AS5040_10位360度磁旋转编码器芯片

AS5040_10位360度磁旋转编码器芯片
AS5040_10位360度磁旋转编码器芯片

1 General Description

The AS5040 is a contactless magnetic rotary encoder for accurate angular measurement over a full turn of 360°. It is a system-on-chip, combining integrated Hall elements, analog front end and digital signal processing in a single device.

To measure the angle, only a simple two-pole magnet, rotating over the center of the chip, is required. The magnet may be placed above or below the IC.

The absolute angle measurement provides instant indication of the magnet’s angular position with a resolution of 0.35° = 1024 positions per revolution. This digital data is available as a serial bit stream and as a PWM signal.

Furthermore, a user-programmable incremental output is available, making the chip suitable for replacement of various optical encoders.

An internal voltage regulator allows the AS5040 to operate at either 3.3 V or 5 V supplies.

Figure 1: Typical Arrangement of AS5040 and Magnet

Benefits

Complete system-on-chip

Flexible system solution provides absolute, PWM and incremental outputs simultaneously Ideal for applications in harsh environments due to contactless position sensing

Tolerant to magnet misalignment and airgap variations

No temperature compensation necessary

No calibration required

2 Key Features

Contactless high resolution rotational position

encoding over a full turn of 360 degrees

Two digital 10bit absolute outputs: - Serial interface and

- Pulse width modulated (PWM) output

Three incremental output modes:

- Quadrature A/B and Index output signal - Step / Direction and Index output signal - 3-phase commutation for brushless DC motors

- 10, 9, 8 or 7 bit user programmable resolution

User programmable zero / index position Failure detection mode for magnet placement monitoring and loss of power supply Rotational speeds up to 30,000 rpm

Push button functionality detects movement of magnet in Z-axis

Serial read-out of multiple interconnected AS5040 devices using Daisy Chain mode Wide temperature range: - 40°C to + 125°C Fully automotive qualified to AEC-Q100, grade 1

Small Pb-free package: SSOP 16 (5.3mm x 6.2mm)

3 Applications

Industrial applications:

- Contactless rotary position sensing - Robotics

- Brushless DC motor commutation - Power tools

Automotive applications:

- Steering wheel position sensing - Gas pedal position sensing - Transmission gearbox encoder - Headlight position control - Power seat position indicator

Office equipment: printers, scanners, copiers Replacement of optical encoders Front panel rotary switches

Replacement of potentiometers

AS5040

10Bit 360° Programmable Magnetic Rotary Encoder

Data Sheet

4 Pin Configuration

Figure 2: Pin Configuration SSOP16

Pin Description

Table 2 shows the description of each pin of the standard SSOP16 package (Shrink Small Outline Package, 16 leads,

body size: 5.3mm x 6.2mmm; see Figure 2).

Pins 7, 15 and 16 are supply pins, pins 5, 13 and 14 are for internal use and must not be connected.

Pins 1 and 2 are the magnetic field change indicators, MagINCn and MagDECn (magnetic field strength increase or decrease through variation of the distance between the magnet and the device). These outputs can be used to detect

the valid magnetic field range. Furthermore those indicators can also be used for contact-less push-button functionality.

Pins 3, 4 and 6 are the incremental pulse output pins. The functionality of these pins can be configured through programming the one-time programmable (OTP) register.

Table 1: Pin Assignment for the Different Incremental Output Modes

Output Mode Pin 3 Pin 4 Pin 6 Pin 12

1.x: quadrature A B Index PWM

2.x:step/direction LSB Direction

Index PWM 3.x: commutation U V W LSB

Mode 1.x: Quadrature A/B Output

Represents the default quadrature A/B signal mode.

Mode 2.x: Step / Direction Output

Configures pin 3 to deliver up to 512 pulses (up to 1024 state changes) per revolution. It is equivalent to the LSB (least significant bit) of the absolute position value. Pin 4 provides the information of the rotational direction.

Both modes (mode 1.x and mode 2.x) provide an index signal (1 pulse/revolution) with an adjustable width of one LSB

or three LSB’s.

Table 2 Pin Description SSOP16

Pin Symbol

Type

Description

1 MagINCn DO_OD

Magnet Field Mag nitude INC rease; active low, indicates a distance

reduction between the magnet and the device surface. 2 MagDECn DO_OD

Magnet Field Mag nitude DEC rease; active low, indicates a distance

increase between the device and the magnet. 3

A_LSB_U DO

Mode1.x: Quadrature A channel Mode2.x: L east S ignificant B it Mode3.x: U signal (phase1)

4

B_Dir_V DO

Mode1.x : Quadrature B channel quarter period shift to channel A. Mode2.x: Dir ection of Rotation Mode3.x: V signal (phase2) 5 NC

-

Must be left unconnected

6 Index_W DO

Mode1.x and Mode2.x : Index signal indicates the absolute zero position

Mode3.x : W signal (phase3) 7 VSS

S

Negative Supply Voltage (GND)

8

Prog DI_PD OTP Prog ramming Input and Data Input for Daisy Chain mode. Internal

pull-down resistor (~74k Ω).

May be connected to VSS if programming is not used

9 DO DO_T

D ata O utput of Synchronous Serial Interface 10 CLK DI, ST Cl oc k Input of Synchronous Serial Interface; Schmitt-Trigger input 11

CSn DI_PU, ST

C hip S elect, active low; Schmitt-Trigger input, internal pull-up resistor

(~50k Ω) connect to VSS in incremental mode (see 0)

12 PWM_LSB DO P ulse W idth M odulation of approx. 1kHz; LSB in Mode3.x 13 NC - Must be left unconnected 14 NC - Must be left unconnected

15 VDD3V3 S 3V-Regulator Output (see Figure 19) 16 VDD5V

S

Positive Supply Voltage 5 V

DO_OD digital output open drain S supply pin DO digital output

DI digital input

DI_PD digital input pull-down DO_T digital output /tri-state DI_PU

digital input pull-up

ST

Schmitt-Trigger input

Mode 3.x: Brushless DC Motor Commutation Mode

In addition to the absolute encoder output over the SSI interface, this mode provides commutation signals for brushless DC motors with either one pole pair or two pole pair rotors. The commutation signals are usually provided by 3 discrete Hall switches, which are no longer required, as the AS5040 can fulfill two tasks in parallel: absolute encoder + BLDC motor commutation.

In this mode, pin 12 provides the LSB output instead of the PWM (Pulse-Width-Modulation) signal.

Pin 8 (Prog) is also used to program the different incremental interface modes, the incremental resolution and the zero position into the OTP (see page 18).

This pin is also used as digital input to shift serial data through the device in Daisy Chain configuration, (see page 11).

Pin 11 Chip Select (CSn; active low) selects a device within a network of AS5040 encoders and initiates serial data transfer. A logic high at CSn puts the data output pin (DO) to tri-state and terminates serial data transfer. This pin is also used for alignment mode (page 21) and programming mode (page 16).

Pin 12 allows a single wire output of the 10-bit absolute position value. The value is encoded into a pulse width modulated signal with 1μs pulse width per step (1μs to 1024μs over a full turn). By using an external low pass filter, the digital PWM signal is converted into an analog voltage, allowing a direct replacement of potentiometers.

5 Electrical Characteristics

Absolute Maximum Ratings (non operating)

Stresses beyond those listed under “Absolute Maximum Ratings“ may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “Operating Conditions” is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter

Symbol Min Max Unit Note

DC supply voltage at pin VDD5V

VDD5V

-0.3 7 V DC supply voltage at pin VDD3V3 VDD3V3 -0.3 5 V

-0.3

VDD5V +0.3

Pins MagIncn, MagDecn, CLK, CSn, Input pin voltage

Vin

-0.3 7.5

V

Pin Prog

Input current (latchup immunity) Iscr -100 100 mA Norm: JEDEC 78 Electrostatic discharge ESD ± 2 kV Norm: MIL 883 E method 3015 Storage temperature Tstrg

-55

125

°C

Min – 67°F ; Max +257°F

Body temperature (Lead-free package)

TBody 260 °C

t=20 to 40s, Norm: IPC/JEDEC J-Std-020C Lead finish 100% Sn “matte tin” Humidity non-condensing

H

5

85

%

Operating Conditions

Parameter

Symbol

Min

Typ Max Unit

Note

Ambient temperature T amb -40 125

°C -40°F…+257°F

Supply current

I supp 16 21 mA External supply voltage at pin VDD5V Internal regulator output voltage at pin VDD3V3

