七年级下期末练习题

合集下载

期末模拟练习题++++2022-2023学年部编版语文七年级下册

期末模拟练习题++++2022-2023学年部编版语文七年级下册

七年级下学期语文期末试卷1. 默写。

(10分)(1) ______ ,一览众山小。

(杜甫《望岳》)(2)______,惟解漫天作雪飞。

(韩愈《晚春》)(3)香远益清,______,______。

(周敦颐《爱莲说》)(4)陆游的《游山西村》中,既描绘了农村明媚秀丽、变化万千的自然风光,又蕴含着哲理的诗句是: ______,______。

(5)以诗言志是古代诗人常用的写法。

王安石在《登飞来峰》中,用“______ ,______”来表达自己不畏奸佞、推行新法的决心和高瞻远瞩的气概;而清代的龚自珍则用“______,______”来表达不忘报国之志的情感。

2.《海底两万里》是一部极具神奇色彩的历险小说,也是一部充满想象力的科幻小说,七(1)班同学围绕“展示,交流,分享”这一主线,组织了一次读书会,邀请你参加!(12分)(1) 这是小红根据小说绘制的航海路线图(部分),请你帮她补充完整。

① ______② ______(2) 在人物形象交流环节中,大家纷纷发表看法。

小天:我觉得尼摩船长是个英雄,他勇敢无畏,在海底为救人果断地与望鱼、章鱼搏斗。

明明:我觉得尼摩船长是个战士,他坚毅善良,不懈地同侵略行为做斗争,援助那些被压迫的穷苦民众。

果果:我觉得尼摩船长是个学者,______ 。

叶子:我觉得尼摩船长有时候也是一个普通人,他 ______小雨:我也认同这一点,但也是因为他身上有缺点,这个形象才更丰满,更富魅力。

(3) 有人说:二十世纪的一切努力都不过是把凡尔纳的预言变成现实的过程而已。

你能从书中找到已经变成了现实的例子吗?示例:书中有一种具有高压电能的猎枪,动物被击中后可以像被雷击一般倒下,和现在的电击枪相似。

3. 综合性学习。

(13分)为争创全省文明城市,定远县开展了“文明你我他,争创靠大家”创建活动,请你参与。

(1) 【文明之语我宣传】学校是创建文明的主阵地,文明是成功之花,是理想之帆,我们的文明素质就体现在一言一行中,请你为此次活动写一条宣传语。

江西省九江市七年级下册数学期末练习卷(含答案)

江西省九江市七年级下册数学期末练习卷(含答案)

