,…,y j,…那么我们称(X,Y)为二维离散随机变量,并称P(X=x i, Y=y j)=p ij, i, j =1,2,…为(X,Y)的联合分布列.联合分布列的性质:① p ij≥0②边际分布列:X与Y独立的任何两行或者两列都成比例离散随机变量的独立性:设(X,Y)为二维离散随机变量,如果即联合分布列等于边际分布列的乘积,则称X与Y相互独立.条件分布列与乘法公式:二、二维随机变量的联合分布函数定义8:设(X,Y)为二维随机变量,我们称二元函数为(X,Y)的联合分布函数.联合分布函数的性质:(1)F(x,y)为x与y的右连续函数.(2)F(x,y)为x与y的不减函数.(3)(4)三、二维连续随机变量定义9:设(X,Y)为二维随机变量,如果(X,Y)的联合分布函数可以写成则称(X,Y)为二维连续随机变量,并称f(x,y)为(X,Y)的联合密度函数. 易知:联合密度函数的性质:(1),(2)边际密度函数:随机变量X的边际密度:随机变量Y的边际密度:连续随机变量的独立性:设(X,Y)为二维连续随机变量,如果则称X与Y相互独立.条件密度:我们称为在给定Y=y时X的条件密度.为在给定X=x时Y的条件密度.如果二维连续随机变量(X,Y)的联合密度为则称(X,Y)服从区域G上的二维均匀分布.其中为区域G的面积.【例39·解答题】假设随机变量Y服从参数的指数分布,随机变量求X1和X2的联合概率分布.[答疑编号986303101:针对该题提问]解:P(X1=0, X2=0)=P(Y≤1,Y≤2)=P(X1=1, X2=0)=P(Y>1,Y≤2)=【例40·解答题】某射手向一目标进行连续射击,每次命中的概率都是p,各次命中与否相互独立.以X表示第二次命中时的射击次数,以Y表示第三次命中时的射击次数.求(X,Y)的联合分布列以及Y的边际分布列.[答疑编号986303102:针对该题提问]解:P(X=m,Y=n)=令m-1=k=n=3, 4, 5……【例41·解答题】设(X,Y)具有联合分布列:且已知EX=-0.2,记Z=X+Y.求(1)a,b,c的值;[答疑编号986303103:针对该题提问](2)Z的概率分布;[答疑编号986303104:针对该题提问](3)P(X=Z).[答疑编号986303105:针对该题提问]解:(1)a+b+c=0.4-(a+0.2)+c+0.1= -0.2解得a=0.2 , b=c=0.1(2)Z的概率分布(3)【例42·解答题】设某汽车的车站人数X~P(),每个人在中途下车的概率都是P,且下车与否相互独立,以Y表示中途下车的人数。

第三章多维随机变量及其分布.doc

第三章多维随机变量及其分布.doc
(2)正则性 ;
可以证明,凡满足性质(1)的任意一个二元函数f(x,y),必可作为某个二维随机变量的联合密度函数。
(3)若f(x,y)在点(x,y)处连续,则
证明
(4)设G是xOy平面上的一个区域,则有
在几何上z=f(x,y)表示空间的一张曲面。由性质(1)知,介于该曲面和xOy平面之间的空间区域的体积是1。由性质(3)知, 的值等于以G为底,以曲面z=f(x,y)为顶的曲顶柱体的体积。
3.1.3联合分布列
定义3.1.3若二维随机变量(X,Y)的所有可能取的值是有限多对或可列无限多对(xi,yj),则称(X,Y)为二维离散型随机变量。称
,i,j=1,2,…,n,
为二维离散型随机变量(X,Y)的联合分布列,也可用如下表格记联合分布列。
Y
联合分布列的基本性质:
(1)非负性
(2)正则性
例1盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到白球的只数,求X,Y的联合分布列和 。
解(1) 的分布函数为
(2)将 的共同分布函数 代入上式得
(3)Y的分布函数仍为上式,密度函数可对上式关于 求导得
(4)将指数分布的分布函数和密度函数代入(2)和(3)的结果中得
二、最小值分布设 是相互相互独立的n个随机变量,若 ,在以下情况下求Y的分布。(1) ~ ;(2) 同分布,即 ~ ;(3) 为连续随机变量,且 同分布,即 的密度函数为 , ;(4) ~ 。
0.216 0 0 0
二、多维超几何分布
袋中有N只球,其中有Ni只 号球, ,记 。从中任意取出n只,若记Xi为取出的n只球中 号球的个数, ,则
其中 。
例4在例3中改为不放回抽样,求二维随机变量(X,Y)的联合分布列。

