弹塑性理论

合集下载

弹塑性断裂理论简介

弹塑性断裂理论简介

弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。

为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。

为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。

1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。

裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。

在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。

c δ也是材料的断裂韧性,是通过实验测定的材料常数。

COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。

2. J 积分理论1968年,Rice 提出了J 积分理论。

对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。

J 积分的单位为MPa* mm 。

图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。

弹塑性力学理论在地下结构分析中的应用

弹塑性力学理论在地下结构分析中的应用

弹塑性力学理论在地下结构分析中的应用地下结构是指建筑物或其他工程项目在地下部分的构造,如地下室、地下管道和地铁隧道等。

由于地下结构所处的地下环境复杂且受到地下水、土壤和地震等外力的影响,因此对其进行准确的分析和设计至关重要。

弹塑性力学理论是一种结构力学理论,它能够有效地应用于地下结构的分析与设计中。

弹塑性力学理论首先考虑了材料的弹性行为。

弹性是指材料在受力后能够恢复原来形状和尺寸的能力。

在地下结构中,由于地下环境的变化和外力的作用,结构会发生变形。

弹性力学理论可以通过应力-应变关系来描述结构的变形情况,从而预测结构的稳定性和安全性。

然而,地下结构在长期使用过程中,会受到多种因素的影响,如地下水的渗透、土壤的沉降和地震的震动等。

这些因素会导致结构材料的塑性变形,即结构在受力后无法完全恢复原来形状和尺寸。

弹塑性力学理论在此基础上进一步考虑了材料的塑性行为,通过引入塑性应变来描述结构的变形情况。

在地下结构分析中,弹塑性力学理论可以用于模拟结构在地下环境中的响应。

首先,通过对地下结构进行力学建模,可以得到结构在受力后的应力分布和变形情况。

然后,根据材料的弹性和塑性特性,可以计算出结构的弹性和塑性应变。

最后,通过对结构的应力和应变进行综合分析,可以评估结构的稳定性和安全性。

弹塑性力学理论在地下结构分析中的应用不仅可以预测结构的变形和破坏情况,还可以指导结构的设计和施工。

例如,在地铁隧道的设计中,弹塑性力学理论可以用于评估隧道在地震条件下的抗震性能。

通过分析结构的弹性和塑性应变,可以确定结构的可变形性和抗震性能,从而指导隧道的设计参数和施工方法。

此外,弹塑性力学理论还可以用于地下结构的监测和维护。

通过对结构的应力和应变进行实时监测,可以及时发现结构的变形和破坏情况。

在结构出现异常情况时,可以采取相应的维护措施,以保证结构的安全和可靠性。

总之,弹塑性力学理论在地下结构分析中具有重要的应用价值。

通过考虑结构的弹性和塑性行为,可以准确预测结构的变形和破坏情况,指导结构的设计和施工,以及监测和维护结构的安全性。

弹塑性理论考试题及答案

弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。

答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。

《弹塑性理论》课程教学大纲

《弹塑性理论》课程教学大纲

《弹塑性理论》课程教学大纲课程代码R1100112课程名称中文名:弹塑性理论英文名:E1asticandP1asticMechanics课程类别专业选修课修读类别任选学分 2.0 学时32(理论)开课学期第6学期开课单位工程力学系应用力学教研室适用专业材料科学与工程先修课程《理论力学》、《材料力学》后续有关专业课无程和教学环节主讲教师/职称郭树起/教授、张存/讲师考核方式及各环期末考试(100%)节所占比例教材及主要参考建议教材:”《弹性力学简明教程》(第4版),徐芝纶编著,高等教育出版社,2013o《塑性力学引论》,王仁、黄文斌著,北京大学出版社,1992。

建议参考书:(1)《弹性力学》(第5版)上册,徐芝纶,高等教育出版社,2016。

(2)《弹塑性力学引论》,杨桂通,清华大学出版社,2004o一、课程性质和目标《弹塑性理论》是材料科学与工程等类专业的一门专业选修课。

课程的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题做准备,但是并不直接作强度和刚度分析以及材料超过弹性范围后力学行为。