江西省九江市七年级下册数学期末练习卷一、选择题(共8题;共24分)1.(3分)下面四幅作品分别代表二十四节气中的“大雪”“白露”“芒种”“立春”,其中是轴对称图形的是( )A.B.C.D.2.(3分)清代袁枚的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( )A.0.84×10−4B.8.4×10−6C.8.4×10−4D.8.4×10−53.(3分)下列运算中正确的是( ).A.2x+y=2xy B.−(3a2b)2=6a4b2C.(x+y)2=x2+y2D.(a2−ab)÷a=a−b4.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,不是红球的概率为( )A.47B.37C.57D.175.(3分)如图,下列推理中正确的是( )A.因为∠1=∠4,所以AD∥BCB.因为∠2=∠3,所以AB∥CDC.因为∠BAD+∠D=180°,所以AB∥CDD.因为∠D+∠3+∠4=180°,所以AB∥CD6.(3分)如图,直线m∥n,点A、C在直线m上,点B在直线n上,BC平分∠ABD,若∠BAC=122°,则∠ACB的度数为( )A.58°B.61°C.30°D.29°7.(3分)如图,下面是物理课上测量铁块A的体积实验,将铁块匀速向上提起,直至完全露出水面一定高度,下面能反映这一过程中,液面高度h与铁块被提起的时间t之间的大致图象是( )A.B.C.D.8.(3分)已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )A.M>N B.M≥N C.M≤N D.不能确定二、填空题(共8题;共24分)9.(3分)“任意打开七年级数学课本,正好是第35页”,这个事件是 事件.(填“随机”或“必然”)10.(3分)如图,若△ABC≌△DEF,AF=2,FD=8,则FC的长度是 .11.(3分)如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据图中的程序算法过程,可得y与x之间的关系式是 .12.(3分)若x m=4,x n=6,则x2m−n的值为 .13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=10,则△ABD的面积是 .14.(3分)若x−y=4,xy=−3,则(x+y)2= .15.(3分)如图,在△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则△ABC边BC上的高为 .16.(3分)如图,两条平行直线l1,l2被直线AB所截,点C位于两平行线之间,且在直线AB右侧,点E是l1上一点,位于点A右侧.小明进行了如下操作:连结AC,BC,在∠EAC平分线上取一点D,过点D作DF∥BC,交直线l2于点F.记∠ACB=α,∠CBF=β,∠ADF=γ,则γ= (用含α,β的代数式表示).三、解答题(共8题;共52分)17.(3分)计算:2×(−3)+4−(36−1)0.18.(3分)如图,在平面直角坐标系中,三角形ABC在坐标系中A(1,1),B(4,2),C(3,4).在图中画出三角形ABC关于x轴的对称图形A1B1C1,并分别写出对应点A1、B1、C1的坐标.19.(5分)如图所示,已知AD⊥BC于点D,EG⊥BC于点G,∠E=∠1,说明:AD平分∠BAC.下面是推理过程,请你将其补充完整,因为AD⊥BC于点D,EG⊥BC于点G(已知)所以∠ADC=∠EGC=90°所以AD//EG()所以∠1=∠2( ) =∠3(两直线平行,同位角相等)又因为∠E=∠1(已知),所以∠2=∠3( )所以AD平分∠BAC().20.(5分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)(2分)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)(3分)求选中乙、丙两位同学参加第一场比赛的概率.21.(5分)先化简,再求值:(2a−b)2+(a+b)(a−2b),其中a=−1,b=2.22.(5分)如图,在≤ABCD中,点E为边CD的中点,延长AE交BC的延长线于点F.(1)(2分)求证:△ADE≌△FCE.(2)(3分)若AD=5,求BF的长.23.