高等数学之多维随机变量及其分布

高等数学之多维随机变量及其分布
f (x, y)d xd y
YX
G
2e(2 x y) d x d y 0y
G
O
x
1. 3
练习题
1. 设二 维随 机变量( X ,Y ) 具有 概率 密度
f
(
x,
y)
ce
x2
y
,
0,
x 1, y 0, 其 它.
(1) 确 定 常 数c; (2) 求P{ X 2Y 1};
2.设随机变量X和Y的联合分布函数为F (x, y), 而F1(x)和F2 ( y)分别为X和Y的分布函数,则 a,b, P{X a,Y b} B
a
3.设二维随机变量( X ,Y )的概率密度为
ey ,0 x y
f (x, y) 0,
其它
求P{X Y 1}.
解:
P{X Y 1} f (x, y)dxdy
y
y=x
G
1/2 dx 1x eydy 1 2 1
0
x
e1/ 2 e
1
0 1/2 1
x
x+y=1
4.设 二 维 随机 变 量( X ,Y )的 分 布 函数 为
例3 设二 维随 机变 量( X , Y ) 具有 概率 密度
2e (2 x y) , x 0, y 0,
f (x, y) 0,
其 它.
(1) 求分 布函 数F ( x, y); (2) 求概 率 P{Y X }.
解: (1) F ( x, y) y
x
f (u, v)d ud v
yx
F ( x, y)
f (u, v) d ud v
则 称( X ,Y )是 连 续 型 的 二 维 随 机 变量,函 数f ( x, y)

3-5多维随机变量的函数分布-PPT文档资料

3-5多维随机变量的函数分布-PPT文档资料

f ( z ) ( x , z x ) d x . Z f


当 X, Y 独立时, fZ(z)也可表示为
f ( z ) ( z y ) f ( y ) d y , Z X Y f

或 f ( z ) f ( x ) f ( z x ) d x . Z X Y
Байду номын сангаас
设 ( X , Y ) 的概率密度为 f ( x , y ), 则 Z X Y

z

( u y , y ) d y d u . f

由此可得概率密度函数为
f ( z ) ( z y , y ) d y . Z f


由于 X 与 Y 对称,



1 f ( z ) e e Z 2 π

2 2 x ( z x ) 2 2
d x
d x
1
z2 4
1 e 2 π
2 z 4

2 z x 2
e
z t x 2
1 e 2 π
三、连续型随机变量函数的分布
1. Z=X+Y 的分布
的分布函数为 y f(x ,y ) d x d y F ( z ) P { Z z } Z x y z x y z z y f ( x , y ) d x d y O z x u y x ( u y , y ) d u d y f
一、问题的引入
年龄和体重 , Z 表示该人的血压 ,并且已知 Z与 X, Y的函数关系 Z g(X,Y),如何通过 X,Y的 分布确定 Z的分布 .

第三章-多维随机变量及其分布总结

第三章-多维随机变量及其分布总结

1 / 8第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy j ii j yY x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..2 / 8解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅. 同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或 三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A . (2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e y x (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(1010-===⎰⎰⎰⎰---.3 / 8例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }. 解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由⎰⎰∞-∞+∞-=+∞=x X dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=y Y dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为4 / 8⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度. 解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy e ex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫ ⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy e t x y .所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).5 / 8表明, ),(~211σμN X , ),(~222σμN Y .此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{limx x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim0+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F XX Y X X x -∆+-∆+=→∆= F Y (y ) =P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f6 / 8⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y 试求: (1) X 与Y 的联合概率密度; (2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y (2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=0),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n =, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.7 / 8定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;•===i ij i j p p x X y Y P )|( 在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P •===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =;在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()X f x 和X 的边缘密度()Y f y解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。