课程的目的和任务是使学生平面、空间问题和材料进入塑性后的力学分析方法,培养学时利用所学知识进行力学分析和设计的能力。

知识目标:课程目标1:确立学习任务和方法,认识弹塑性理论的研究对象、研究方法、基本概念及基本假定。

课程目标2:学习平面问题的基本理论,理解平面应力问题与平面应变问题的判定依据,建立平面问题的平衡微分方程、几何方程、物理方程及应力边界条件,利用微元体受力平衡给出物体内任意一点的应力状态,运用圣维南原理给出小边界上的应力边界条件,理解并应力函数求解弹性力学问题的过程。

课程目标3:运用逆解法、半逆解法给出平面问题的直角坐标解答,运用逆解法及半逆解法计算矩形梁的纯弯曲问题、简支梁受均布荷载问题。

课程目标4:学习空间问题的基本理论,理解并空间问题的平衡微分方程、几何方程物理方程及应力边界条件,利用微元体受力平衡给出物体内任意一点的应力状态。

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

弹塑性详解

弹塑性详解

弹塑性的未来发展
智能材料
未来弹塑性材料将与智能传感器和控制系统集成,实现自主监测和自适应调节,提高结构系统的稳定性和可靠性。
高性能应用
在航空航天、汽车制造、能源等领域,弹塑性材料将发挥更大作用,提高关键部件的抗冲击和耐疲劳能力。
仿生设计
从生物体的运动机理中吸取灵感,开发出更高效、协调的弹塑性机构,应用于机器人、生化假肢等领域。
制造工艺控制
弹塑性理论在冲压、挤压、锻造等成形加工中发挥重要作用,可预测工件变形、确定最佳工艺参数,提高产品质量。
生物医学应用
医疗器械和义肢设计需要利用弹塑性分析,确保其能适应人体组织的变形特性,提高舒适度和功能性。
弹塑性的重要性
1
提高结构安全性
弹塑性能够增强材料和结构在外力作用下的变形能力,有效降低意外事故发生的风险,提高结构的安全可靠性。
弹塑性的影响因素
应力-应变关系
材料的弹塑性行为主要取决于其应力-应变曲线的形状,包括弹性模量、屈服强度和最大强度等关键参数。
材料成分与微观结构
材料的化学成分、晶粒大小、相组成等微观结构特征直接影响其宏观力学性能和弹塑性行为。
应力状态与几何形状
零件或结构的受力状态和几何形状会导致局部应力集中,从而影响弹塑性响应和失效模式。
工程应用
20世纪中后期,弹塑性理论和方法广泛应用于工程实践,在航空、汽车、建筑等领域发挥了重要作用。
现代进展
当前,随着计算机技术的发展,弹塑性分析方法不断创新,在复杂结构设计、材料选择和工艺优化中展现强大的潜力。
弹塑性的基本原理
数学描述
弹塑性通过应变-应力关系的数学模型来描述材料在力学作用下的变形行为。这些模型结合了材料的弹性特性和塑性特性。