(12分)王师傅非常喜欢自驾游,他为了了解新买轿车的耗油情况,将油箱加满后进行了耗油试验,得到下表中的数据:行驶的路程s(km)0100200300400…油箱剩余油量Q(L)5042342618…(1)(4分)在这个问题中,自变量是 ,因变量是 ;(2)(4分)该轿车油箱的容量为 L,行驶150km时,油箱中的剩余油量为 L;(3)(2分)请写出两个变量之间的关系式;(用s来表示Q);(4)(2分)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请求出A,B两地之间的距离.24.(14分)【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)(3分)【直接应用】若x+y=3,x2+y2=5,求xy的值;(2)(6分)【类比应用】①若(x−3)(x−4)=1,则(x−3)2+(x−4)2=;②若x满足(2023−x)2+(2020−x)2=2023,求(2023−x)(2020−x)的值.(3)(5分)【知识迁移】两块全等的特制直角三角板(∠AOB=∠COD=90°)如图2所示放置,其中A,O,D在一直线上,连接AC,BD.若AD=16,S△AOC+S△BOD=68,求一块直角三角板的面积.答案解析部分1.【答案】A 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】C 6.【答案】D 7.【答案】B 8.【答案】B 9.【答案】随机10.【答案】611.【答案】y =−3x +212.【答案】8313.【答案】1514.【答案】415.【答案】6131316.【答案】12α+12β或90°+12α−12β或180°−12α−12β17.【答案】−518.【答案】解:如图,△A 1B 1C 1即为所求;A 1,B 1,C 1的坐标分别为:(1,−1)、(4,−2)、(3,−4);19.【答案】同位角相等,两直线平行;两直线平行,内错角相等 ;∠E ;等量代换 ;角平分线定义20.【答案】(1)解:根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率12;(2)解:画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为26=13.21.【答案】解:(2a−b )2+(a +b )(a−2b )=4a 2−4ab +b 2+a 2+ab−2ab−2b 2.=5a 2−5ab−b 2当a =−1,b =2时,原式=5×(−1)2−5×(−1)×2−22=11.22.【答案】(1)证明:∵E 是边CD 的中点,∴DE =CE ,∵四边形ABCD 是平行四边形,∴AD ∥BF ,∴∠D =∠DCF ,在△ADE 和△FCE 中,{∠D =∠ECFED =CE ∠AED =∠CEF,,∴△ADE ≌△FCE (ASA )(2)解:∵四边形ABCD 是平行四边形,∴AD =BC =5,∵△ADE ≌△FCE ,∴AD =CF =5,∴BF =BC+CF =5+5=10.23.【答案】(1)行驶的路程;油箱剩余油量(2)50;38(3)解:因为开始油箱中的油为50L ,每行驶100km ,耗油8L ,所以Q 与s 的关系式为:Q =50−0.08s ,(4)解:由(3)得Q =50−0.08s ,当Q =22时,22=50−0.08s ,解得s =350,故A ,B 两地之间的距离为350km ,24.【答案】(1)解:∵x +y =3,x 2+y 2=5,而(x +y)2=x 2+2xy +y 2,∴32=5+2xy ,解得:xy =2;(2)解:①3②[(2023−x)−(2020−x)]2=(2023−x−2020+x)2=9,∵(2023−x)2+(2020−x)2=2023,∴(2023−x)(2020−x)=(2023−x)2+(2020−x)2−[(2023−x)−(2020−x)]22=2023−92=1007.故答案为:1007.(3)解:∵A ,O ,D 三点共线,且∠AOB =∠COD =90°,∴∠AOC =180°−∠COD =90°,∴∠AOC +∠AOB =180°,∴B ,O ,C 三点共线,∴∠BOD =∠AOC =90°,∵△AOB≌△COD ,∴OA =OC ,OB =OD ,∵AD =16,S △AOC +S △BOD =68,∴OA +OD =16,12A O 2+12O D 2=68,∴O A 2+O D 2=136,∴2OA ⋅OD =(OA +OD)2−(OA 2+OD 2)=162−136=120,∴OA ⋅OD =60,∴S △AOB =12OA ⋅OB =12OA ⋅OD =30,即一块直角三角板的面积为30.。