VDD5V VDD3V3 4.5 3.0 5.0 3.3 5.53.6V V 5V operation

External supply voltage at pin VDD5V, VDD3V3 VDD5V VDD3V3

3.0 3.0

3.3 3.3

3.63.6

V V

3.3V operation (pins VDD5V and

VDD3V3 connected)

DC Characteristics for Digital Inputs and Outputs

CMOS Schmitt-Trigger Inputs: CLK, CSn (CSn = internal Pull-up)

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation)

unless otherwise noted)

Parameter

Symbol Min Max Unit Note

High level input voltage V IH 0.7 * VDD5V

V Normal operation Low level input voltage V IL

0.3 * VDD5V

V

Schmitt Trigger hysteresis V Ion- V Ioff 1 V

-1 1 CLK only Input leakage current Pull-up low level input current

I LEAK I iL

-30 -100

μA μA CSn only, VDD5V: 5.0V

CMOS / Program Input: Prog

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter Symbol Min Max Unit Note

High level input voltage V IH0.7 * VDD5V 5 V

High level input voltage V PROG See “programming conditions” V During programming

Low level input voltage V IL0.3 * VDD5V V

Pull-down high level input current I iL100

μA

VDD5V:

5.5V CMOS Output Open Drain: MagINCn, MagDECn

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter Symbol Min Max Unit Note

Low level output voltage V OL VSS+0.4

V

Output current I O 4

2

mA

VDD5V: 4.5V

VDD5V: 3V

Open drain leakage current I OZ 1 μA

CMOS Output: A, B, Index, PWM

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter Symbol Min Max Unit Note

High level output voltage V OH VDD5V-0.5 V

Low level output voltage V OL VSS+0.4

V

Output current I O 4

2

mA

VDD5V: 4.5V

VDD5V: 3V

Tristate CMOS Output: DO

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter Symbol Min Max Unit Note

High level output voltage V OH VDD5V

–0.5 V

Low level output voltage V OL VSS+0.4

V

Output current I O 4

2 mA

VDD5V: 4.5V

VDD5V: 3V

Tri-state leakage current I OZ 1 μA

Magnetic Input Specification

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Two-pole cylindrical diametrically magnetised source:

Parameter Symbol Min Typ Max Unit Note

Diameter d mag 4 6 mm Thickness t mag 2.5 mm Recommended magnet: ? 6mm x 2.5mm for cylindrical magnets

Magnetic input field amplitude B pk 45 75 mT

Required vertical component of the

magnetic field strength on the die’s surface,

measured along a concentric circle with a

radius of 1.1mm

Parameter Symbol Min Typ Max Unit Note

Magnetic offset B off ± 10 mT Constant magnetic stray field Field non-linearity 5

%

Including offset gradient

f mag_abs 10 Hz

Absolute mode: 600 rpm @ readout of 1024

positions (see Table 6) Input frequency (rotational speed of magnet)

f mag_inc

500 Hz Incremental mode: no missing pulses at

rotational speeds of up to 30,000 rpm (see

Table 6)

0.25

Max. X-Y offset between defined IC package

center and magnet axis (see Figure 21) Displacement radius Disp

0.485

mm

Max. X-Y offset between chip center and

magnet axis. Chip placement tolerance

±0.235 mm

Placement tolerance of chip within IC package (see Figure 23)

-0.12

NdFeB (Neodymium Iron Boron) Recommended magnet

material and

temperature drift

-0.035

%/K

SmCo (Samarium Cobalt)

Electrical System Specifications

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter Symbol Min Typ Max Unit Note

Resolution RES 10 bit 0.352 deg 7 bit 8 bit 9 bit 10 bit

LSB

2.813

1.406

0.703

0.352

deg

Adjustable resolution only available for incremental output modes; Least significant bit, minimum step

Integral non-linearity (optimum)

INL opt

± 0.5 deg Maximum error with respect to the best line fit.

Verified at optimum magnet placement, T amb =25 °C. Integral non-linearity (optimum)

INL temp ±

0.9 deg Maximum error with respect to the best line fit.

Verified at optimum magnet placement ,

T amb = -40 to +125°C

Integral non-linearity

INL

± 1.4

deg

Best line fit = (Err max – Err min ) / 2

Over displacement tolerance with 6mm diameter magnet, T amb = -40 to +125°C

Differential non-linearity DNL ± 0.176 deg 10bit, no missing codes Transition noise TN 0.12 Deg RMS RMS equivalent to 1 sigma Hysteresis

Hyst 0.704 deg

Incremental modes only

Power-on reset thresholds On voltage; 300mV typ. hysteresis

Off voltage; 300mV typ. hysteresis V on V off 1.37 1.08 2.2 1.9 2.9 2.6 V

DC supply voltage 3.3V (VDD3V3) DC supply voltage 3.3V (VDD3V3)

Power-up time

t PwrUp 50 ms Until offset compensation finished System propagation delay absolute output

t delay

48

μs

Includes delay of ADC and DSP

Parameter

Symbol

Min Typ Max Unit Note

System propagation delay incremental output

192 μs

Calculation over two samples 9.90

10.42

10.94

Internal sampling rate, T amb = 25°C

Sampling rate for absolute output

f S

9.38 10.42

11.46

kHz

Internal sampling rate, T amb = -40 to +125°C

Read-out frequency CLK 1 MHz Max. clock frequency to read out

serial data

Figure 3: Integral and Differential Non-linearity Example (exaggerated curve)

Integral Non-Linearity (INL) is the maximum deviation between actual position and indicated position. Differential Non-Linearity (DNL) is the maximum deviation of the step length from one position to the next. Transition Noise (TN) is the repeatability of an indicated position.

Timing Characteristics

Synchronous Serial Interface (SSI)

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter

Symbol Min Typ Max Unit Note

Data output activated (logic high)

t DO active 100 ns

Time between falling edge of CSn and

data output activated First data shifted to output register

t CLK FE

500 ns

Time between falling edge of CSn and

first falling edge of CLK

Start of data output T CLK / 2 500

ns

Rising edge of CLK shifts out one bit at a time

Data output valid t DO valid

357 413 ns

Time between rising edge of CLK and

data output valid

Data output tristate t DO tristate

100 ns

After the last bit DO changes back to

“tristate”

Pulse width of CSn

t CSn 500

ns CSn = high; To initiate read-out of next angular position

Parameter

Symbol Min Typ Max Unit Note

Read-out frequency

f CLK

>0

1

MHz

Clock frequency to read out serial data

Pulse Width Modulation Output

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter Symbol Min Typ Max Unit Note

0.927 0.976 1.024Signal period = 1025μs ±5% at T amb = 25°C PWM frequency f PWM 0.878 0.976 1.074KHz =1025μs ±10% at T amb = -40 to +125°C Minimum pulse width PW MIN 0.90 1 1.10 μs Position 0d; angle 0 degree

Maximum pulse width

PW MAX

922

1024

1126

μs

Position 1023d; angle 359.65 degree

Incremental Outputs

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter

Symbol Min Typ Max Unit Note

Incremental outputs valid after power-up

t Incremental

outputs valid

500 ns Time between first falling edge of CSn

after power-up and valid incremental

outputs Directional indication valid

t Dir valid

500 ns

Time between rising or falling edge of

LSB output and valid directional indication

Programming Conditions

(operating conditions: T amb = -40 to +125°C, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted)

Parameter

Symbol Min Typ Max Unit Note

Programming enable time t Prog enable 2 μs

Time between rising edge at Prog pin

and rising edge of CSn Write data start t Data in 2 μs

Write data valid t Data in valid

250 ns

Write data at the rising edge of CLK PROG

Load programming data t Load PROG 3

μs

Rise time of V PROG before CLK PROG

t PrgR 0 μs Hold time of V PROG after CLK PROG

t PrgH 0 5 μs Write data – programming CLK PROG

CLK PROG 250 kHz CLK pulse width t PROG 1.8

2

2.2

μs

During programming; 16 clock cycles

Hold time of Vprog after programming t PROG finished

2 μs

Programmed data is available after

next power-on Programming voltage V PROG 7.3 7.4 7.5 V Must be switched off after zapping Programming voltage off level V ProgOff

1

V

Line must be discharged to this level

Programming current I PROG 130 mA During programming Analog read CLK

CLK Aread

100

kHz

Analog readback mode

Programmed zener voltage (log.1)

V programmed

100 mV

Unprogrammed zener voltage

(log. 0)

V unprogrammed 1

V

V Ref -V PROG during analog readback mode (see Analog Readback Mode )

6 Functional Description

The AS5040 is manufactured in a CMOS standard process and uses a spinning current Hall technology for sensing the magnetic field distribution across the surface of the chip.

