合成氨生产工艺讲义 ppt课件

合集下载

合成氨工艺与设备培训课件(ppt 45张)

合成氨工艺与设备培训课件(ppt 45张)

3、各工段工艺及设备-脱硫工段
反应原理: 1)吸收:半水煤气中的酸性气体H2S被碱性溶液(Na2CO3)吸收生 成NaHS和NaHCO3,其反应方程式如下: 碱的溶解 (Na2CO3+H2O→NaHCO3+NaOH/NaHCO3+H2O→NaOH+H2 O+CO2 ) Na2CO3+H2S→NaHS+NaHCO3 /H2S+NaOH→NaHS+H2O NH3+H2S→NH4HS(氨水脱硫) 2)再生:溶液中的HS-被氧化析出硫(催化剂作用下): NaHS+O2=NaOH+S↓ NH4HS+O2→NH3+S↓+H2O
2、工艺流程-氨的生产原料
合成氨生产的原料: 氮气来自空气,氢气来自原料气制取,原 料有固体(煤、焦炭等)、液体(石脑油、重 质油等)和气体(天然气、焦炉气等)三种。 小氮肥一般以煤为原料。
2、工艺流程-小氮肥工艺流程
液 氨 精炼 粗甲醇
PC脱碳
电机
产 品 粗 醇
CO2气
PSA脱碳
尿素
产 品 尿 素
1、基本概念-合成氨
为什么要合成氨?
① 制造氮肥和复合肥料(化肥加工):占80~90%, 主要品种有尿素、碳铵、硝酸铵、硫酸铵、氯化铵 等氮肥,以及磷酸一铵、磷酸二铵和NPK复合肥等含 氮复合肥。 ② 作为工业原料和氨化饲料:用量约占世界产量的10 %。各种含氮的无机盐及有机中间体、磺胺药、聚 氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原 料生产。其他如纯碱、硝酸、甲铵、冶金、医药、 石油加工等; ③ 液氨作为制冷剂在冷冻行业也得到广泛应用。
3、各工段工艺及设备-脱硫工段
为什么脱硫?

《合成氨生产》PPT课件

《合成氨生产》PPT课件
3.1~3.2,用作合成氨的原料气。 特点:空气和水蒸汽同时通入气化装置,如满足
系统自热平衡,那么气体成份不能满足要求; 反之,假设气体成分满足要求,那么不能满足 系统自热平衡。 生产方法:外热法、富氧空气氧化法、蓄热法。
〔1〕外热法
须采用高温热源〔如原子能反响堆余热〕, 以熔融盐、熔融铁作加热介质。由于固体导热 性差,需优质耐火砖,故未推广。
灰渣区:位于燃料层底部,可预热由炉底 部进入的气化剂,同时灰渣被冷却可保护炉箅 不致过热变形。
分析:综合前三个吸热可逆反响,有:
C ﹢ H2O〔g〕 ≒ CO ﹢ H2 △H﹥0 吸热反 响
综合后两个放热可逆反响,有:
C ﹢ H2O〔g〕﹢ CO ﹢ H2 ≒ CO2 ﹢ CH4 △H﹥0 吸热反响
由以上两个综合反响式可看出:t↑,〔CO ﹢ H2〕 ↑与水蒸汽的反响速率,取决于反响温度
在该式中不计纯固体和纯液体〔溶液除外〕 的浓度,并将化学反响系数转化为计算式中的 指数。
平衡常数与温度的关系:△H﹤0,t↑,KP↓; △H﹥0,t↑,KP↑。
讨论:气体平衡组成与温度的关系?
〔2〕反响速率
气化剂与固体燃料在煤气发生炉中的反响 属于气—固相反响。随着反响的进展,固体燃 料的粒度逐渐减小,不断生成气体产物。反响 过程由五个步骤组成:扩散→外表吸附→外表 反响→脱附→反扩散。
〔2〕富氧空气氧化法
用富氧空气替代空气,可满足系统热量平 衡及半水煤气成份的双重要求,实现连续制气。
在实际生产中,由于存在热损失,富氧空气 中的O2含量控制在50%左右。
〔3〕蓄热法
该法又称为间歇气化法。所用设备为煤气 发生炉,内装固体燃料。往炉内先送入空气以 提高燃料层温度,生成的气体〔吹风气〕大局 部放空;然后送入水蒸汽进展气化反响,此时 燃料层温度下降。如此间歇地往炉内送入空气 和水蒸汽重复进展,所得水煤气配入局部吹风 气即成半水煤气。该法是我国多数中小型合成 氨厂采用的气化方法。