七年级下期末真题精选(常考60题29个考点专练)(原卷版)

七年级下期末真题精选(常考60题29个考点专练)(原卷版)

七年级下期末真题精选(常考60题29个考点专练)一.幂的乘方与积的乘方(共1小题)1.(2022春•嵊州市期末)已知10a=20,100b=50,则的值是.二.多项式乘多项式(共1小题)2.(2022春•鄞州区期末)给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c 的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x﹣1的特征系数对为;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,﹣4,4)的特征多项式的乘积;(3)若有序实数对(p,q,﹣1)的特征多项式与有序实数对(m,n,﹣2)的特征多项式的乘积的结果为2x4+x3﹣10x2﹣x+2,直接写出(4p﹣2q﹣1)(2m﹣n﹣1)的值为.三.完全平方式(共1小题)3.(2022春•普陀区期末)有4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中阴影部分的面积为S1,空白部分的面积为S2.若S1=S2,则a、b满足()A.2a=3b B.2a=5b C.a=2b D.a=3b四.整式的除法(共1小题)4.(2022春•北仑区期末)计算:(15x2y﹣10xy2)÷(5xy)=.五.整式的混合运算(共2小题)5.(2022春•宁波期末)如图,将两张长为a,宽为b的长方形纸片按图1,图2两种方式放置,图1和图2中两张长方形纸片重叠部分分别记为①和②,正方形ABCD中未被这两张长方形纸片覆盖部分用阴影表示,图1和图2中阴影部分的面积分别记为S1和S2.若知道下列条件,仍不能求S1﹣S2值的是()A.长方形纸片长和宽的差B.长方形纸片的周长和面积C.①和②的面积差D.长方形纸片和①的面积差6.(2022春•宁波期末)已知长方形ABCD,AD>AB,AD=10,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当S2﹣S1=3b时,AB=.六.整式的混合运算—化简求值(共1小题)7.(2022春•拱墅区期末)已知(x+a)(x﹣3)的结果中不含x的一次项.(1)求a的值.(2)化简:(a+2)2﹣(1﹣a)(﹣a﹣1),并在(1)的条件下求值.七.因式分解-提公因式法(共2小题)8.(2022春•杭州期末)因式分解:m2﹣mn=.9.(2022春•乐清市期末)因式分解:m2﹣2m=.八.因式分解-运用公式法(共3小题)10.(2022春•新昌县期末)因式分解:x2﹣2x+1=.11.(2022春•嵊州市期末)分解因式:x2+4x+4=.12.(2022春•诸暨市期末)因式分解:x2﹣9=.九.提公因式法与公式法的综合运用(共2小题)13.(2022春•钱塘区期末)因式分解:a3﹣9a=.14.(2022春•宁波期末)分解因式:xy2﹣4x=.一十.分式的混合运算(共1小题)15.(2022春•上虞区期末)下列运算正确的是()A.B.C.D.一十一.分式的化简求值(共2小题)16.(2008春•台州校级期末)先化简,再求值:(﹣)•,其中x=1.17.(2022春•常山县期末)先化简,再求值:;其中a=,b=.一十二.二元一次方程的解(共4小题)18.(2022春•宁波期末)若是方程2x+ay=3的解,则a的值为()A.1B.﹣1C.7D.﹣719.(2022春•绍兴期末)下列各组数中,是二元一次方程5x﹣y=2的一个解的是()A.B.C.D.20.(2022春•椒江区期末)关于x,y的二元一次方程(k﹣2)x﹣(k﹣1)y﹣3k+5=0,当k取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.21.(2022春•普陀区期末)写出一个解为的二元一次方程是.一十三.解二元一次方程(共1小题)22.(2022春•慈溪市期末)将方程2x﹣y=1变形成用x代数式表示y,则y=.一十四.二元一次方程组的解(共4小题)23.(2022春•慈溪市期末)若关于x,y的方程组的解满足x+y=2022,则k的值为()A.2020B.2021C.2022D.202324.(2022春•宁波期末)已知方程组的解是,则方程组的解是()A.B.C.D.25.(2022春•慈溪市期末)若关于x,y的方程组的解是,则4a2﹣9b2为.26.(2022春•杭州期末)已知是二元一次方程组的解.(1)求a,b的值.(2)求方程组的解.一十五.解二元一次方程组(共1小题)27.(2022春•南浔区期末)已知方程组,则2x+6y的值是.一十六.由实际问题抽象出二元一次方程组(共4小题)28.(2022春•拱墅区期末)我国古代算题:“马四匹,牛六头,共价四十八两(我国古代货币单位);马三匹,牛五头,共价三十八两.问马、牛各价几何?”设马价x两,牛价y两,可列方程组为()A.B.C.D.29.(2022春•南阳期末)上学期某班的学生都是双人桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x人,女生y人,根据题意可得方程组为()A.B.C.D.30.(2022春•上虞区期末)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为.31.(2022春•定海区期末)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.一十七.二元一次方程组的应用(共2小题)32.(2022春•婺城区期末)《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为()A.|B.||C.|||D.||||33.(2022春•上虞区期末)为创建省文明卫生城市,某街道将一公园进行绿化改造.计划种植甲、乙两种花木,甲种花木每棵进价800元,乙种花木每棵进价3000元,共需107万元;每种植一棵甲种花木需人工费30元,每种植一棵乙种花木需人工费80元,共需人工费32000元.(1)求计划种植甲、乙两种花木各多少棵?(2)如果承包植树的老板安排28人同时种植这两种花木,每人每天能种植甲种花木20棵或乙种花木5棵,应分别安排多少人种植甲种花木和乙种花木,才能确保同时完成各自的任务?一十八.解分式方程(共2小题)34.(2022春•常山县期末)解分式方程:+=1.35.(2022春•余姚市校级期末)解方程(组)(1)(2).一十九.分式方程的增根(共2小题)36.(2022春•诸暨市期末)若关于x的分式方程有增根,则a=.37.