The integrated Hall elements are placed around the center of the device and deliver a voltage representation of the magnetic field at the surface of the IC.

Through Sigma-Delta Analog / Digital Conversion and Digital Signal-Processing (DSP) algorithms, the AS5040 provides accurate high-resolution absolute angular

position information. For this purpose a Coordinate Rotation Digital Computer (CORDIC) calculates the angle and the magnitude of the Hall array signals.

The DSP is also used to provide digital information at the outputs MagINCn and MagDECn that indicate movements of the used magnet towards or away from the device’s surface.

A small low cost diametrically magnetized (two-pole) standard magnet provides the angular position information (see Figure 20).

The AS5040 senses the orientation of the magnetic field and calculates a 10-bit binary code. This code can be accessed via a Synchronous Serial Interface (SSI). In addition, an absolute angular representation is given by a Pulse Width Modulated signal at pin 12 (PWM).

Besides the absolute angular position information the device simultaneously provides incremental output signals. The various incremental output modes can be selected by programming the OTP mode register bits (see page 19). As long as no programming voltage is applied to pin Prog, the new setting may be overwritten at any time and will be reset to default when power is turned off. To make the setting permanent, the OTP register must be programmed (see Figure 15). The default setting is a quadrature A/B mode including the Index signal with a pulse width of 1 LSB. The Index signal is logic high at the user programmable zero position.

The AS5040 is tolerant to magnet misalignment and magnetic stray fields due to differential measurement technique and Hall sensor conditioning circuitry.

Figure 4: AS5040 Block Diagram

7 10-bit Absolute Angular Position Output

Synchronous Serial Interface (SSI)

Figure 5: Synchronous Serial Interface with Absolute Angular Position Data

If CSn changes to logic low, Data Out (DO) will change from high impedance (tri-state) to logic high and the read-out will be initiated.

After a minimum time t CLK FE, data is latched into the output shift register with the first falling edge of CLK.

Each subsequent rising CLK edge shifts out one bit of data.

The serial word contains 16 bits, the first 10 bits are the angular information D[9:0], the subsequent 6 bits contain system information, about the validity of data such as OCF, COF, LIN, Parity and Magnetic Field status (increase/decrease) .

A subsequent measurement is initiated by a log. “high” pulse at CSn with a minimum duration of t CSn.

Data Content:

D9:D0 absolute angular position data (MSB is clocked out first)

OCF(O ffset C ompensation F inished), logic high indicates the finished Offset Compensation Algorithm.

For fast startup, this bit may be polled by the external microcontroller. As soon as this bit is set, the AS5040 has completed the startup and the data is valid (see Table 4)

COF (C ordic O ver f low), logic high indicates an out of range error in the CORDIC part. When this bit is set, the data at D9:D0 is invalid. The absolute output maintains the last valid angular value.

This alarm may be resolved by bringing the magnet within the X-Y-Z tolerance limits.

LIN (Lin earity Alarm), logic high indicates that the input field generates a critical output linearity.

When this bit is set, the data at D9:D0 may still be used, but can contain invalid data. This warning may be resolved by bringing the magnet within the X-Y-Z tolerance limits.

MagINCn, (Mag nitude Inc rease) becomes HIGH, when the magnet is pushed towards the IC, thus the magnetic field strength is increasing.

MagDECn, (Mag nitude Dec rease) becomes HIGH, when the magnet is pulled away from the IC, thus the magnetic field strength is decreasing.

Both signals HIGH indicate a magnetic field that is out of the allowed range (see Table 3).

Table 3: Magnetic Magnitude Variation Indicator

Mag INCn Mag DECn Description

No distance change; Magnetic input field OK (in range, 45..75mT)

0 1

Distance increase: Pull-function. This state is dynamic, it is only active while the magnet is

moving away from the chip in Z-axis 1 0

Distance decrease: Push- function. This state is dynamic, it is only active while the magnet is

moving towards the chip in Z.-axis. 1

1

Magnetic Input Field invalid – out of range: <45mT or >75mT (or missing magnet)

Note: Pins 1 and 2 (MagINCn, MagDECn) are open drain outputs and require external pull-up resistors. If the magnetic field is in range, both outputs are turned off.

The two pins may also be combined with a single pull-up resistor. In this case, the signal is high when the magnetic field is in range. It is low in all other cases (see Table 3).

Even Parity bit for transmission error detection of bits 1…15 (D9…D0, OCF, COF, LIN, MagINCn, MagDECn)

The absolute angular output is always set to a resolution of 10 bit. Placing the magnet above the chip, angular values increase in clockwise direction by default.

Data D9:D0 is valid, when the status bits have the following configurations: Table 4: Status Bit Outputs OCF

COF

LIN

Mag INCn

Mag DECn

Parity

0 0

0 1

1 0 0 1 0

even checksum of bits

1:15

The absolute angular position is sampled at a rate of 10kHz (0.1ms). This allows reading of all 1024 positions per 360 degrees within 0.1 seconds = 9.76Hz (~10Hz) without skipping any position. Multiplying 10Hz by 60, results the corresponding maximum rotational speed of 600 rpm.

Readout of every second angular position allows for rotational speeds of up to 1200rpm.

Consequently, increasing the rotational speed reduces the number of absolute angular positions per revolution (see Table 7). Regardless of the rotational speed or the number of positions to be read out, the absolute angular value is always given at the highest resolution of 10 bit.

The incremental outputs are not affected by rotational speed restrictions due to the implemented interpolator. The incremental output signals may be used for high-speed applications with rotational speeds of up to 30,000 rpm without missing pulses.

Daisy Chain Mode

The Daisy Chain mode allows connection of several AS5040’s in series, while still keeping just one digital input for data transfer (see “Data IN” in Figure 6 below). This mode is accomplished by connecting the data output (DO; pin 9) to the data input (Prog; pin 8) of the subsequent device. An RC filter must be implemented between each PROG pin of device n and DO pin of device n+1, to prevent the encoders to enter the alignment mode, in case of ESD discharge, long cables, or not conform signal levels or shape. Using the values R=100R and C=1nF allow a max. CLK frequency of 1MHz on the whole chain. The serial data of all connected devices is read from the DO pin of the first device in the chain. The Prog pin of the last device in the chain should be connected to VSS. The length of the serial bit stream increases with every connected device, it is

n * (16+1) bits:

e.g. 34 bit for two devices, 51 bit for three devices, etc…

The last data bit of the first device (Parity) is followed by a logic low bit and the first data bit of the second device (D9), etc… (see Figure 7).

Programming Daisy Chained Devices

In Daisy Chain mode, the Prog pin is connected directly to the DO pin of the subsequent device in the chain (see Figure 6). During programming (see section 12), a programming voltage of 7.5V must be applied to pin Prog. This voltage level exceeds the limits for pin DO, so one of the following precautions must be made during programming: open the connection DO?Prog during programming or

add a Schottky diode between DO and Prog (Anode = DO, Cathode = Prog)

Due to the parallel connection of CLK and CSn, all connected devices may be programmed simultaneously.

Figure 6: Daisy Chain Hardware Configuration

Figure 7: Daisy Chain Mode Data Transfer

8 Incremental Outputs

Three different incremental output modes are possible with quadrature A/B being the default mode.

Figure 8 shows the two-channel quadrature as well as the step / direction incremental signal (LSB) and the direction bit in clockwise (CW) and counter-clockwise (CCW) direction.

Quadrature A/B Output (Quad A/B Mode)

The phase shift between channel A and B indicates the direction of the magnet movement. Channel A leads channel B at a clockwise rotation of the magnet (top view) by 90 electrical degrees. Channel B leads channel A at a counter-clockwise rotation.

LSB Output (Step / Direction Mode)

Output LSB reflects the LSB (least significant bit) of the programmed incremental resolution (OTP Register Bit Div0, Div1). Output Dir provides information about the rotational direction of the magnet, which may be placed above or below the device (1=clockwise; 0=counter clockwise; top view). Dir is updated with every LSB change.

In both modes (quad A/B, step/direction) the resolution and the index output are user programmable. The index pulse indicates the zero position and is by default one angular step (1LSB) wide. However, it can be set to three LSBs by programming the Index-bit of the OTP register accordingly (see Table 6).

Figure 8: Incremental Output Modes

Incremental Power-up Lock Option

After power-up, the incremental outputs can optionally be locked or unlocked, depending on the status of the CSn pin: CSn = low at power-up:

CSn has an internal pull-up resistor and must be externally pulled low (R ext≤ 5kΩ). If Csn is low at power-up, the incremental outputs (A, B, Index) will be high until the internal offset compensation is finished.