精选合成氨生产工艺知识讲座

精选合成氨生产工艺知识讲座
• 气化炉及碳洗塔等排出的洗涤水(称为 黑水)送往灰水处理。
四.合成氨的条件 :
氨的合成是一个放热、气体总体积缩小的可逆反应。
有研究表明,400-500°C,压强一般采用 20MPa~50MPa. 采用铁触媒(以铁为主,混合的催 化剂)。制得的氨量也不算多,还可以采取迅速冷 却,使气态氨变为液态氨。也可原料重复利用。
催化剂活化
• 使用时需预先用H2S或CS2硫化变成Co9S8和MoS2 才有活性。 钴钼加氢转化后用氧化锌脱除生成 的H2S。
• 氧化锌- 钴钼加氢转化-氧化锌组合,可达到精 脱硫的目的。
湿法脱硫
用于含硫高、处理量大的气体的脱 硫。按其脱硫机理的不同又分为化 学吸收法、物理吸收法、物理-化学 吸收法和湿式氧化法。
水煤浆制气原理
• 煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送
来的高压氧通过烧咀进入气化炉,在气化炉中煤浆 与氧发生如下主要反应:
• CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S
CO+H2O—→H2+CO2

反应在6.5MPa(G)、1350~1400℃下进行。
利于回收反应热,并控制变换段出口残余CO含量。第
一步是高温变换,使大部分CO转变为CO2和H2;第二 步是低温变换,将CO含量降至0.3%左右。因此,CO
变换反应既是原料气制造的继续,又是净化的过程,
为后续脱碳过程创造条件。
变换炉
脱碳
本公司用于尿素生产
3、脱 硫
脱硫主要是H2S, 其次是CS2,COS,RSH等有机硫。 其含量取决于原料的含硫量及加工方 法.
气化反应在气化炉反应段瞬间完成,生成CO、

合成氨生产工艺介绍讲座PPT

合成氨生产工艺介绍讲座PPT

四、氨合成与分离的工艺流程
(一)气体的压缩和除油
(二)气体的预热和合成
(三)氨的分离
合成塔出口气体氨含量一般为10~20%因此将氨分离出来。 1.水吸收法 2.冷凝 该法是将合成气体降温,使其的气氨冷凝成液氨,后 在氨分离器中,从不凝气体中分离出来。目前主要采用冷却法 分离循环气中的氨。
在氨冷凝过程,部分氢氮气及惰性气体溶解在液氨中。
缺氮的棉花
智利硝石(NaNO3)
氮的固定: 把大气中的氮转化为氮的化合物叫做氮的固定。
包括: ① 自然固定:豆科植物固氮、雷雨天产生NO气体; ② 人工固定:合成氨等。
二、合成原理及条件
N2+3H2
2NH3 (正反应为放热反应)
特点: a、可逆反应 b、正反应为放热反应
c、正反应是气体体积缩小的反应。
高温
C+H2O(g) → CO+H2
CO+H2O(g)催→化剂CO2+H2
4.合成氨工艺条件:
4.1操作压力
在一定的空速下,合成压力越高,出口氨浓度越高,氨 净值(合成塔出入口氨含量之差)越高,合成塔的生产能力也 就越 大。
氨合成系统的能量消耗主要包括原料气压缩功、循环气 压缩功和氨分离的冷冻功。 生产实践证明:操作压力在20~35MPa时总能量消耗比较 低。
4.2温度
将某种催化剂在一定成产条件下具有最高氨生成率 的温度称为最适宜的温度。
最适宜温度还和空间速度、压力等有关
经生产实践得出氨合成操作温度控制在470~520度较为
适宜。
4.3空间速度
当操作压力、温度及进塔气组成一定时,空速增加,氨 净值降低。由于氨净值降低的程度比空间速度的增大倍数 少,所以空间速度增加时氨合成生产强度有所提高及氨产 量有所增加。