(2022春•湖州期末)若关于x的分式方程=+1有增根,则a=.二十.由实际问题抽象出分式方程(共2小题)38.(2022春•定海区期末)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱,某特许零售店准备购进一批吉祥物销售.已知用300元购进“冰墩墩”的数量与用250元购进“雪容融”数量相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“雪容融”的单价为x元,则列出方程正确的是()A.B.C.D.39.(2022春•余姚市校级期末)张老师和李老师住在同一个小区,离学校3000米.某天早晨,张老师和李老师分别于7点10分,7点15分离家骑自行车上班,刚好在校门口遇上.已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为()A.B.C.D.二十一.分式方程的应用(共1小题)40.(2021秋•汉阳区期末)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.(1)求A,B两款手机的进货单价分别是多少元?(2)某周末两天销售单上的数据,如表所示:日期A款手机(部)B款手机(部)销售总额(元)星期六5840100星期日6741100求A,B两款手机的销售单价分别是多少元?(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.二十二.同位角、内错角、同旁内角(共1小题)41.(2022春•绍兴期末)如图,直线l1,l2被直线l3所截,则()A.∠1和∠2是同位角B.∠1和∠2是内错角C.∠1和∠3是同位角D.∠1和∠3是内错角二十三.平行线的性质(共9小题)42.(2022春•南浔区期末)如图1,当光线从空气斜入射到某种透明的液体时发生了折射,满足入射角∠1与折射角∠2的度数比为3:2.如图2,在同一平面上,两条光线同时从空气斜射入这种液体中,两条入射光线与水平液面夹角分别为α,β,在液体中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.B.C.α+β=γD.α+β+γ=180°43.(2022春•杭州期末)将一个直角三角板和一把直尺按如图所示的方式摆放,若∠2=55°,则∠1的度数为()A.45°B.55°C.25°D.35°44.(2022春•定海区期末)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠CBD=()A.10°B.15°C.20°D.25°45.(2022春•上虞区期末)生活中常见一种折叠拦道闸,如图1所示.若想求解某些特殊状态下的角度,需将其抽象为几何图形,如图2所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD =°.46.(2022春•西湖区校级期末)如图a,已知长方形纸带ABCD,将纸带沿EF折叠后,点C、D分别落在H、G的位置,再沿BC折叠成图b,若∠DEF=72°,则∠GMN=°.47.(2022春•杭州期末)如图,ABCD为一长条形纸带,AD∥CB,将ABCD沿EF折叠,C、D两点分别与C′、D'对应,若∠1=2∠2,则∠AEF的度数为.48.(2022春•鄞州区期末)如图,直线a∥b,三角板的直角顶点放在直线b上,若∠1=65°,则∠2=.49.(2022春•诸暨市期末)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.50.(2022春•慈溪市期末)在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF 与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).二十四.平行线的判定与性质(共3小题)51.(2022春•襄州区期末)在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB,CD,贝贝、晶晶、欢欢三位同学的做法如图所示:上述三位同学的做法中,依据“内错角相等,两直线平行”的是()A.仅贝贝同学B.贝贝和晶晶C.晶晶和欢欢D.贝贝和欢欢52.(2022春•西湖区校级期末)如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=58°,射线GP⊥EG于点G,则∠PGF=°.53.(2022春•鄞州区期末)如图,已知CD平分∠ACB,∠1=∠2.(1)求证:DE∥AC;(2)若∠3=30°,∠B=25°,求∠BDE的度数.二十五.平移的性质(共2小题)54.(2022春•上虞区期末)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm55.(2022春•柯桥区期末)如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为.二十六.调查收集数据的过程与方法(共1小题)56.(2021秋•于洪区期末)当前,“低头族”已成为热门话题之一,小颖为了解路边行人边步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查二十七.频数与频率(共2小题)57.(2022春•西湖区校级期末)期中考试结束后,老师统计了全班40人的数学成绩,这40个数据共分为6组,第1至第4组的频数分别为10,5,7,6,第5组的频率为0.1,那么第6组的频率是.58.(2022春•兰山区期末)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.二十八.扇形统计图(共1小题)59.(2022春•上虞区期末)右图是某种学生快餐(共400g)营养成分扇形统计图,已知其中表示脂肪的扇形的圆心角为36°,维生素和矿物质含量占脂肪的一半,蛋白质含量比碳水化合物多40g.有关这份快餐,下列说法正确的是()A.表示维生素和矿物质的扇形的圆心角为20°B.脂肪有44g,含量超过10%C.表示碳水化合物的扇形的圆心角为135°D.蛋白质的含量为维生素和矿物质的9倍二十九.折线统计图(共1小题)60.(2022春•乐清市期末)某校开展了“爱阅读”活动,七(1)班统计了1月~6月全班同学的课外阅读数量(单位:本),绘制了折线统计图(如图所示),则下列说法正确的是()A.6月份阅读数量最大B.阅读数量超过40本的月份共有5个月C.相邻的两个月中,1月到2月的月阅读数量增长最快D.4月份阅读数量为38本。