This unique state (A=B=Index = high) may be used as an indicator for the external controller to shorten the

waiting time at power-up. Instead of waiting for the specified maximum power up-time (0), the controller can start requesting data from the AS5040 as soon as the state (A=B=Index = high) is cleared.

CSn = high or open at power-up:

In this mode, the incremental outputs (A, B, Index) will remain at logic high state, until CSn goes low or a low pulse is applied at CSn. This mode allows intentional disabling of the incremental outputs until for example the system microcontroller is ready to receive data.

Incremental Output Hysteresis

To avoid flickering incremental outputs at a stationary magnet position, a hysteresis is introduced.

In case of a rotational direction change, the incremental outputs have a hysteresis of 2 LSB.

Regardless of the programmed incremental resolution, the hysteresis of 2 LSB always corresponds to the highest resolution of 10 bit. In absolute terms, the hysteresis is set to 0.704 degrees for all resolutions.

For constant rotational directions, every magnet position change is indicated at the incremental outputs (see Figure 9). If for example the magnet turns clockwise from position …x+3“ to …x+4“, the incremental output would also indicate this position accordingly.

A change of the magnet’s rotational direction back to position …x+3“ means, that the incremental output still remains unchanged for the duration of 2 LSB, until position …x+2“ is reached. Following this direction, the incremental outputs will again be updated with every change of the magnet position.

Figure 9: Hysteresis Window for Incremental Outputs

9 Pulse Width Modulation (PWM) Output

The AS5040 provides a pulse width modulated output (PWM), whose duty cycle is proportional to the measured angle:

()

11025

?+?=

off on on t t t Position

The PWM frequency is internally trimmed to an accuracy of ±5% (±10% over full temperature range). This tolerance can be cancelled by measuring the complete duty cycle as shown above.

Figure 10: PWM Output Signal

Table 5: PWM Signal Parameters

Parameter Symbol Typ

Unit

Note

PWM frequency f PWM 0.9756 kHz Signal period: 1025μs

MIN pulse width PW MIN 1 μs

- Position 0d

- Angle 0 deg MAX pulse width PW MAX

1024 μs

- Position 1023d

- Angle 359,65 deg

10 Analog Output

An analog output may be generated by averaging the PWM signal, using an external active or passive lowpass filter. The analog output voltage is proportional to the angle: 0°= 0V; 360° = VDD5V.

Using this method, the AS5040 can be used as direct replacement of potentiometers. Figure 11: Simple Passive 2nd Order Lowpass Filter

R1,R2 ≥ 4k7

C1,C2 ≥ 1μF / 6V

R1 should be ≥4k7 to avoid loading of the PWM output. Larger values of Rx and Cx will provide better filtering and less ripple, but will also slow down the response time.

11 Brushless DC Motor Commutation Mode

Brushless DC motors require angular information for stator commutation. The AS5040 provides U-V-W commutation signals for one and two pole pair motors. In addition to the three-phase output signals, the step (LSB) output at pin 12 allows high accuracy speed measurement. Two resolutions (9 or 10 bit) can be selected by programming Div0 according to Table 6.

Mode 3.0 (3.1) is used for brush-less DC motors with one-pole pair rotors. The three phases (U, V, W) are 120 degrees apart, each phase is 180 degrees on and 180 degrees off.

Mode 3.2 (3.3) is used for motors with two pole pairs requiring a higher pulse count to ensure a proper current commutation. In this case the pulse width is 256 positions, equal to 90 degrees.

The precise physical angle at which the U, V and W signals change state (“Angle” in Figure 12 and Figure 13) is calculated by multiplying each transition position by the angular value of 1 count: Angle [deg] = Position x (360 degree / 1024)

Figure 12: U, V and V-signals for BLDC Motor Commutation (Div1=0, Div0=0)

Figure 13: U, V and W-signals for 2-pole BLDC Motor Commutation (Div1=1; Div0=0)

12 Programming the AS5040

After power-on, programming the AS5040 is enabled with the rising edge of CSn with Prog = high and CLK = low. 16 bit configuration data must be serially shifted into the OTP register via the Prog-pin. The first “CCW” bit is followed by the zero position data (MSB first) and the incremental mode setting as shown in Table 6. Data must be valid at the rising edge of CLK (see Figure 14).

After writing data into the OTP register it can be permanently programmed by rising the Prog pin to the programming voltage V PROG. 16 CLK pulses (t PROG) must be applied to program the fuses (Figure 15). To exit the programming mode, the chip must be reset by a power-on-reset. The programmed data is available after the next power-up.

Note: During the programming process, the transitions in the programming current may cause high voltage spikes generated by the inductance of the connection cable. To avoid these spikes and possible damage to the IC, the connection wires, especially the signals Prog and VSS must be kept as short as possible. The maximum wire length between the V PROG switching transistor and pin Prog (see Figure 16) should not exceed 50mm (2 inches). To suppress eventual voltage spikes, a 10nF ceramic capacitor should be connected close to pins Prog and VSS. This capacitor is only required for programming, it is not required for normal operation.

The clock timing t clk must be selected at a proper rate to ensure that the signal Prog is stable at the rising edge of CLK (see Figure 14). Additionally, the programming supply voltage should be buffered with a 10μF capacitor mounted close to the switching transistor. This capacitor aids in providing peak currents during programming.

The specified programming voltage at pin Prog is 7.3 – 7.5V (see section 0). To compensate for the voltage drop across the V PROG switching transistor, the applied programming voltage may be set slightly higher (7.5 - 8.0V, see Figure 16).

OTP Register Contents:

CCW Counter Clockwise Bit ccw=0 – angular value increases in clockwise direction ccw=1 – angular value increases in counterclockwise direction Z [9:0] Programmable Zero / Index Position Indx

Index Pulse Width Selection: 1LSB / 3LSB Div1,Div0 Divider Setting of Incremental Output Md1, Md0 Incremental Output Mode Selection

OTP Default Setting

The AS5040 can also be operated without programming. The default, un-programmed setting is shown in Table 6 (Mode 0.0): CCW: 0 = clockwise operation Z9 to Z0: 00 = no programmed zero position Indx: 0 = Index bit width = 1LSB

Div0,Div1 : 00 = incremental resolution = 10bit Md0, MD1: 00 = incremental mode = quadrature

Figure 14: Programming Access – Write Data (section of Figure 15)

Figure 15: Complete Programming Sequence

CLK t Load PROG

t PROG finished

Power Off

PROG

PrgH t PrgR

1

16

Figure 16: OTP Programming Connection of AS5040 (shown with AS5040 demoboard)

Incremental Mode Programming

Three different incremental output modes are available.

Mode: Md1=0 / Md0=1 sets the AS5040 in quadrature mode.

Mode: Md1=1 / Md0=0 sets the AS5040 in step / direction mode (see Table 1)

In both modes, the incremental resolution may be reduced from 10 bit down to 9, 8 or 7 bit using the divider OTP bits Div1 and Div0. (see Table 6 below ).

Mode: Md1=1 / Md0=1 sets the AS5040 in brushless DC motor commutation mode with an additional LSB incremental signal at pin 12 (PWM_LSB).

To allow programming of all bits, the default factory setting is all bits = 0. This mode is equal to mode 1:0 (quadrature A/B, 1LSB index width, 256ppr).

The absolute angular output value, by default, increases with clockwise rotation of the magnet (top view).

Setting the CCW-bit (see Figure 14) allows reversing the indicated direction, e.g. when the magnet is placed underneath the IC:

CCW = 0 – angular value increases clockwise;

CCW = 1 – angular value increases counterclockwise.

By default, the zero / index position pulse is one LSB wide. It can be increased to a three LSB wide pulse by setting the Index-bit of the OTP register.

Further programming options (commutation modes) are available for brushless DC motor-control.

Md1 = Md0 = 1 changes the incremental output pins 3, 4 and 6 to a 3-phase commutation signal. Div1 defines the number of pulses per revolution for either a two-pole (Div1=0) or four-pole (Div1=1) rotor.

In addition, the LSB is available at pin 12 (the LSB signal replaces the PWM signal), which allows for high rotational speed measurement of up to 30,000 rpm.