3.3多维随机变量函数的分布x

3.3多维随机变量函数的分布x

k
i0
1i
i!
e 1
ki
e 2
2
(k i)!
k
k
e 1
2
(12 )
k!
i0
i
k! !(k
i)!
1 1 2
i
2 1 2
ki
1 2
k!
k
e(1 2 )
1 1 2
2 1 2
k
1 2
k
e(1 2 ) , k 0,1, 2,L .
y x yz
O
x
z
f (u y, y)d y d u.
由此可得概率密度函数为
fZ (z) f (z y, y)d y.
由于 X 与 Y 对称,
fZ (z) f ( x, z x)d x.
当 X, Y 独立时, fZ (z)也可表示为
fZ (z) fX (z y) fY ( y)d y,
2 12
12 2 12 12 12
(X ,Y )
(1,2)
(1,1) (1,0)
1 2
,2
1 2
,1
(3,2)
(3,0)
1
概率 12
1
32
1 22
12 12 12 12 12 12
( X ,Y ) (1,2)
(1,1) (1,0)
1 2
,2
1 2
,1
(3,2)
(3,0)
X Y 3
证 Z X Y的取值为0,1,2,L 非负整数,而事件Z k
是k 1个互不相容事件X i,Y k i, i 0,1,L , k
的并,则对于任意非负整数k,有
k
P(Z k) P( X i)P(Y k i) i0

3.3多维随机变量函数的分布

3.3多维随机变量函数的分布
求Z=X+Y的概率密度.1, 0 1
( ) ,
0,
x
p x





其它( ) ( ) ( )Z X Yp z p x p z x dx
解: 由卷积公式0 1
0 1
x
z x




也即0 1
一维连续型随机变量函数的分布的方法
分布函数法、定理法
本节的主要问题是已知X,Y )的联合分布而( , )
Z g X Y求Z 的分布. §3.3 多维随机变量函数的分布Copyright. Yang ning-guang.2010.
All Rights Reserved.
All Rights Reserved.
9为确定积分限,先找出使被积函数不为0的区域
练习设X与Y 的联合概率密度为3 , 0 1, 0 ;
( , ) ,
0,
x x y x
p x y





其它( ) ( , )Zp z p x z x dx
Copyright. Yang ning-guang.2010.
All Rights Reserved.1§3.1多维随机变量及其联合分布
§3.2边际分布与随机变量的独立性
§3.3 多维随机变量函数的分布
§3.4 多维随机变量的特征数
§3.5 条件分布与条件数学期望§3.3 多维随机变量函数的分布Copyright. Yang ning-guang.2010.
All Rights Reserved.
2回顾
(2) 连续型已知X( ),Xp x要求Y=f (X)分布密度( )Yp y要求Y=f (X)分布律

三章节多维随机变量及其分布.ppt

三章节多维随机变量及其分布.ppt
P X 1或 2 | Y 1
0.0375 0.035 0.6444 0.1125
15
(三)条件分布
对 于 两 个 事 件 A , B , 若 P ( A ) 0 , 可 以 考 虑 条 件 概 率 P ( B |A ) ,
对 于 二 维 离 散 型 随 机 变 量 (X ,Y ), 设 其 分 布 律 为 P (Xxi, Yyj)p ij i,j 1 ,2 ,
P (X x i) P (X x i, Y ) p ij= =p i•i 1 ,2 , j 1
11
注意:记号pi•表示是由pij关于j求和 后得到的;同样p•j是由pij关于 i求和后得到的.
X Y y1
x1
p 11
x2
p 21 …

xi
p i1


P Y yj p·1
y2 … yj … PX xi
第三章 多维随机变量及其分布 关键词:二维随机变量 联合分布 边缘分布 条件分布 随机变量的独立性 随机变量函数的分布
1
二维随机变量
问题的提出
例1:研究某一地区学龄儿童的发育情况。仅研 究身 高H的分布或仅研究体重W的分布是不够 的。需要同时考察每个儿童的身高和体重值, 研究身高和体重之间的关系,这就要引入定义 在同一样本空间的两个随机变量。
e S
x
§1 二维离散型随机变量
(一)联合概率分布
定义:若二维随机变量(X,Y)全部可能取到的 不同值是有限对或可列无限对,则称(X,Y)是 离散型随机变量。
离散型随机变量的联合概率分布律:
为二维离散型随机变量(X,Y) X Y y1
的联合概率分布律。可以用
x 1 p11
x 2 p21