北京市海淀区2023-2024学年七年级下学期期末数学试题

北京市海淀区2023-2024学年七年级下学期期末数学试题

北京市海淀区2023-2024学年七年级下学期期末数学试题一、单选题1.16的算术平方根是( ) A .4B .±4C .8D .±82.在平面直角坐标系中,点()1,2P -位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如图,若m n ∥,1105∠=︒,则2∠=( )A .55︒B .60︒C .65︒D .75︒4.不等式30x -≥的解集在数轴上可以表示为( ) A . B . C .D .5.下列调查方式中,你认为最合适的是( ) A .了解北京市每天的流动人口数量,采用全面调查 B .旅客乘坐飞机前的安检,采用抽样调查C .搭载神舟十八号载人飞船的长征二号F 遥十八运载火箭零部件检查,采用全面调查D .测试某型号汽车的抗撞击能力,采用全面调查6.已知13x y =-⎧⎨=⎩,12x y =⎧⎨=⎩,31x y =⎧⎨=⎩是二元一次方程25x y +=的三个解,12x y =-⎧⎨=-⎩,12x y =⎧⎨=⎩,36x y =⎧⎨=⎩是二元一次方程20x y -=的三个解,则二元一次方程组2520x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .36x y =⎧⎨=⎩D .12x y =⎧⎨=⎩7.若m n <,则下列不等式正确的是( )A .22m n >B .33m n ->-C .56m n -<-D .33m n ->- 8.小华同学在做家庭暑期旅游攻略时,绘制了西安市周边部分城市位置的示意图,如右图所示,分别以正东,正北方向为x 轴,y 轴的正方向建立平面直角坐标系.如果表示武汉市的点的坐标为()4,0,表示西安市的点的坐标为()2,2,则表示贵阳市的点的坐标是( )A .()0,0B .()1,2-C .()3,1D .()2,1-9.如图,正方形ABCD 的面积为3,顶点A 在数轴上,且点A 表示的数为1,数轴上有一点E 在点A 的左侧,若AD AE =,则点E 表示的数为( )A .1B .1-C .D .010.近年来汽车工业不断进行技术改革和升级,新能源汽车走进千家万户,与之配套的充电设施也在不断建设中.从充电设施的应用场景看,充电设施可分为私人随车配建充电桩和公共充电桩.据新能源汽车国家大数据联盟统计,2018—2023年我国充电设施累计数量情况如图所示根据上述信息,给出下列四个结论:①2018—2023年,每年充电设施累计数量呈上升趋势;②2023年新增公共充电桩数量超过90万台;③2018—2023年,每年新增的随车配建充电桩数量逐年上升;④2018—2023年,随车配建充电桩累计数量占充电设施累计数量的百分比最高的年份是2023年.其中所有正确的结论是()A.②③B.①②④C.①②③D.①③④二、填空题11.如图,小明在长方形的篮球场上沿直线进行折返跑训练,他从场地一边的P点处出发,选择到对面的(填A,B或C)点处折返一次回到P点时,跑过的路程最短.12.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=.13.已知12x y =⎧⎨=⎩是关于x ,y 的二元一次方程1ax y -=的一个解,那么a 的值是.14.我们知道,由角的数量关系可得两条直线的位置关系.如图,为使AB CD ∥成立,请写出一组角的数量关系作为条件:.15.几个人共同购买一件物品,若每人出9元,则多出3元;若每人出7元,则还差5元.设人数为x 人,购买费用为y 元,可列方程组为(只列不解).16.如图,在平面直角坐标系xOy 中,已知点()1,1A ,()4,4B ,()5,2C ,连接AB ,BC ,(),P x y 为折线段A B C --上的动点(P 不与点A ,C 重合),记t y a =+,其中a 为实数.(1)当2a =-时,t 的最大值为;(2)若t 存在最大值,则a 的取值范围为.三、解答题171.18.解方程组:2423x y x y -=⎧⎨+=-⎩19.解不等式组:23321332x x x x +>-⎧⎪-+⎨≤⎪⎩20.