Table 6: One Time Programmable (OTP) Register Options

OTP-Mode-Register-Bit Pin #

Pulses per Revolution

Incremental Resolution

Mode

Md1

Md0 Div1 Div0 Index 3

4

6 12

ppr

bit

Default (Mode0.0)

0*

0*

0*

1LSB quadAB-Mode1.0 0 1 0 0 0 1LSB quadAB-Mode1.1 0 1 0 0 1 3LSBs

2x256 10

quadAB-Mode1.2 0 1 0 1 0

1LSB

quadAB-Mode1.3 0 1 0 1 1 3LSBs

2x128 9 quadAB-Mode1.4 0 1 1 0 0 1LSB quadAB-Mode1.5 0 1 1 0 1 3LSBs 2x64 8 quadAB-Mode1.6 0 1 1 1 0 1LSB quadAB-Mode1.7 0 1 1 1 1 A B 3LSBs PWM

10 bit

2x32 7 Step/Dir-Mode2.0 1 0 0 0 0 1LSB Step/Dir-Mode2.1 1 0 0 0 1 3LSBs 512 10 Step/Dir -Mode2.2 1 0 0 1 0

1LSB

Step/Dir -Mode2.3 1 0 0 1 1 3LSBs 256 9 Step/Dir -Mode2.4 1 0 1 0 0 1LSB Step/Dir -Mode2.5 1 0 1 0 1 3LSBs 128 8 Step/Dir -Mode2.6 1 0 1 1 0 1LSB Step/Dir -Mode2.7 1 0 1 1 1 LSB Dir

3LSBs

PWM

10 bit 64

7 Commutation-Mode3.0 1 1 0 0 0

10

Commutation-Mode3.1 1 1 0 1 0 U(0o)

V(120o)

W(240o)

LSB

3 x 1

9

Commutation-Mode3.2 1 1 1 0 0 10

Commutation-Mode3.3

1 1 1 1 0

U’ (0o, 180o) V’ (60o, 240o)

W’

(120o, 300o)

LSB

2 x 3

9

Note: Div1, Div0 and Index cannot be programmed in Mode 0:0

Zero Position Programming

Zero position programming is an OTP option that simplifies assembly of a system, as the magnet does not need to be manually adjusted to the mechanical zero position. Once the assembly is completed, the mechanical and electrical zero positions can be matched by software. Any position within a full turn can be defined as the permanent new zero/index position.

For zero position programming, the magnet is turned to the mechanical zero position (e.g. the “off”-position of a rotary switch) and the actual angular value is read.

This value is written into the OTP register bits Z9:Z0 (see Figure 14) and programmed as described in section 12. This new absolute zero position is also the new Index pulse position for incremental output modes.

Note: The zero position value may also be modified before programming, e.g. to program an electrical zero position that is 180° (half turn) from the mechanical zero position, just add 512 to the value read at the mechanical zero position and program the new value into the OTP register.

Repeated OTP Programming

Although a single AS5040 OTP register bit can be programmed only once (from 0 to 1), it is possible to program other, unprogrammed bits in subsequent programming cycles. However, a bit that has already been programmed should not be programmed twice. Therefore it is recommended that bits that are already programmed are set to “0” during a programming cycle.

Non-permanent Programming

It is also possible to re-configure the AS5040 in a non-permanent way by overwriting the OTP register.

This procedure is essentially a “Write Data” sequence (see Figure 14) without a subsequent OTP programming cycle. The “Write Data” sequence may be applied at any time during normal operation. This configuration remains set while the power supply voltage is above the power-on reset level (see 0).

See Application Note AN5000-20 for further information.

Analog Readback Mode

Non-volatile programming (OTP) uses on-chip zener diodes, which become permanently low resistive when subjected to a specified reverse current.

The quality of the programming process depends on the amount of current that is applied during the programming process (up to 130mA). This current must be provided by an external voltage source. If this voltage source cannot provide adequate power, the zener diodes may not be programmed properly.

In order to verify the quality of the programmed bits, an analog level can be read for each zener diode, giving an indication whether this particular bit was properly programmed or not.

To put the AS5040 in analog readback mode, a digital sequence must be applied to pins CSn, Prog and CLK as shown in Figure 17. The digital level for this pin depends on the supply configuration (3.3V or 5V; see section 14).

The second rising edge on CSn (OutpEN) changes pin Prog to a digital output and the log. high signal at pin Prog must be removed to avoid collision of outputs (grey area in Figure 17).

The following falling slope of CSn changes pin Prog to an analog output, providing a reference voltage V ref, that must be saved as a reference for the calculation of the subsequent programmed and unprogrammed OTP bits. Following this step, each rising slope of CLK outputs one bit of data in the reverse order as during programming. (see Figure 17: Md0-MD1-Div0,Div1-Indx-Z0…Z9, ccw)

During analog readback, the capacitor at pin Prog (see Figure 16) should be removed to allow a fast readout rate. . If the capacitor is not removed the analog voltage will take longer to stabilize due to the additional capacitance.

The measured analog voltage for each bit must be subtracted from the previously measured V ref, and the resulting value gives an indication on the quality of the programmed bit: a reading of <100mV indicates a properly programmed bit and a reading of >1V indicates a properly unprogrammed bit.

A reading between 100mV and 1V indicates a faulty bit, which may result in an undefined digital value, when the OTP is read at power-up.

Following the 16th clock (after reading bit “ccw”), the chip must be reset by disconnecting the power supply.

Figure 17: OTP Register Analog Read

磁旋转编码器常见问题

磁旋转编码器常见问题 常见问题:磁旋转编码器I C 一般性问题 Q1:芯片如果不能按预期工作,我需要进行哪些测试才能找出原因? Q2:可以在不编程的情况下使用旋转编码器芯片吗? Q3:如何知道上电之后角度数据何时有效? Q4:启动时间是否会随温度而改变? Q5:不同类型的输出可用于哪些应用? Q6:我可以利用数字输出驱动大于4m A的电流,例如驱动一个10m A的L E D吗?Q7:为什么已存在下拉电阻还必须将P R O G连接到V S S? Q8:对准模式下限制数值32是什么意思? Q9:可以得到的最佳精度是多少? Q10:可以得到优于0.1度的精度吗? Q11地利微电子可以校准芯片以实现最佳的精度吗? Q12:数据资料中显示的误差曲线对于所有产品都是一样的吗? Q13:编码器的重复性是指什么? Q14:重复性怎样随着温度改变? Q15:C S n引脚可以永久地连接到V S S吗? Q16:角度数据采样与C S n是同步的吗? Q17:奥地利微电子可以提供预先编程的定制化编码器吗? Q18:编码器可承受的振动水平怎样? Q19:怎样降低A S5040/43/45的功耗? 磁铁相关问题 Q20:推荐的磁铁水平偏离容差是多少? Q21:如果不能将磁铁对准在推荐的容差内,会发生什么呢? Q22:我可以将编码器I C安装在环形磁铁的周围吗? Q23:怎样才能扩展磁铁的垂直间距? Q24:如果在―绿色‖(适当)范围之外使用传感器会有什么后果? Q25:哪些类型的磁铁可以和A S5035/40/43/45配合使用? Q26:在旋转轴内安装磁铁的时候需要注意什么? Q27:为什么在移除磁铁的时候不能触发C O F和L I N报警? Q28:为什么即使移除磁铁时我仍可以得到随机的角度数据? Q29:在什么磁场范围可以得到M a g I n c/-D e c、L I N和C O F报警信号? Q30:如何分辨磁铁场强过弱(或丢失)与磁铁场强过强的情况? Q31:要获得零位读数时,磁铁要处于哪一个缺省位置? Q32:磁编码器是如何做到对于外部磁场不敏感的? A S5035,A S5040,A S5045 磁旋转编码器产品系列常见问题 A S50000磁旋转编码器产品系列 常见问题 Q33:是否需要屏蔽传感器以避免外部磁场的影响? Q34:B L D C电动机的强磁场转子磁铁会对编码器造成什么影响? Q35:我可以将其它材料放置到磁铁和I C之间吗?