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。

这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。

本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。

弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。

弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。

弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。

岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。

弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。

弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。

塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。

在岩土工程中,弹塑性理论的应用范围非常广泛。

首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。

通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。

其次,弹塑性理论可以用于岩土体力学性质的试验研究。

通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。

此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。

在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。

弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。

弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。

弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。

弹塑性有限元法基本理论与模拟方法

弹塑性有限元法基本理论与模拟方法
流体动力学
用于模拟流体流动和传热问题 ,如流体机械、航空航天和化 工等领域。
电磁场
用于分析电磁场问题和电气设 备性能,如电机、变压器和天 线等。
声学
用于模拟声音传播和噪声控制 问题,如声学器件和声学环境
等。
04 弹塑性有限元法的基本原 理
弹塑性有限元法的离散化方法
有限元离散化
将连续的物理场或结构体离散为有限个小的单元体, 每个单元体之间通过节点相互连接。
结构强度分析的模拟
结构强度评估
通过弹塑性有限元法模拟,可以对结构的强度进行评估,预测结构在不同载荷下的响应, 确保结构的安全性和稳定性。
疲劳寿命预测
利用弹塑性有限元法,可以模拟结构的疲劳载荷历程,预测结构的疲劳寿命,为结构的维 护和更换提供依据。
结构优化设计
通过模拟结构的应力分布和变形,可以优化结构设计,降低结构重量,提高结构效率。
边界条件和初始条件
在平衡方程中考虑边界条件和初始条件,以确保模拟的准确性和收 敛性。
弹塑性有限元法的边界条件和初始条件
边界条件的处理
01
根据实际情况,将边界条件转化为节点约束或单元载荷的形式。
初始条件的设置
02
在非稳态问题中,需要考虑初始条件的设置,以模拟问题的初
始状态。
边界条件和初始条件的实施
03
随着计算机技术的不断发展,弹塑性 有限元法在各个工程领域中得到了广 泛应用,如机械、航空航械设计中,弹塑性有限元法可用于分析各种复杂结构 的应力分布、变形和疲劳寿命等,提高产品的可靠性和安 全性。
航空航天
在航空航天领域,弹塑性有限元法可用于分析飞行器结构 在各种载荷下的响应,优化结构设计,提高飞行器的性能 和安全性。