如图,在平面直角坐标系xOy 中,已知点()2,2A -,()3,1B -,将线段AB 向右平移2个单位,再向上平移1个单位,得到线段11A B .(1)在图中画出线段11A B ,并直接写出点1B 的坐标;(2)点M 在y 轴上,若三角形11A B M 的面积为1,直接写出点M 的坐标.21.如图,三角形ABC 中,90ACB ∠=︒,过点C 作AB 的平行线l ,在线段AB 上任取一点D (不与点A ,B 重合),过点D 作AC 的垂线交AC 于点E ,交直线l 于点F .(1)依题意补全图形; (2)求证:B CFE ∠=∠.22.根据以下学习素材,完成下列两个任务:23.为了解某长跑俱乐部成员的跑步成绩情况,某学校的长跑社团收集了该俱乐部2023年和2024年半程马拉松“大师赛”的比赛成绩,分为两个研究小组进行调查研究.(1)第一个研究小组随机抽取了该俱乐部2023年一些成员的比赛成绩,部分统计结果如下:①请把上面的频数分布直方图补充完整;②在2023年,该俱乐部共有280名成员,根据上面的统计结果估计该年俱乐部中成绩x 满足9095x <≤的人数为______(结果精确到个位);(2)第二个研究小组从该俱乐部2023年和2024年均参加了半程马拉松“大师赛”的选手中抽取了30名选手的跑步成绩,绘制了统计图(如图所示).请根据以上信息解答下面的问题:①小赵2024年的比赛用时比2023年的比赛用时______(填“多”“少”);②将这30名选手中2024年成绩优于2023年成绩的人数记为m ,其余选手人数记为n ,则m ______n (填“>”“=”“<”).24.甲、乙两位同学玩填数游戏,每人各自从左到右依次填写四个实数1x ,2x ,3x ,4x ,如下表所示.所填的四个数满足:从第二个数开始,每一个数都大于或等于前面填写的任意一个数的2倍.(1)若甲同学填写的四个数中,12x =,24x =,4x 3x 的值:______;(2)若乙同学填写的前两个数满足12x =-,123x x +<-,求2x 的取值范围;(3)若甲、乙两位同学各自填写的四个数都是非零整数,且他们所填写的第一个数互为相反数,则这两位同学填写的这八个数之和的最小值为______.25.已知C 为射线AB 上方一点,过点C 作AB 的平行线MN ,点O 在射线AC 上运动(不与点A ,C 重合),点D 在射线CM 上,连接OD ,满足()01COD m BAC m ∠=∠<<.(1)如图1,点O 在线段AC 上,60BAC ∠=︒,若12m =,依题意补全图形,并直接写出MDO ∠的度数;(2)点E ,F 在射线CN 上,连接AE ,OF ,满足()1COF m CAE ∠=-∠.①如图2,点O 在线段AC 上,AE AB ⊥,写出一个m 的值,使得MDO NFO ∠+∠恒为定值,并求出此定值;②如图3,70BAC ∠=︒,50CAE ∠=︒,若直线OD 和直线OF 中至少有一条与直线AE 平行或垂直,直接写出m 的值.26.在平面直角坐标系xOy 中,对于点()11,A x y ,()22,B x y ,令12m x x =+,12n y y =+,将m n -称为点A 与点B 的特征值.对于图形M 和图形N ,若点A 为图形M 上的任意一点,点B 为图形N 上的任意一点,且点A 与点B 的特征值存在最大值,则将该最大值称为图形M 与图形N 的特征值.(1)已知点()3,2A ,()2,4B -. ①点A 与点B 的特征值为______;②已知点C 在y 轴上,若点A 与点C 的特征值为5,则点C 的坐标为______;(2)已知点()6,0D ,()4,0E ,将线段DE 以每秒1个单位的速度向左平移,经过()0t t >秒后得到线段11D E .①已知点()2,4F ,08t <≤,求点F 与线段11D E 的特征值h 的取值范围;②已知面积为2的正方形的对角线交点为()2,2G t t ,且该正方形至少有一条边与坐标轴平行,记该正方形与线段11D E 的特征值为k ,则k 的最小值为________;当6k ≤时,t 的取值范围为________.。

七年级下数学期末测试题(8)

七年级下数学期末测试题(8)