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

倍加福编码器基础讲解

P+F Absolute Rotary Encoder通讯参数设置 型号

1、地址选择和终端电阻1.1站地址 1.2 终端电阻 2、信号和电源线的连接

3、安装GSD文件 GSD文件为电子设备数据库文件,是可读的ASCII码文件。不同厂家的PROFIBUS产品集成在一起,生产厂家必须以GSD文件方式提供这些产品的功能参数,例如I/O点数、诊断信息、传输速率、时间监视等。在Step 7 的SIMATIC 管理器中打开硬件组态工具HW Config ,安装GSD后,在右边的硬件目录PROFIBUS DP→Additional Field Devices→Encoders→ENCODER将会出现刚刚安装的P+F Rotary Encoder。其数据传输原理如图所示。 4、组态通讯参数

在Step 7硬件配置窗口中,双击P+F Rotary Encoder 图标,打开编码器(DP Slave)的参数设置窗口,如图所示。结合工程实际,在此窗口中进行参数设置: a、代码顺序(Code Sequence):计数方向, CW(顺时针旋转,代码增加),CCW (逆时针旋转,代码增加); b、标定功能控制(Scaling function control):只有设置成Enable ,下面 c、d和e的设置才会生效; c、单圈分辨率(Measuring units per revolution):8192; d、测量范围高位(Total measuring range(units)hi): 512; e、测量范围低位(Total measuring range(units)lo): 0; f、其它参数采用默认值。 注:1、由c可以计算出编码器每圈产生(=8192)个二进制码,即单圈精度为13位。2、由d和e可以计算出编码器最大可以转(=512×65536+0)圈,即多圈精度为12位。 5、预置值 6、LED状态灯指示信息

数控铣床的工作原理【详解】

数控铣床的工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 数控机床是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作数控折弯机并加工零件。 数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。 ⑵、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。 ⑶输入/输出设备 输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。

编码器原理及常见知识问答

编码器原理及常见知识问答 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 编码器工作原理: 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。 1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。 感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。

AS5048A-HTSP 14位绝对式旋转编码器IC

General Description The AS5048 is an easy to use 360° angle position sensor with a 14-bit high resolution output. The maximum system accuracy is 0.05° assuming linearization and averaging is done by the external microcontroller. The IC measures the absolute position of the magnet’s rotation angle and consists of Hall sensors, analog digital converter and digital signal processing. The zero position can be programmed via SPI or I2C command. Therefore no programmer is needed anymore. This simplifies the assembly of the complete system because the zero position of the magnet does not need to be mechanically aligned. This helps developers to shorten their developing time. The sensor tolerates misalignment, air gap variations, temperature variations and as well external magnetic fields. This robustness and wide temperature range (-40°C up to +150°C) of the AS5048 makes the IC ideal for rotation angle sensing in harsh industrial and medical environments. Several AS5048 ICs can be connected in daisy chain for serial data read out. The absolute position information of the magnet is directly accessible over a PWM output and can be read out over a standard SPI or a high speed I2C interface. Version AS5048A comes with SPI and PWM Interface. Version AS5048B is configured with the I2C interface and has also a PWM output. An internal voltage regulator allows the AS5048 to operate at either 3.3 V or 5 V supplies. Key Features & Benefits ? 360° contactless angle position sensor ? Standard SPI or high speed I2C interface and PWM ? Simple programmable zero position via SPI or I2C command ? No programmer needed ? 14-bit full scale resolution 0.0219°/LSB ? Angle accuracy 0.05°after system linearization and averaging ? Daisy chain capability ? Tolerant to air gap variations magnetic field input range: 30mT – 70mT ? -40°C to +150°C ambient temperature range ? 3.3V / 5V compliant ? 14-pin TSSOP package (5x6.4mm) Applications ? Robotic joint position detection ? Industrial motor position control ? Medical robots and fitness equipment Block Diagram

旋转编码器定位使用说明

充注小车、运载小车定位使用说明 定位原理: 旋转编码器定位与老式的旋转变压器一样,实际上是一个计数器。我们目前使用的OMRON旋转编码器每旋转一周,能精确地发出1024脉冲,PLC依据旋转编码器发出的脉冲进行计数,再乖以固定机械变比与旋转半径的系数,就可以得出脉冲与实际行走距离的线性对应关系。 PLC利用高速计数模块QD62D读取旋转编码器的值并进行数字化处理,可以将脉冲数值转换成实际的距离值如mm。 目前我们设备都是利用旋转编码器的原始值进行处理的,所有触模屏上的距离值均为脉冲值而非实际距离值,这样在处理数据时比较方便直观。 根据这一对应关系利用普通变频器控制一般的三相鼠笼电机就能实现精度在1毫米左右定位系统,可以在许多定位要求不高的控制领域使用。 使用方法: 依据上述原理,定位系统定位首先必须选择一个参考点,以这点作为基准点,其它所有设置点均为到这一点的相对距离。当基点信号取的不稳定或不好,就会影响整个定位过程。 旋转编码器由一个联轴器与一套齿轮机构组合成一套测量机构。由于齿轮与齿轮之间存在间隙,运行一段时间后就会有误差积累,造成定位不准,这时不要改变屏上设定数据,而是在运行机构运行一段时间后,让运行机构回到基点,进行一次清零,就可以消除积累误差。 旋转编码器定位机构的故障主要有定位不准、或运行数据无变化等等。 定位不准主要是由测量机构之间的间隙,联轴器、齿轮相对打滑。 一种定位不准就是干扰,现场已采用了一端接地的屏蔽等措施。出错时请严格检查测量线路(包抱QD62D联接器)有无断线、短路、屏蔽不严、模块供电电压不足等问题。 还有一种定位不准表现在:由于测量机构所能测量的最大频率不超过500KHz,因此对于变化速度太快脉冲系统不能及时测量,造成定位不准。因此系统要运行平稳,不能有速度突变。

磁旋转编码器(圆磁栅)为铁路安全计划作出贡献

磁旋转编码器(圆磁栅)为铁路安全计划作出贡献 Sperry Rail公司的手杖式轨道裂纹扫描仪采用Renishaw关联公司RLS d.o.o开发的非接触磁编码器,帮助确定轨道裂隙的位置—这是旨在防止轨道缺陷造成撞车事故的长期预防性维护计划的一部分。采用编码器,因其具有优异的总体性能特征,包括分辨率、功耗、重量、尺寸和输入/输出配置,而且可以帮助记录可追踪数据。 Network Rail公司负责管理英国数千英里的铁路,随着铁路乘客的不断增长,该公司已开始实施一项长期预防性维护计划。 协助Network Rail公司探查并监测轨道裂隙的是总部设在英国的Sperry Rail International公司。该公司在其新型手杖式轨道裂纹扫描仪中安装了RE22磁旋转编码器,用来帮助在轨道出现故障之前就确定缺陷的准确位置,做到防患于未然。 轨道裂纹的源头 Sperry公司现场服务经理George Dodd说:“轨道裂纹通常由两个原因造成,一是生产过程中轨道存在的固有缺陷,二是过往铁路机车车辆对铁轨造成的损坏。” Dodd说,螺栓孔和其它配件也可能成为应力性裂纹的关键原因,但裂纹是如何扩散的,并没有明显的模式。它们取决于诸多因素,包括交通流量、车辆载重以及极端天气。他还说:“裂纹通常与车辆的正常运行方向形成20度角,但双向线路在两个方向都会出现裂纹。” 测试装置 测试轨道的最常用装置是一种超声工具,它可以探测轨头、轨腰、轨底存在的缺陷。步行式操作装置的标准裂纹检测方法称为A型扫描,超声反射显示在屏幕上。 使用B型扫描裂纹探测器 (BSFD) 时,接收的信号以另外一种形式显示在屏幕上,但也可以被采集并存储在一个文件中,用于日后分析和检验。 BSFD可以存储多个数据集。 Sperry装置的优势 Sperry手杖式轨道裂纹扫描仪是一种步行式检测工具,操作员推着该装置沿铁路线行进,可以A型扫描或B型扫描模式作业。 Dodd说:“我们的手杖式轨道裂纹扫描仪有一个辊子搜索装置,还有9个传感器可从预定角度将声波投射到轨道中,继而从裂纹缺陷上产生反射。” 用于轨道检测的“手杖”有各种形式,问世已经25年有余。 Sperry装置与众不同,它采用含有液体的聚亚安酯轮胎,与固定的非接触式探头集成一体。 Dodd说:“有一个‘零度’探头与轨底垂直,还有几个探头与路轨呈37度折射角,这些探头可以探测轨腰和轨底中的缺陷。” RSU轮胎沿着路轨在薄薄的一层水和防冻剂上滚动,排出所有空气,并将声波清晰地传递到轨道中,然后再传出声波。 集团系统总监Graham Dale说:“Sperry的手杖式轨道裂纹扫描仪可对轨头、轨头、轨腰和轨脚进行检测。它利用Renishaw RE22磁旋转编码器测量行程。我们以前开发的手杖式轨道裂纹扫描仪采用的是其它厂商的编码器,这是我们首次采用Renishaw的编码器。