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程是研究土体和岩石力学行为以及相关工程问题的学科。

在岩土工程中,土体和岩石常常会受到外力的作用,从而产生弹性变形和塑性变形。

弹性变形是指在加载或卸载外力后,土体和岩石能够恢复到原始形状的能力。

而塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。

为了研究土体和岩石在弹性和塑性阶段的力学特性,人们提出了弹塑性理论与分析技术。

弹塑性理论与分析技术是将弹性理论与塑性理论相结合,用于描述土体和岩石在受力过程中的力学行为。

弹塑性理论首先研究土体和岩石的弹性行为。

弹性是指土体和岩石在外力作用下,能够恢复到原始形状的能力。

弹性理论利用应力和应变的关系来描述土体和岩石的弹性行为。

常见的弹性理论有胡克定律、泊松比理论等。

这些理论可以用来计算土体和岩石的弹性应力、应变和变形。

然而,在实际的工程中,土体和岩石常常会出现塑性变形。

塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。

塑性行为涉及到土体和岩石内部颗粒的移动和变形,因此塑性变形的研究要比弹性变形复杂得多。

弹塑性理论与分析技术的目的就是要研究土体和岩石的弹塑性行为,并提供相应的分析方法。

弹塑性理论与分析技术的主要内容包括:1. 弹性塑性模型:弹塑性模型是描述土体和岩石在加载或卸载过程中的应力和应变关系的数学模型。

常见的模型有Cam-Clay模型、Mohr-Coulomb模型、Drucker-Prager模型等。

这些模型可以用来计算土体和岩石的应力应变状态,从而得到土体和岩石的强度参数和变形特性。

2.弹塑性本构关系:弹塑性本构关系是描述土体和岩石在受力过程中力学行为的数学方程。

本构关系可以用来计算土体和岩石的应力、应变和变形。

常见的本构关系有弹性本构关系、弹塑性本构关系等。

这些本构关系可以用来计算土体和岩石的弹性和塑性变形。

3.弹塑性分析方法:弹塑性分析方法可以用来计算土体和岩石的应力、应变和变形。

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。

本文将简要介绍弹塑性力学的基础理论和一些应用领域。

一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。

根据胡克定律,应力与应变成正比。

弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。

弹性模量是弹性力学的重要参数,表征了材料的刚度。

2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。

当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。

塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。

3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。

它考虑了材料在弹性和塑性行为之间的转换。

在某些情况下,材料可以同时表现出弹性和塑性特性。

弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。

二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。

通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。

在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。

2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。

结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。

通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。

3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。

弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。

在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。

4. 金属加工金属的塑性变形是金属加工过程中的核心问题。

弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。

总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。

弹塑性本构模型理论

弹塑性本构模型理论
加工硬化
当材料中的应力状态处于某一个屈服面上时,如果因加荷 使它发生超越这个屈服面的应力变化,就会在材料中同时 引起新的弹性与塑性变形,形成新的屈服面。加荷使屈服 面膨胀、移动或改变形式,这些改变取决于材料的应力历 史与应力水平,这种现象称为加工硬化(软化)
等向硬化:屈服面大小不同
运动硬化:屈服面位置发生移动

剑桥模型
物态边界面
正常固结的饱和重塑黏土的孔隙比e和它所受的 力p与q之间存在一种固定关系,这一关系反映在 e-p-q空间中就形成了物态边界面
原始各向等压固结线AC(VICL)
在p
1
2


条件下的
3
e

p曲线
VICL表达式: e ea0 ln p
VICL回弹曲线:
Mises破坏条件
f
*

J2

k2 f
Mohr-Coulomb 破坏条件

cn
tan
f Drucker-Prager *
破坏条件
I1
J2 kf
屈服面:
定义:
特征
理想简单塑性材料:材料进入屈服状态,就可以认为材料 破坏了,屈服面与破坏面重合
加工硬化材料:屈服应力随荷载的提高与变形的增大而提 高,因此屈服面不同于破坏面,不是一种固定的面

1 2

3
应力不变量
3 I12 I2 I3 0 I1 1 2 3 I2 1 2 2 3 31
I3 1 2 3
偏差应力
sij ij ij (I1 / 3)
偏差应力不变量
E-V弹性模型 K-G弹性模型 南京水科所模型 剑桥模型 KW模型 LD模型 罗威剪胀模型