3.3-多维随机变量及其分布

3.3-多维随机变量及其分布

f X|Y ( x | y)
f (x, y) fY ( y)
称为随机变量X 在Y y的条件下的条件密度函数.
fY X y
x
f (x, y)
fX x
称为随机变量Y 在 X x的条件下的条件密度函数.
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 fX Y x ydx 1 简言之,fX Y x y是密度函数.
和的分布:Z = X + Y 二、连续型分布的情形
设X和Y的联合密度为 f (x,y),求Z=X+Y的密度
Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f (x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z}
是直线x+y =z 左下方的半平面.
FZ (z) f (x, y)dxdy
(3) F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1
(4)关于x或y右连续
(5)对 x1 x2 , y1 y2 ,有
P(x1 X x2, y1 Y y2 )
F ( x2 , y2 ) F ( x1, y2 ) F ( x1, y1 ) F ( x2 , y1) 0
二维随机变量(X,Y) 离散型
X和Y 的联合概率分布列
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率分布列
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1

第3章 多维随机变量及其分布 (NXPowerLite)

第3章  多维随机变量及其分布 (NXPowerLite)
y 0
x +1
0 0
dv 2du ( x 1)2
v 1
x
当x 0, 0 y 1时, F ( x, y) dv 2du 2 y y 2
v 1
当x 0, y 1时, F ( x, y) 1
F ( x, y)
14
例5:设二维随机变量(X,Y)具有概率密度
2 F ( x, y) 4.在f ( x, y)的连续点(x, y),有 f ( x, y) xy
注: 在几何上,z f ( x, y )表示空间一个曲面,介于它和 xoy平面 1 的空间区域的体积为1
G
2 P(( X , Y ) G )等于以G为底,以曲面z f ( x, y )为顶面的柱体体积。 所以 X,Y 落在面积为零的区域的概率为零。
i 1
4
j 1, 2,3, 4
7
例2:某足球队在任何长度为 t 的时间区间内得黄牌 或红牌 的次数N t 服从参数为t 的Possion分布, 记X i 为比赛进行 ti 分钟后的得牌数, i 1, 2 t2 t1 。试写出X 1 , X 2的联合分布。
t
解:P N t k
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 ) 0
5
二维离散型随机变量
定义:若二维随机变量(X,Y)全部可能取到的不同值是有限 对或可列无限对,则称(X,Y)是离散型随机变量。
离散型随机变量的联合概率分布: X Y y1 x1 p11 设 X , Y 所有可能取值为 xi , yi , i, j 1, 2, 称 P X xi , Y y j pij , i, j 1, 2, 为二维离散型随机变量 X, Y 的联 合概率分布。可用如右表格表示.

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

第3章 多维随机变量及其分布

第3章  多维随机变量及其分布

0,
x 0, y 0,求(1)A ? 其它
(2)( X ,Y )的联合分布函数; (3)P{Y X }; (4)P{ X 1}.
解(1)由 f ( x, y)dxdy 1,得
y
1=
f ( x, y)dxdy=
dx
Ae (2 x y)dy
0
0
O
x
A
e2 xdx
(X1, X2, , Xn) 本章主要以二维随机变量 ( X ,Y ) 为例进行讨论。
3
第一节 二维随机变量的联合分布
1、联合分布函数
定义1 设( X ,Y )是二维随机变量, 对于任意实数x, y, 称二元函数
F ( x, y) P{X x,Y y}
为二维随机变量( X ,Y )的分布函数或X和Y的联合分布函数。
(乘法公式)
P{Y y j }P{ X xi Y y j };
(2) ( X ,Y )的联合分布函数为F ( x, y) P{ X x,Y y} p ij xi x y j y
8
例1 箱子中有10张彩票,其中3张可中奖,甲乙二人先后各抽取
一张彩票,定义两个随机变量X ,Y:
则称( X ,Y )是连续性二维随机变量,并将f ( x, y)称为( X ,Y )的联
合概率密度函数.
概率密度f ( x, y)的性质:
(1) f ( x, y) 0;
(2)
f ( x, y)dxdy F (, ) 1;
10
(3)若f ( x, y)连续, 则F ( x, y)偏导存在且 2F ( x, y) f ( x, y); xy
0
e ydy
0
e2 x
A
2
0