化工工艺学合成氨幻灯片PPT

化工工艺学合成氨幻灯片PPT
(1)原料的预热温度:其高低应根据原料烃的 组成及催化剂的性能而定。 (2)对流段内各加热盘管的布置
(3) 转化系统的余热回收
现代大型氨最重要的特点是充分回收生产过程的余热, 产生高压蒸气作为动力。
29 合成氨工业
(四)、烃类蒸气转化主要设备
顶部烧嘴炉(图)
炉型 侧壁烧嘴炉
1、一段转化炉
梯台炉 冷底式(图)
1、外部供热的蒸汽转化法
2、内部蓄热的间歇操作法
3、自热反应的部分氧化法
11 合成氨工业
二、煤气化原理
(一)、化学平衡
1、以空气为气化剂时,碳与氧之间的反应为: C+O2= CO2; △H0298=-393.77kJ/mol C+1/2O2=CO; △H0298=-110.59kJ/mol C+CO2=2CO; △H0298=-172.284kJ/mol CO+1/2O2=CO2;△H0298=-283.183kJ/mol 设CO2平衡转化率为α,总压为P 则
在制冰、空调、冷藏等系统的致冷剂。
5 合成氨工业
三、生产方法
(一)氰化法
CaO 3C 2 0 0oC 0 Ca2 CCO Ca2 CN2 1 0 0oC 0 CaC 2C N
CaC 23 NH2O CaC 32 O NH 3
(二)直接法
此法是在高压、高温和有催化剂时,氮气和氢 气直接合成为氨的一种生产方法。目前工业上合成 氨基本上都用此法。
烷烃:

C n H 2 n 2 n 2 1 H 2 O 3 n 4 1 C 4 n 4 H 1 C 2
C C n H n H 2 n 2 n 2 2 n n 2 2 O O H H n n2 C C ( ( 2 3 n n 1 1 ) ) O H H O 2 2

合成氨生产工艺讲义ppt课件

合成氨生产工艺讲义ppt课件

接下去的中温变换和低温变换(简称中变 和低变),各自在不同的温度下使气体中的 CO与水蒸气反应,生成等量的CO2和H2,从 而提供了更多的作为合成氨原料的氢气。这 个反应叫做变换反应。
以上转化工序和变换工序构成了合成氨装 置的造气系统,制出了合成氨所用的粗原料 气,主要成分是H2和CO2
粗原料气进入脱碳工序,在这里用一种 MDEA溶液把气体中的CO2吸收掉,随后又使溶 液加热并减压,把CO2释放出作为副产品。溶液 循环使用。 来自脱碳的工艺气,首先按氢氮比约为3:1 配入来自空分的氮气,然后进入甲烷化工序,把 工艺气中残余的少量CO2和CO经甲烷化反应变 成水蒸气和CH4。水蒸气经过冷凝排出,而CH4 对后续工序是无害的惰性气体。 脱碳和甲烷化合称净化,即把粗原料气净化 为合成氨所需要的纯净的氢氮混合气。
156
300
500
500
1500

五、本装置生产规模(设计值)
合成氨产能 年操作时间 年操作时数 12万吨/年 333天 8000小时 (小时产量15吨)

(日产量360.36吨)


第二节

本装置合成氨工艺全流程、装置特点和催化 剂知识简介 一、本装置合成氨工艺全流程方块示意图如 下:

说明: 来自焦化装置的焦炉气送入合成氨装置界区后, 首先经过电捕焦油器和脱硫工序,脱除焦炉气中 的焦油、尘及硫化物后,送至转化工序。在这过 程中,焦炉气用焦炉气压缩机压缩3.75Mp(G)。 压力3.75Mpa(G)焦炉气送入转化工序,先进 入饱和塔被工艺水饱和增湿,然后经加热炉,再 进入转化炉,在此引入来自空分的氧气。氧气在 炉内燃烧掉一部分CH4,放出热量供转化反应。 出转化炉的焦炉气中残余的CH4已经很少了。

化工工艺学课件合成氨

化工工艺学课件合成氨
反应器
采用特殊设计的反应器,使氢气和氮气在高 温高压条件下进行合成氨反应。
压缩机
用于压缩气体,以满足合成氨反应所需的高 压条件。
分离设备
用于将合成的氨从反应气体中分离出来,并 进行回收。
04 合成氨的能效和环保
CHAPTER
能效分析
合成氨的能效
合成氨是化工行业中耗能较高的过程之一,能效分析对于降低生产 成本和减少能源浪费至关重要。
合成氨的市场需求和发展趋势
市场需求
随着全球人口的增长和经济的发展, 对粮食和能源的需求不断增加,合成 氨的市场需求也在逐年增长。
发展趋势
合成氨技术的发展趋势包括提高合成 氨的效率和降低能耗,同时减少对环 境的污染。
合成氨技术的未来展望和研究方向
未来展望
随着科技的不断进步,合成氨技术将朝着更加高效、环保、经济的方向发展, 为人类的生产和生活提供更加优质的化工产品。
合成氨的重要性
合成氨是世界上最重要的化工生产过程之一,它提供了大量的氮肥和尿素等农业生产所需的肥料,对提高全球粮 食产量、解决人类温饱问题起到了至关重要的作用。此外,合成氨也是其他含氮化学品的重要原料,如硝化纤维、 炸药、染料等。
合成氨的基本原理
合成氨反应方程式
N2 + 3H2 → 2NH3
反应条件
CHAPTER
工艺流程概述
原料气的制备
将煤、天然气或石油等原料转 化为含有氢和氮的合成气。
原料气的净化
通过脱硫、一氧化碳变换和气 体精制等过程,除去合成气中 的杂质。
氨的合成
在高温高压条件下,利用铁催 化剂将氢气和氮气合成为氨。
氨的分离与回收
将合成的氨从反应气体中分离 出来,并进行回收。

化工工艺学合成氨课件

化工工艺学合成氨课件

化工工艺学合成氨课件
图3-34 以重油为原料合成氨流程
第13页
3.2.2 原料气制备

合成氨中原料气中氢氢气碳比是:由表含示碳某种燃原料料转与化水
得到。
蒸气反应时释放氢比从水中

现在工业上采取天然释放气氢(轻包易含程度油。田气)、
炼厂气、焦炉气、石脑油、重油、焦炭和煤生
产合成氨。这些原料均可看做是有不一样氢碳
我国合成氨装置是大、中、小规模并存格局, 总生产能力为4260万t/a。
大型合成氨装置有30套,设计能力为900万
t/a,实际生产能力为1000万t/a;
中型合成氨装置有55套,生产能力为460万
t/a;
小型合成氨装置有700多套,生产能力为
2800万t/a。
❖我国产量为4222万吨,居世界第一。
化工工艺学合成氨课件
化工工艺学合成氨课件
第18页
一、烃类蒸气转化法
• ①催化剂活性组分、助催化剂和载体
• a活性组分:从性能和经济方面考虑,活 性组分,镍为最正确,含量在4%~30%较 为适宜。
• b助催化剂:提升镍活性、延长寿命和 增加抗析碳能力。可加入MgO作助催化剂。
• c镍催化剂载体:使镍高度分散、晶料变 细、抗老化和抗析碳等作用。惯用有氧化 铝、氧化镁、氧化钾、氧化钙、氧化铬、 氧化钛和氧化钡等。
化工工艺学合成氨课件
第33页
二、重油部分氧化法
• 2、反应条件 • 反应温度:1200~1370℃ • 反应压力:3.2~8.37MPa • 催化剂:无 • 水蒸气用量:每吨原料加水蒸气400~500kg • 水蒸气作用: • (1)起气化剂作用。 • (2)能够缓冲炉温及抑制析碳反应。