弹塑性有限元法基本理论与模拟方法

弹塑性有限元法基本理论与模拟方法

弹塑性有限元法基本理论与模拟方法弹性本构关系:弹性本构关系是描述材料的弹性行为的数学模型。

常见的弹性本构模型包括线性弹性模型和非线性弹性模型。

线性弹性模型假设应力与应变之间的关系是线性的,而非线性弹性模型则考虑了应力与应变之间的非线性关系,如Hooke定律和多项式模型等。

塑性本构关系:塑性本构关系是描述材料的塑性行为的数学模型。

常见的塑性本构模型有单一的本构模型和多线性本构模型。

单一本构模型假设应力与应变之间的关系是单调递增的函数,而多线性本构模型则将塑性行为分段描述,适用于复杂的应力和应变关系。

一般在工程中,弹性本构关系常与塑性本构关系相结合,用于模拟材料在加载过程中的弹性和塑性变形。

有限元方法:有限元方法是一种将连续介质离散成有限个子域,并建立一个代表离散网格的有限元模型进行求解的方法。

在弹塑性有限元方法中,将结构或材料划分成无限形状的有限个单元,每个单元都有一组本征坐标。

然后根据问题的对称性和几何形状,选择适当的数学模型,建立方程组。

模拟方法:在弹塑性有限元法中,首先要确定问题的边界条件,包括力、位移或边界反应。

然后,应用合适的数值方法,如有限差分法或有限元法,对弹塑性问题进行离散求解。

通常采用迭代法进行求解,不断更新单元应力和应变,直到达到一定的收敛准则。

在实际应用中,弹塑性有限元法可以用于模拟多种材料和结构的力学行为,如金属、混凝土、岩土、复合材料等。

通过合理选择材料模型和有限元网格,可以准确地模拟材料的应力、应变分布以及变形情况。

总之,弹塑性有限元法是一种基于有限元法的理论框架,用于模拟材料和结构在加载过程中的弹性和塑性行为。

它包括弹性本构关系、塑性本构关系、有限元方法和模拟方法等几个方面,可以应用于各种材料和结构的力学分析和设计中。

弹塑性力学总结

弹塑性力学总结

弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。

它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。

它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。

本文将对弹塑性力学进行总结。

一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。

它们各自关注的是物体在受力后不同的反应。

(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。

简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。

弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。

(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。

简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。

塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。

二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。

应力有三种类型:拉应力、压应力和剪应力。

(2)应变应变是材料的形变量,通常表示为ε。

应变有三种类型:拉伸应变、压缩应变和剪切应变。

(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。

(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。

弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。

材料的弹性模量越大,其刚度就越高。

(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。

材料开始发生塑性变形的应力点称为屈服点。

三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。

弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。

弹塑性理论

弹塑性理论

4.1.2 弹塑性理论1)塑性含义[47~49]及与弹性的关联塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。

另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。

由于屈服点和比例极限相差很小,因此在有限元程序中,假定它们相同。

在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。

塑性分析中考虑了塑性区域的材料特性。

当材料中的应力超过屈服点时,塑性被激活。

塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的塑性叫作率相关塑性。

大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,常规认为是与率无关的。

塑性材料的数据一般以拉伸的应力—应变曲线形式给出。

材料数据可能是工程应力(PA0)与工程应变(),也可能是真实应力(P/A)与真实应变nLll( )0。

大应变的塑性分析一般采用真实的应力、应变数据,而小应变分析一般采用工程的应力、应变数据。

2)塑性准则(1)屈服准则对单向受拉试件,可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。

屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。

因此,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。

屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服则,当等效应力超过材料的屈服应力时,将会发生塑性变形。

可以在主应力空间中画出 Mises 屈服准则,见图 4.5。

图 4.5 Mises 屈服准则在 3-D 中,屈服面是一个以1 2 3为轴的圆柱面,在2-D中,屈服面是一个椭圆,在屈服面内部的任何应力状态,都是弹性的,屈服面外部的任何应力状态都会引起屈服。

弹塑性力学PPT课件精选全文

弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.

结构静力弹塑性分析的原理和计算实例

结构静力弹塑性分析的原理和计算实例

结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。

该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。

本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。

通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。

二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。

在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。

当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。

弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。

塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。

塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。

弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。

在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。

通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。

弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。

通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。

以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。

在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

砌体材料的应力-应变关系分析摘要:应力应变关系对于结构分析及设计是至关重要的 ,而且缘于砌体材料力学性质的复杂性 ,找到合理的力学模型描述其宏观行为一直是理论界工程界研究的热点。

从建立本构模型的力学模型角度入手,在线弹性、非线弹性和弹塑性几方面简要回顾了国内外学者在这方面所作的工作,以图对其有一个整体印象和把握 ,对今后的工作有所裨益。

关键词:砌体;本构关系;应力应变关系A Survey on Constitutive Law of MasonryAbstract:As a result of the significance of constitutive law for structural analyses ,design and the compl exity of masonry’s mechanism characteristics ,it has focus many researchers’attention on finding appropri ate mechanical model to describe the materials’macroscopic behaviors. According to the different mechan ical model ,and by means of reviewing the primary worldwide researchers’achievement s including linear elesticity ,non-linear elestici y ,and plasticity ,whole understandings of the field’s research processing wa s achieved ,and then get some good ideas.Key words:masonry ; constitutive formulation ; stress-strain curve砌体可能是如今建筑业上仍在大量使用的最古老建筑材料,其最重要的特点是美观、隔热、吸音、防火及施工简便快捷。

从远古时代起就被广泛地应用;世界文明史上至今令人神往的中国长城、大雁塔、赵洲桥及法国巴黎圣母院等是砌体结构应用典范。

随着科技的进步,灌芯墙体、配筋砌块砌体、预应力注芯砌体成为极具竞争力的结构形式。

砌体是由块材及砂浆(或无砂浆)交错排列构成的复合体,缘于其块材的各向异性和尺寸各异,二者材性炯异,灰缝厚度不一,接触面作用机理复杂,加之砌筑方式及质量的影响使得砌体材料性质十分复杂。