(ppt) 第三章 多维随机变量及其分布

(ppt) 第三章 多维随机变量及其分布
14 August 2013
D
河北科技大学
第三章 多维随机变量及其分布
19
说明
几何上, z f ( x , y ) 表示空间的一个曲面.
f ( x, y ) d x d y 1,
表示介于 f (x, y)和 xoy 平面之间的空三章 多维随机变量及其分布
5
定义1 设 ( X , Y ) 为2-rv, 称函数
F(x, y) = P{X x, Y y} (任意实数x, y) 为(X,Y) 的分布函数, 或 ( X , Y ) 的联合分布函数, 或 X 和 Y 的联合分布函数. J-cdf Joint distribution function y 注 F(x, y)表示 随机点(X, Y) y (x, y) 落在以点(x, y)为右上端点 x 0 x 的广义矩形域 内的概率.
14 August 2013
第三章 多维随机变量及其分布
28
当 x 1, y 1 时,
F ( x, y)
y

x
f ( u, v ) d u d v
1 d u0
0
u1
2 d v 1.
所以 ( X , Y ) 的分布函数为
0, x 1, 或 y 0, ( 2 x y 2) y , 1 x 0, 0 y x 1, F ( x , y ) ( x 1)2 , 1 x 0, y x 1, (2 y ) y , x 0, 0 y 1, 1, x 1, y 1.
14 August 2013
河北科技大学
第三章 多维随机变量及其分布
18
联合概率密度函数的基本性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C C C i
ki
n1
n2
k n2 n2
i0
k
所以
C p q C p q C p q i i n1i n1
k i k i n2 k i n2
k
k n1 n2 k
n1 n2
i0
可见,Z~b(n1+n2,p).
这个结果很容易推广至多个的情形:若
Xi~b(ni,p),i=1,2,…,m,且X1,…,Xm独立,则X1+X2+…+Xm~ b(n1+n2+…+nm,p)。
V=3 V=4 V=5
34
5
0.05 0.07 0.09
0.05 0.06 0.08
0.05 0.05 0.06
0.06 0.06 0.05
(2) U=Min(X,Y)的可能取值为:0,1,2,3 P{U=i}=P{X=i,Y≧i}+P{X>i,Y=i},i=0,1,2,3. U的分布律为
V0
1
2
12
0.01 0.03
W=3 W=4 W=5
34
5
0.05 0.07 0.09
1 0.01 0.02 0.04 0.05 0.06 0.08 W=6
2 0.01 0.03 0.05 0.05 0.05 0.06 W=7
3 0.01 0.02 0.04 0.06 0.06 0.05 W=8
例2: 设X和Y独立,分别服从二项分布b(n1,p), 和 b(n2,p)(注意两个二项分布中p是一样的),求Z=X+Y的 分布律.
设(X,Y)的概率密度为f(x,y),则Z=X+Y的分布函数为
FZ (z) P{Z z} P{X Y z} f ( x, y)dxdy x yz
积分区域如图,化成累次积分,得
z y
FZ (z)
第五节 多维随机变量的函数的分布
引言 问题的一般提法为:(X1,…,Xn)为n维随机变
量,Y1,…,Ym都是X1,…,Xn的函数 yi=gi(x1, x2,…, xn), i=1,2,···,m;
要求(Y1,…,Ym)的概率分布. 设(X,Y)为二维随机变量,讨论
(1)X,Y的一个函数Z=g(X,Y)的分布(X,Y)经变换后为一维 随机变量),
(2)简单地介绍二维向量(X,Y)到二维向量 (Z1,Z2)(zi=gi(x,y),i=1,2)变换问题。
一、离散型随机变量函数分布