合成氨工艺简介ppt

合成氨工艺简介ppt

环境保护措施
减少能源消耗
优化工艺流程,提高能源利用效率,减少污染物排放。
污染物减排
采用低排放技术和设备,对产生的污染物进行治理和减排。
生态恢复
在生产过程中对受损生态系统进行恢复和补偿,加强生态保护。
安全风险评估
危险源辨识
识别出工艺过程中可能存在的危险源和风险点。
风险评估
对危险源和风险点进行评估,确定可能产生的安全事故及影响范围。
源进行制备。
氮气
氮气是合成氨的主要原料之一 ,主要从空气中分离得到。
天然气
天然气是一种重要的原料,可 通过蒸汽转化或部分氧化等方
法制备合成气。
原料的来源与采购
01
02
03
氢气
氢气主要通过天然气重整 、水电解、生物质气化等 方式制备。
氮气
氮气主要从空气中分离得 到,一般采用深冷分离或 膜分离等方法。
低碳化
研究开发低碳环保的合成氨工艺,降低碳排放和能源消耗,实现 可持续发展。
资源循环利用
实现资源的循环利用,提高资源的利用率和经济效益,减少对环 境的污染。
智能绿色工厂
应用智能化的信息技术和自动化技术,实现绿色工厂的智能化和 自动化生产,提高生产效率和环保水平。
THANKS
感谢观看
合成氨工艺简介ppt
xx年xx月xx日
目录
• 合成氨工艺概述 • 合成氨工艺流程 • 合成氨工艺设备 • 合成氨工艺原料及产品 • 合成氨工艺的环境影响及安全措施 • 合成氨工艺的未来发展趋势及新技术的应用
01
合成氨工艺概述
定义与特点
定义
合成氨是指将氮气和氢气在一定条件下反应,生成氨气。
特点
合成氨是一种高能耗、高水耗、高投资的化工过程,是重要 的基础化工原料生产过程。