不仅缺乏对块材、砂浆、接触面各自性能的试验数据而且缺乏作为复合体的砌体性能的数据。

在其微观机理、本构模型、本构关系及破坏准则等基础理论方面的研究相对滞后,研究者一直探求能建立描述砌体结构的非线性全过程分析和适于各种受力情况下有限元分析的合理本构模型,从而推动砌体结构的进一步发展。

材料的应力应变关系是材料内部微观机理的宏观行为表现,材料的正应力-正应变、剪应力-剪应变及杆系构件的弯矩-曲率、轴力-轴向伸缩、剪力-剪切角、扭矩-转角等联系力与变形之间关系的物理方程都可视为材料或构件的本构关系。

按砌体材料的应力应变理论基础的不同可将其分为:线弹性、非线弹性、塑性、复合材料及损伤断裂力学模型。

1 典型的应力应变关系图1 应力与应变关系1.1 弹性阶段(OC 段)该弹性阶段为初始弹性阶段OC (严格讲应该为CA ’),包括:线性弹性分阶段OA 段,非线性弹性阶段AB 段和初始屈服阶段BC 段。

该阶段应力和应变满足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE = ,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。

1.2 塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。

CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限(ultimate strength ),并用σb 表示。

超过强度极限后应变变大应力却下降,直到最后试件断裂。

这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。

这一现象称为“颈缩”(necking )。

此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。

这种应力降低而应变增加的现象称为应变软化(简称为软化)。

该阶段应力和应变的关系:)(εϕσ=1.3 卸载规律如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。

在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。

如果用OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有p e εεε+= (1-1)即总应变等于弹性应变加上塑性应变。

该阶段应力和应变的关系满足εσ∆=∆E 。

1.4 卸载后重新加载DO ′段若在卸载后重新加载,则σ—ε曲线基本上仍沿直线O ′D 变化,直至应力超过D 点的应力之后,才会产生新的塑性变形。

由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化(简称为硬化)现象。

为了与初始屈服相区别,我们把继续发生新的塑性变形时材料的再度屈服称为后继屈服,相应的屈服点D 称为后继屈服点,相应的应力称为后继屈服应力,并σS ′用表示。

显然,由于硬化作用,σS ′>σS ,而且与σS 不同,σS ′不是材料常数,它的大小与塑性变形的大小和历史有关。

1.5 卸载全部载荷后反向加载如果在完全卸载后施加相反方向的荷载,譬如由拉伸改为压缩,则σ—ε曲线上弹性阶段OC 段沿曲线OA ′变化,有()()-+=s s σσ。

DO ′D ′段沿DO'的延长线下降,开始是呈直线关系,但到达D ″点后又开始进入屈服,此时()()-+≥''s s σσ,即出现反方向的屈服应力降低的现象,这种现象称为Bauschinger 效应。

这个效应说明材料在某一个方向的硬化将引起反方向的软化。

这样,即使是初始各向同性的材料,在出现塑性变形之后,就变为各向异性。

虽然在多数情况下为了简化而忽略Bauschinger 效应,但对有反复加载和卸载的情形,必须予以考虑。

2 线弹性本构模型假设材料的应力应变在加载和卸载时呈线性比例关系,即服从虎克定律。

E σε= (1) 其表达式为:对于一维问题,其比例系数为常数弹性模量E;对于二维、三维问题E 则为弹性矩阵,矩阵中每一项均为常数,与应力水平和加载路径无关。

这是最简单也是发展最早的本构模型,砌体被当作各向同性连续弹性介质看待,忽略作为薄弱层的砂浆影响,早期的研究大都采用这一假设条件,但仅适用于低应力水平阶段;对于高应力水平下由于材料的非线性而导致的应力重分布和局部破坏则无能为力。