编码器选型及故障判断

编码器选型介绍及简单故障判断 编码器元件是一种可替代炭膜电位器的新型数字式电子元件,有着良好的市场应用前景和发展空间。广泛应用于家用电器、汽车音响、通讯设备、多媒体、音响、仪器仪表设备、数控机床、医疗设备、工程机械、航空航天设备、智能控制、物联网终端设备等,具有极大推广应用的价值。 1 编码器的分类: 按产品结构分为:编码器元件和编码器组件; 按使用方式分为:旋转式和直线式; 按技术原理分为:接触式(电刷机械接触)和非接触式(含有:光学式、光电感应式、磁感应式、磁电感应式…); 按工作原理分为:增量型和绝对型。 2 部分编码器元件产品(图一)

(图一:编码器元件) 3 编码器元件工作原理 本文将对增量型编码器和绝对型编码器的工作原理和应用进行介绍。 在编码器的本体(脉冲码盘)中预先根据不同的产品要求,制作金属导通区与塑胶绝缘区,导通区与绝缘区的角度、形状大小,决定着产品最终的信号输出形式。 3.1增量型编码器: 在旋转过程中,能输出二组或二组以上,有周期性变化并有相位时序差的编码器 . (1) 产品特点: a) 可以360度旋转; b) 在旋转过程中,能够产生高、低电平周期性变化的输出信号,没有固定的起始点和终点; c) 能在任一位置停下或起步; d) 使用时,一般不注重停下位置的结果,只强调过程的信号变化。 (2) 产品构造:

该产品主要由轴芯、本体、支架、定位片、接触刷等组成。 (3) 输出信号: 通过旋转轴芯带动接触刷,产生通、断,输出二组或二组以上,有周期性变化并有相位时序差的脉冲信号。 a) 输出二组信号时,一般分为:A相、B相,相位间的相位差为相互延迟1/4脉冲周期,根据通断的先后顺序,判断产品的旋转方向(信号递增或递减),如图二所示: (图二:二组信号方波) b) 输出三组信号时,一般分为:A相、B相C相,通过三组信号的通断先后顺序(时间差)来判定信号的递增或递减,三组信号在导通的状态时互不相交,从而使成品的相位差相对变大。信号增减更易识别,更稳定,不易出现乱码,如图三所示:

12位可编程磁旋转编码器

AS5145/AS5145A/AS5145B 12-Bit Programmable Magnetic Rotary Encoder D a t a S h e e t 1 General Description The AS5145 is a contact less magnetic rotary encoder for accurate angular measurement over a full turn of 360 degrees. It is a system-on-chip, combining integrated Hall elements, analog front end and digital signal processing in a single device. To measure the angle, only a simple two-pole magnet, rotating over the center of the chip, is required. The magnet may be placed above or below the IC. The absolute angle measurement provides instant indication of the magnet’s angular position with a resolution of 0.0879o = 4096 positions per revolution. This digital data is available as a serial bit stream and as a PWM signal. An internal voltage regulator allows the AS5145 to operate at either 3.3V or 5V supplies. 2 Key Features Contact less high resolution rotational position encoding over a full turn of 360 degrees Two digital 12 bit absolute outputs: -Serial interface -Pulse width modulated (PWM) output Figure 1. AS5145 Automotive Rotary Encoder IC Three incremental outputs Quadrature A/B (10 or 12 bit) and Index output signal (pre-programmed versions available AS5145A for 10 bit and AS5145B for 12 bit) User programmable zero position Failure detection mode for magnet placement, monitoring, and loss of power supply Red-Yellow-Green indicators display placement of magnet in Z-axis Serial read-out of multiple interconnected AS5145 devices using Daisy Chain mode Tolerant to magnet misalignment and gap variations Wide temperature range: - 40oC to +150oC Fully automotive qualified to AEC-Q100, grade 0 Small Pb-free package: SSOP 16 (5.3mm x 6.2mm) 3 Applications The device is ideal for industrial applications like contactless rotary position sensing and robotics; automotive applications like steering wheel position sensing, transmission gearbox encoder, head light position control, torque sensing, valve position sensing and replacement of high end potentiometers. Hall Array & Front end Amplifier PWM Interface DSP OTP Register MagINCn DO CSn CLK PDIO Sin Cos Mag Ang MagDECn PWM Absolute Interface (SSI) V DD5V Incremental Interface DTEST1_A DTEST2_B LDO 3.3V V DD3V3 Mux Mode_Index AS5145

POSITAL编码器说明书

P O S I T A L编码器说明书 Prepared on 24 November 2020

POSITAL编码器资料 FRABA 编码器 德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等。 编码器行业领导者上海精芬德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL 传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等,如需询价或详细信息,方案选型与精芬联系。德国POSITAL公司成立于1918年,致力于高端机电产品的研发及生产,是欧洲绝对值编码器产品的领跑者。该公司产品广泛应用于冶金、汽车制造、水利、物流、机械制造、木材加工、造船等行业。 以下021列举部分型号:OCD-S200G-1412-B15S-PRL、OCD-S200G-1212-B150-PRL、OCD-S200G-1212-B15S-CRW、OCD-S200G-1213-B150-CAW、OCD-S200B-1213-SA1C-CRS-150、OCD-S200G-1416-S060-PRL、OCD-S200G-1213-B15C-CAS-182、OCD-S200G-1416- S100-CAW、OCD-S200G-1212-C100-PRL、OCD-S200G-1412-B150-PRL、OCD-S100G-1212-B150-PAL、OCD-

S100G-0012-C100-PRL、OCD-S100G-1212-C10S-CRW-5m、OCD-S100G-1212-S100-PRL、OCD-S100G-1212- B15V-CAW-5m、OCD-S100G-0013-S100-PRL、OCD- S100G-1212-S10S-PRL、OCD-S100G-0016-S10S-PAL、OCD-S100B-1212-C10S-PRL、OCD-S100G-1416-C100-PRL、OCD-S100G-1213-C100-PA9、OCD-S100G-1213-C100-PAL、OCD-S100G-1212-S060-PRL-050、OCD- S100G-1212-B150-PRL、OCD-S100G-1213-C100-PRL、OCD-S100B-0016-B15S-CRW-136、OCD-S100G-1212-C100-PRL、OCD-S100G-1212-C100-CRW、OCD-S100G-1212-S060-PAL、OCD-S100B-0016-S060-PAL-135、OCD-S100G-0013-C100-PAL OCD-S100G-1213-T120-PRL、OCD-S100B-1212-S060-CRW、OCD-S100G-0016-T12C-CRW-163、OCD-S100G-1416-C10V-CAW-5m、OCD-S100G-1216-S10S-PRL、OCD-S100G-0016-T120-CRW、OCD-S100B-1212-C100-PRL、OCD-S100B-1212-B15V-CAW-5m、OCD-S100G-1212-B15S-PAL、OCD-S100B-0016-C100-CAW-5m、OCD-S100G-1212-C10S-PRL、OCD-S100B-0016-T120-CRW、OCD-S100G-1213-S10S-PRL、OCD-S100B-1213-C10S-PRL、OCD-S100G-0013-S060-PRL、OCD-S100B-0016-T120-PRL、OCD-SL00G-1213-SA1C-CRS-159、OCD-S100B-0016-B150-CRW、

编码器的选型及技术解答

编码器的选型及技术解答 一、问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二、问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B 脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装臵中设立计数栈。 增量型编码器与绝对型编码器的区分:编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料;玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级。塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率:编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。A.B两相联接,用于正反向计数、判断正反向和测速。A、B、Z三相联接,用于带参考位修正的位臵测量。A、A-,B、B-,Z、Z-连接,

旋转编码器工作方式图解

旋转编码器 旋转编码器是由光栅盘(又叫分度码盘)和光电检测装置(又叫接收器)组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光栅盘与电机同轴,电机旋转时,光栅盘与电机同速旋转,发光二极管垂直照射光栅盘,把光栅盘图像投射到由光敏元件构成的光电检测装置(接收器)上,光栅盘转动所产生的光变化经转换后以相应的脉冲信号的变化输出。 编码器码盘的材料有玻璃、金属、塑料等。玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性也比玻璃的差一个数量级。塑料码盘成本低廉,但精度、热稳定性、寿命均要差一些。 编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC),顾名思义,绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。增量式编码器需要使用额外的电子设备(通常是PLC、计数器或变频器)以进行脉冲计数,并将脉冲数据转换为速度或运动数据,而绝对式编码器可产生能够识别绝对位置的数字信号。综上所述,增量式编码器通常更适用于低性能的简单应用,而绝对式编码器则是更为复杂的关键应用的最佳选择--这些应用具有更高的速度和位置控制要求。输出类型取决于具体应用。 一:增量式旋转编码器工作原理 增量式旋转编码器通过两个光敏接收管来转化角度码盘的时序和相位关系,得到角度码盘角度位移量的增加(正方向)或减少(负方向)。