合成氨工艺与设备ppt课件

合成氨工艺与设备ppt课件

化剂催化活性。为防止反硫化,进低变的反应气体中H2S不能过低,H2S
含量有一个最低值。从化学平衡来看,汽气比越低,最低H2S含量越低,
催化剂越不易反硫化。
31
4
1、基本概念-合成氨
什么是合成氨?
发展简史:
世界上第一个合成氨厂于1913年在德国噢 堡建成,实现了工业化生产(30吨/天) 。
我国第一个合成氨厂上世纪三十年代在永
利公司(就是现在的吉化公司)建成,到194
9年我国合成氨年产量为0.6万吨,2008年产
量达到了4500万吨,占世界总产量的1/3.为世
成NaHS和NaHCO3,其反应方程式如下: 碱的溶解(Na2CO3+H2O→NaHCO3+NaOH/NaHCO3+H2O→N aOH+H2O+CO2 ) Na2CO3+H2S→NaHS+NaHCO3 /H2S+NaOH→NaHS+H2O NH3+H2S→NH4HS(氨水脱硫) 2)再生:溶液中的HS-被氧化析出硫(催化剂作用下):
24
3、各工段工艺及设备-压缩工段
活塞式压缩机的工作原理 根据气体状态方程:P·V=n·R·T
(n——物质的量;R——常量) 当气体的温度(T)保持不变时,我们
可以通过压缩气体的体积(V)来提高气体的压 力(P)。利用气体的可压缩性,通过压缩机各 段活塞的往复动作而达到提高气体压力的目的。
25
3、各工段工艺及设备-压缩工段
合成氨工艺与设备
宜化化机 崔娟 2016年3月
1
❖目 录
1 基本概念
2
合成氨工艺流程简述
3
各工段工艺与设备
4 结束语
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、氨的性质和用途
1、氨的性质
氨为无色透明、有强烈刺激臭味的气体, 能灼伤皮肤、眼睛、呼吸器官粘膜。
氨的密度为0.771Kg/Nm3 ,液氨的比重 0.667(20℃),液氨挥发性很强、气化热较 大。
氨极易溶于水,可生产含氨15~30% (重量)的商品氨水,氨溶解时放出大量的 热。氨的水溶液呈弱碱性,易挥发。
❖ 2、氨的用途
❖ 氨主要用于农业。除氨本身就可作为化肥外, 几乎所有的氮肥、复合肥料都离不开氨。
❖ 氨不仅对发展农业有着重要的意义,而且也 是重要的工业原料,广泛用于制药、炼油、 合成纤维、合成树脂等工业部门。
❖ 将氨硝化可制成硝酸。硝酸用来制造氮肥, 也是生产炸药、染料等产品的化工原料。
❖ 液氨是常用的冷冻剂。 ❖ 所以,氨是基本化工的产品之一,在国民经
❖ 年操作时间 333天
❖ 年操作时数 8000小时
(小时产量15吨)
第二节
❖ 本装置合成氨工艺全流程、装置特点和催化 剂知识简介
❖ 一、本装置合成氨工艺全流程方块示意图如 下:
❖ 说明:
❖ 来自焦化装置的焦炉气送入合成氨装置界区后, 首先经过电捕焦油器和脱硫工序,脱除焦炉气中 的焦油、尘及硫化物后,送至转化工序。在这过 程中,焦炉气用焦炉气压缩机压缩3.75Mp(G)。
组成 59.2 4.0
3.2
0.8 7.5 22.3 3.0
微 量
(2)杂质(焦炉气杂质较多)
项目 H2S NH3 粗苯 焦油+尘