3 非线弹性本构模型假设材料的应变随着应力的增大而非线性增长,应力应变不成正比,但仍有一一对应关系,卸载时沿加载路径返回,没有残余变形。

见图2,其表达式为:()E σσε= (2)式中,弹性模量E(对于二维、三维问题E 则为物理矩阵)是应力水平的函数,不再是常数;与加载路径无关。

砌体的非线性缘于块材和砂浆的塑性及局部破坏;其中开裂是导致非线性的主要原因。

图2 非线弹性应力应变关系目前,砌体的应力-应变关系主要源于试验,国内外关于砌体受压时的应力-应变曲线有多种表达式,其中最著名的是前苏联学者奥尼西克提出的对数型的表达式[1],即ln 1m n nf σεξ⎧⎫=--⎨⎬⎩⎭(3) 式中:σ,ε为受压砌体内的应力和应变;n 为略大于1的常数;ξ为弹性特征值,与砂浆的强度等级有关;fm 是砌体抗压强度的平均值.在我国也采用上述形式,但是,取n=1.0.根据文献[2]的研究,对砖砌体: 460m f ξ=.由于应力临近峰值应力时的变形趋于无穷大,因此,建议峰值应变取0.9fm 的对应值.式(3)虽然能与多数砌体受压试验相符合,但是,该式仅有上升段,而且,系数n 对变形的影响较大.因此,又有学者对其进行了研究后提出多项式.下式即为文献[2]建议的可用于结构非线性分析的砖砌体受压应力-应变曲线.1.176.4 5.4m m m f εεσεε⎡⎤⎛⎫⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1.6m εε⎛⎫≤ ⎪⎝⎭ (4) 文献[5]在总结分析Scott McNary 、SAhmad 、SNSinha 及Zingone 等人的实验结果基础上,不考虑砂浆抗拉强度给出幂强化模型的应力应变关系:nE σε= (5)式中, E 为割线模量,n 常数( n ≤1) ;当n=1是线弹性模型。

作者利用该式分析了在恒载及水平地震荷载作用下窗间墙非线性性能,与试验结果吻合较好。

文献[6]依据试验数据,利用回归分析得出归一化的应力应变关系: 23230+1=A A +A +A m m m m σεεεσεεε⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6) 式中,σm 和εm 分别为峰值应力及相应的峰值应变;常数A0、A1 、A2 及A3 由试验数据回归分析得到。

文献[7]以奥尼西克提出的对数型公式为基础,根据对87个砖砌体的试验资料的统计分析结果,提出以砌体抗压强度平均值(fm)为基本变量的砖砌体抗压应力- 应变关系式:()()1/m f εσ- (7) 特征值ξ按最小二乘法确定,同时为避免由于σ趋近于fm 时,ε趋近于∞,作者建议以 σ=0.9fm 式的应变作为砌体的极限应变。

砖砌体待定系数ξ为460。

对其他种类的砌体,均可采用式(7)表达式,只要依据试验资料统计求得相应的ξ值。

式(7)较全面反映了块体强度、砂浆强度及其变形性能对砌体变形的影响。

上面提到的几类应力应变关系都只有上升段,没有下降段,文献[8]中,同济大学依据试验结果提出了有理分式型的砌体受压应力一应变全曲线表达式:当时ε≤ε0 时,//0.20.8/o m of εεσεε=+ 当时ε>ε0 时,0/ 1.20.2/m f σεε=- (8) 式中m f —砌体抗压强度;0ε—相当于m f 的应变这类本构模型的主要缺点是不能反映材料加卸载的区别、滞回环及残余变形等特征,不能应用于加卸载和非比例加载等复杂的受力过程。

Akitnosn 和Yna 于1990年提出用四段直线描述砌体受压本构关系,如图3所示: 其方程式如下:0≤ε<0.001时, σ=830'm f0.001≤ε<0.002时, σ=170 'm f ε+0.66'm f0.002≤ε<0.004时, σ=-335'm f ε+1.67 'm f ε≥ 0.004 时, σ=0.33 'm f (9) P.B.Shing 等人研究配筋砌体剪力墙抗弯强度时,采用了如图4所示的形式描述砌体受压全曲线。

相关文档
最新文档