增量式旋转编码器的工作原理如下图所示。 图中A、B两点的间距为S2,分别对应两个光敏接收管,角度码盘的光栅间距分别为S0和S1。 当角度码盘匀速转动时,可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理,当角度码盘变速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为: 我们把当前的A、B输出值保存起来,与下一个到来的A、B输出值做比较,就可以得出角度码盘转动的方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,再除以所用的时间,就得到此次角度码盘运动的角速度。 S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。

2017通力电梯故障详解1

通力V3F16L变频器维修,通力电梯3000机型驱动系统故障码含义详解 来源:未知作者:admin 时间:2012-11-09 22:26 点击: 1224 通力电梯3000机型驱动系统故障码含义详解通力V3F16L变频器维修 通力电梯3000机型驱动系统出现故障时,通常会出现一些故障码,来指示通力电梯3000机型发生故障的原因,下面将通力电梯3000机型驱动系统故障码的含义做一总结,供朋友们分享。 1、通力电梯3000机型出0101:驱动系统停止驱动,说明电梯在启动时,驱动系统检测电路检测到变频器有故障,由主板CPU 发出驱动系统停止驱动的指令。 2、通力电梯3000机型出0102:曳引电机过电流,说明供给曳引电机的电流过大,超过曳引电机所能承受的额定电流时,被驱动系统电流检测电路检出,发出过流报警信号。 3、通力电梯3000机型出0103:制动电阻损坏,当通力电梯的检测电路检测到驱动系统中制动电阻发生断路或阻值变大时,发出此故障0103故障码。 4、通力电梯3000机型出0104:曳引电机过热,当曳引电机发生过载或过流或热敏电阻损坏现象时,会引起曳引电机过热,被检测电路检出后,发出0104故障码。 5、通力电梯3000机型出0105:中间直流电压过低,当变频器三相整流电路中的二极管个别损坏或电网电压过低,或者滤波电容容量变小时,变频器直流电压检测电路检出直流电压过低情况时,就会出0105故障码。 6、通力电梯3000机型出0106:V3F不工作。当V3F变频器内部发生故障,和LCECPU375电路板不能通信时,就会出现0106故障码。 7、通力电梯3000机型出0107:称重装置故障。当称重装置发生故障或调试不当时,就会出现0107故障码。 8、通力电梯3000机型出0108:电动机出错。当曳引电机的三相供电相序不对、平衡系数不准、称重不准、电梯启动时抱闸没有打开、驱动参数设置不正确、或运行速度出现超速等现象时,就会出0108故障码。 9、通力电梯3000机型出0109:测速机或编码器故障。当测速发电机的胶轮磨损或碳刷磨损致使测速电机不能正常工作时,旋转编码器发生故障时,会出现0109故障码。 10、通力电梯3000机型出0110:散热器过热。当机房环境温度过高、变频器散热风扇发生故障导致散热不良时,会出现此故障码,进入更多通力变频器故障代码、、、 杭州智来机电精修通力电梯变频器:V3F16L,V3F18,V3F25,KDL16,KDL32,KDL、KDL、VFL、VF、VF。

磁性编码器构成及原理

磁性编码器构成及原理 磁性编码器主要部分由磁阻传感器、磁鼓、信号处理电路组成。将磁鼓刻录成等间距的小磁极,磁极被磁化后,旋转时产生周期分布的空间漏磁场。磁传感器探头通过磁电阻效应将变化着的磁场信号转化为电阻阻值的变化,在外加电势的作用下,变化的电阻值转化成电压的变化,经过后续信号处理电路的处理,模拟的电压信号转化成计算机可以识别的数字信号,实现磁旋转编码器的编码功能。 磁鼓充磁的目的是使磁鼓上的一个个小磁极被磁化,这样在磁鼓随着电动机旋转时,磁鼓能产生周期变化的空间漏磁,作用于磁电阻之上,实现编码功能。磁鼓磁极的个数决定着编码器的分辨率,磁鼓磁极的均匀性和剩磁强弱是决定编码器结构和输出信号质量的重要参数。下图:磁鼓表面的磁极分布

磁阻传感器是磁阻敏感元件做成,磁阻器件可以分为半导体磁阻器件和强磁性磁阻器件。为了提高信号采样的灵敏度,同时考虑到差动结构对敏感元件温度特性的补偿效应,一般在充磁间距λ内,刻蚀2个位相差为丌/2的条纹,构成半桥串联网络。如下图: 同时,为了提高编码器的分辨率,可以在磁头上并列多个磁阻敏感元件,在加电压的情况下,磁阻元件通过磁鼓旋转输出相应正弦波。其原理可简单解释:磁鼓产生NS的磁场作圆周运动,磁阻元件做成的传感器随磁场变化电阻也随之变化,并感测出SinA,SinB 两个电压波形。磁阻传感器的构造如图,由8个磁阻分为两组相距1/4 NS间距。在Mr1,Mr2与Mr3,Mr4的接点处可检出Sin电压波形,同样原理在Mr1‘,Mr2‘与Mr3‘,Mr4‘的接点处可检出SinB电压波

形。 磁阻元件构成的磁阻传感器等效图 从磁阻传感器输出的两路波形 信号处理电路:SinA,SinB 信号到达信号处理电路后,为了能在cpu 取样的范围内,需对波形进行调整。首先AB相信号需先做DC电压准位调整,使AB相信号直流准位位于DSP A/D取样电压范围的中点,且振幅不超过取样电压范围,AB相信号再经过模拟滤波器及数字滤波器,将高频及谐波滤除后,通过DSP高速运算能力实时地将计算出位置和速度;另外还有一种处理方法是将SinA、SinB 信号直接通过信号处理电路转换成方波后再进DSP。后者可能软件处理起来更方便一些。

电力拖动自动控制系统系统课后问题详解

习 题 二 2.2 系统的调速围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解:10000.02(100.98) 2.04(1)n n s n rpm D s ?==??=- 系统允许的静态速降为2.04rpm 。 2.3 某一调速系统,在额定负载下,最高转速特性为0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落15min N n r ?=,且在不同转速下额定速降 不变,试问系统能够达到的调速围有多大?系统允许的静差率是多少? 解:1)调速围 max min D n n =(均指额定负载情况下) max 0max 1500151485N n n n =-?=-= min 0min 15015135N n n n =-?=-= max min 148513511D n n === 2) 静差率 01515010%N s n n =?== 2.5 某龙门刨床工作台采用V-M 调速系统。已知直流电动机 60,220,305,1000min N N N N P kW U V I A n r ====,主电路总电阻R=0.18 Ω,Ce=0.2V ?min/r,求: (1)当电流连续时,在额定负载下的转速降落N n ?为多少? (2)开环系统机械特性连续段在额定转速时的静差率N S 多少? (3)若要满足D=20,s ≤5%的要求,额定负载下的转速降落N n ?又为多少?

解:(1)3050.18274.5/min N N n I R r ?=?=?= (2) 0274.5(1000274.5)21.5%N N S n n =?=+= (3) [(1)]10000.05[200.95] 2.63/min N n n S D s r ?=-=??= 2.7 某闭环调速系统的调速围是1500r/min~150r/min ,要求系统的静差率5%s ≤,那么系统允许的静态速降是多少?如果开环系统的静态速降是100r/min ,则闭环系统的开环放大倍数应有多大? 解: 1)()s n s n D N N -?=1/ 1015002%/98%N n =??? 15002%/98%10 3.06/min N n r ?=??= 2.9 有一V-M 调速系统:电动机参数P N =2.2kW, U N =220V , I N =12.5A, n N =1500 r/min ,电枢电阻R a =1.5Ω,电枢回路电抗器电阻RL=0.8Ω,整流装置阻R rec =1.0Ω,触发整流环节的放大倍数K s =35。要求系统满足调速围D=20,静差率S<=10%。 (1)计算开环系统的静态速降Δn op 和调速要求所允许的闭环静态速降Δn cl 。 (2)采用转速负反馈组成闭环系统,试画出系统的原理图和静态结构图。 (3)调整该系统参数,使当U n *=15V 时,I d =I N ,n=n N ,则转速负反馈系数 α应该是多少? (4)计算放大器所需的放大倍数。 解:(1) ()()/22012.5 1.5/1500201.25/15000.134min/N N a e e n U I R C C V r =-??=-?== ()//12.5 3.3/0.134307.836/min N N e op N e n U I R C n I R C r ∑∑=-???=?=?= ()()/1150010%/20*90%8.33/min N N n n s D s r ?=-=?=() 所以,min /33.8r n cl =? (2)

相关文档
最新文档