HCN
有机 硫
总硫
含量
(mg/N 1000 100 4000
156
300 500 500 1500
m3)
❖ 五、本装置生产规模(设计值)
❖ 合成氨产能 12万吨/年 (日产量360.36吨)
济中占有十分重要的地位。
三、合成氨的生产过程
❖ 1、包括三个主要步骤 ⑴造气 ⑵净化 ⑶合成
❖ 2、氨合成化学反应式: 3H2+N2 = 2NH3
无论以煤、天然气、轻油等为原料,制备的 粗合成气都必须要经过净化,除去H2、N2外 的其他杂质气体,获得纯净的氢氮混合气。
四、以焦炉气为原料制氨
1、焦炉气定义:焦炉气是在煤炼焦过程中进行干 馏所产生的煤气。
合成氨生产工艺及 其试车和开车
2010年3月
讲课内容目录
第一部分 合成氨生产工艺流程和操作原理简介 第二部分 合成氨装置化工试车 第三部分 合成氨装置原始开车
第一部分
合成氨生产工艺流程和操作原理简介
第一节 概 述
一、氨的生产简史
世界上第一个研究成功合成氨技术的科学 家是德国巴斯夫荷技术大学的哈伯教授,他在 1901年开始研究氢与氮直接合成氨的研究, 1908年在实验室研究取得成功。
哈伯经研究发现:氨的合成转化率非常小, 只有把高压的气体进行循环并将生成的氨在高 压下除去,氨合成的技术方法是可行的。哈伯 的这一著名的“循环法”专利一直被应用到现 今的合成氨厂。
德国的巴斯夫(BASF)公司对哈伯的氨 合成研究很感兴趣,购买了哈伯的专利,并 授予布什伟氨合成工业化项目的负责人。
哈伯完成了合成氨的基础研发工作,布什 实现了合成氨的工业化。两人密切合作, 1913年9月9日世界上第一座工业化的合成氨 工厂在德国建成投产,氨厂的生产能力为 30t/d。所以,合成氨工业的发展史迄今将近 100年。
液氨或干燥的氨气对大部分物质没有腐 蚀性,但在有水的条件下,对铜、银、锌等 金属有腐蚀作用。
氨的自燃点630℃,在空气中燃烧分解 为氮和水。氨与空气遇火能爆炸,在常压常 温下氨的爆炸范围为15.5~28%,或13.5~ 82%(在氧气中)。
氨是活泼性化合物,与酸作用生成盐 类。例如,氨与硝酸作用生成硝酸铵,与二 氧化碳作用生成氨基甲酸铵,然后脱水生成 尿素。
❖ 1.单系列生产。关键的设备基本上都是只有一台。 这样就节省了投资,简化了操作。
❖ 2.功率最大的合成气压缩机采用高速运转的离心 式压缩机代替原来的往复式压缩机,并用装置内 自产的蒸汽驱动透平。这样的机组输气量大、易 损部件少、运行周期长,又降低了合成氨能耗。
❖ 压力3.75Mpa(G)焦炉气送入转化工序,先进 入饱和塔被工艺水饱和增湿,然后经加热炉,再 进入转化炉,在此引入来自空分的氧气。氧气在 炉内燃烧掉一部分CH4,放出热量供转化反应。 出转化炉的焦炉气中残余的CH4已经很少了。
接下去的中温变换和低温变换(简称中变 和低变),各自在不同的温度下使气体中的 CO与水蒸气反应,生成等量的CO2和H2,从 而提供了更多的作为合成氨原料的氢气。这 个反应叫做变换反应。
❖ 干 馏:在隔绝空气的条件下,将煤、木材、 油母页岩等固体加热至高温,使其分解的过程, 叫做干馏。
❖ 如煤的干馏,得到焦炭、煤焦油、焦炉气、粗 氨水和粗苯等,因此,干馏是一个伴随物理变 化和化学变化的复杂过程。是固体燃料的热化 学加工方法。
2、本装置原料焦炉气的主要成分
(1)组成
项目 H2 CO2 CmHn O2 N2 CH4 CO Ar
以上转化工序和变换工序构成了合成氨装 置的造气系统,制出了合成氨所用的粗原料 气,主要成分是H2和CO2
粗原料气进入脱碳工序,在这里用一种 MDEA溶液把气体中的CO2吸收掉,随后又使溶 液加热并减压,把CO2释放出作为副产品。溶液 循环使用。
来自脱碳的工艺气,首先按氢氮比约为3:1 配入来自空分的氮气,然后进入甲烷化工序,把 工艺气中残余的少量CO2和CO经甲烷化反应变 成水蒸气和CH4。水蒸气经过冷凝排出,而CH4 对后续工序是无害的惰性气体。
脱碳和甲烷化合称净化,即把粗原料气净化 为合成氨所需要的纯净的氢氮混合气。
氢氮混合气用合成气压缩机压缩到 14.1Mpa(G),送入合成塔进行合成氨反应。 由于气体一次通过合成塔后只能有10~20%的 氢氮气反应,因此需要将出塔气冷却,使产品 氨冷凝分离出。未反应的气体重新送回合成塔。
为提供分离产品氨所需要的冷源,专门设有 冷冻工序,以氨作为冷冻介质循环使用。
以上所述工艺流程大体上可分为造气、净 化和合成三个部分。此外,但凡有生产余热 可利用之处,都安排有热回收设备,构成了 全厂的热回收系统,穿插于各个工艺工序之 内。
另外,为合成氨主体装置正常运行配套的 空分、循环冷却水、除盐水、仪表空气等公 用工程设施,都未画入Байду номын сангаас成氨装置全流程方 块示意图内。
❖ 二、本装置的特点
相关文档
最新文档