我们可以从下面两个例子中总结出一般的方法。 例1: 设(X,Y)的分布律为
YX 0 00 1 0.01 2 0.01 3 0.01
12 0.01 0.03 0.02 0.04 0.03 0.05 0.02 0.04
(3) W=X+Y的可能取值为:0,1,2,3,4,5,6,7,8.
i
P{W i} P{ X k,Y i k} k 0
W的分布律为
W0 1 2 3 4 5 6 7 8
P 0 0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.05
W=0
YX 0 00
W=1 W=2
FZ (z) P{Z z} P{ X 2 Y 2 ) z} P{X 2 Y 2 z2 }
2
Z
f ( x, y)dxdy d
1
r dr
D:x2 y2 z2
0
0 1r2 2
于是可得Z的概率密度为
2z
f
Z
z
FZ ( z )
(1
z
2
)2
z0
0 其它
1.Z=X+Y的分布:
b(n1+n2+…+nm,p)。
二、连续型随机变量函数的分布
问题:
设(X,Y)为连续型随机向量,具有概率密度f(x,y), 又Z=g(X,Y)为X与Y的函数,若Z是连续型随机变量,要 求Z的概率密度。
一般的方法是先求出Z的分布函数Fz(z),
FZ (z) P{Z z} P{g( X ,Y ) z} P{( X ,Y ) D | D : g( x, y) z}
解: Z的可能取值为0,1,…, n1+ n2,固定k于上述范围内,
由独立性有
k
P{Z k} P{X Y k} P{X i,Y k i}
i0
k
k
P{X i} P{Y k i}
C p q C p q i i n1i n1
k i k i n2 k i n2
i0
i0
k
因为
34
5
0.05 0.07 0.09
0.05 0.06 0.08
0.05 0.05 0.06ຫໍສະໝຸດ 0.06 0.06 0.05
求(1)V=Max(X,Y);(2)U=Min(X,Y);(3)W=X+Y的分布 律。
解: (1) V=Max(X,Y)可能取值为:0,1,2,3,4,5。
P{V=0}=P{X=0,Y=0}=0; P{V=1}=P{X=0,Y=1}+P{X=1,Y=0} +P{X=1,Y=1}
3
P 0.28 0.30 0.25 0.17
U=0
YX 0 00
U=1 U=2 U=3
1234
5
0.01 0.03 0.05 0.07 0.09
1 0.01 0.02 0.04 0.05 0.06 0.08
2 0.01 0.03 0.05 0.05 0.05 0.06
3 0.01 0.02 0.04 0.06 0.06 0.05
直观上,按二项分布的定义,若Xi~b(ni,p),则Xi表示ni 次独立重复试验中事件A出现的次数,而且每次试验中A出
现的概率均为p,i=1,2,···,m,而X1,…,Xm独立,可知 Y=X1+X2+···+Xm是n1+n2+···+nm次独立试验中A出现的次数, 而且每次试验中A出现的概率保持p,故可得Y~
=0.01+0.01+0.02=0.04; 同理,可求出其它取值的概率。 所以V的分布律为
V0
1
2
3
4
5
P 0 0.04 0.16 0.28 0.24 0.28
V=0
YX 0 00
V=1 V=2
12
0.01 0.03
1 0.01 0.02 0.04
2 0.01 0.03 0.05
3 0.01 0.02 0.04
f ( x, y)dxdy f ( x, y)dxdy
D
D:g( x, y )z
然后由FZ(z)求出Z的概率密度fZ(z).
例: 设(X,Y)的概率密度为
1
f ( x, y) (1 x2 y2 )2
-∞<x<+∞, -∞<y<+∞
求 Z X 2 Y 2 的概率密度
解: 我们先求Z的分布函数FZ(z)。 当z≤0时, FZ(z)=0,当z>0时
相关文档
最新文档