七年级下数学期末测试题(8)一.选择题(共10小题,满分30分,每小题3分)1.(3分)若一个数的相反数为6,则这个数为()A.B.±6C.6D.﹣62.(3分)在下列实数中,,3.14,0,,π,,0.1010010001…(每两个1之间增加一个0),无理数的个数是()A.1个B.2个C.3个D.4个3.(3分)如图所示,点P为直线l外一点,点A,B,C在直线l上,且PB⊥l,垂足为B,∠APC=90°,则下列结论中错误的是()A.线段PB的长表示点P到直线l的距离B.线段P A、PB、PC中,PB最短C.线段P A的长等于点P到直线l的距离D.线段P A的长表示点A到直线PC的距离4.(3分)已知x+y=3,则点(x,y)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(3分)已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)7.(3分)若a2=(﹣2)2,则a是()A.﹣2B.2C.﹣2或2D.48.(3分)要调查某校学生周日的睡眠时间,下列调查对象选取最合适的是()A.选取该校一个班级的学生B.在该校各年级中随机选取50名学生C.选取该校50名男生D.选取50名女生9.(3分)若a是有理数,则下面说法正确的是()A.|a|一定是正数B.|﹣a|一定是正数C.﹣|a|一定是正数D.|a|+1一定是正数10.(3分)如图,直线a∥b,将三角板的直角顶点放在直线b上,如果∠1=40°,则∠2的度数是()A.30°B.40°C.45°D.50°二.填空题(共5小题,满分15分,每小题3分)11.(3分)化简:的结果为.12.(3分)某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是班13.(3分)如图,将△ABC沿着射线AC平移到△DEF,若AF=17,DC=11,则AD=.14.(3分)一个工程队原定在10天内至少要挖土600m3,前两天一共完成了120m3,由于工程调整工期,需要提前两天完成挖土任务,则以后的几天内每天至少要挖土m3.15.(3分)如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°,则下列结论中:①∠C′EF=32°,②∠AEC=116°,③∠BGE=64°,④∠BFD =116°,正确的有.三.解答题(共8小题,满分75分)16.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A,B的坐标:A(,),B(,);(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C',则△A'B'C'的三个顶点坐标分别是A'(,),B'(,),C'(,);(3)平移△ABC到△A1B1C1,A点的对应点A1(x1,y1),B点对应点B1(x2,y2),且y1=2x1+2,y2=x2﹣8,则直接写出C1的坐标是.17.(9分)解方程组.18.(9分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来.(Ⅳ)原不等式组的解集为.19.(9分)某种救灾用机器由三个部件各一个组装而成,由于救灾需要,数量不超过3000台的该机器的生产任务下达给某企业,该企业的甲、乙,丙三个车间分别生产这三个不同的部件,他们同时开工,每天工作8小时.若干天后,甲车间首先完成任务;几天后的某天下班前2小时,乙车间完成任务;再过几天后的某天,丙车间工作了2小时40分钟完成了任务,已知这三个车间每天分别生产100个、80个、60个部件,问这批机器数量为多少?20.(9分)为了促进学生积极进行体育锻炼,提高身体素质,完成体育中考达标率,某校对全校初三学生的体育成绩进行摸底,随机抽取了一个班的学生进行体育测试,并根据测试结果绘制了表格和统计图:(1)这个班的总人数为人;(2)补全条形统计图;(3)在扇形统计图中,“B”等级对应的圆心角的度数是;(4)若该校初三有800名学生,根据抽样调查结果,请估计该校初三学生45分以上的人数.21.(10分)某班同学参加运土劳动,女学生除去一名请假外,全部分配去抬土,两人抬一筐,男生除去3名体弱者跟女生一起抬土外,其余去挑土,1人挑两筐,这样,全班共需大筐59个,扁担36根,问该班男女生各有多少人?22.(10分)将一副学生用三角板拼成如图所示的图形,其中∠ACB=∠DCE=90°,∠B =45°,∠D=30°,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.23.(11分)某超市为“开业三周年”举行了店庆活动.对A、B两种小商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.(1)求出打折前A、B两种商品的价格;(2)店庆期间,每种商品打九折,张阿姨花36元购买了件数不同的A、B两种商品,请你算算,张阿姨买了几件B商品?。

七年级数学下册期末试卷练习(Word版 含答案)

七年级数学下册期末试卷练习(Word版 含答案)

七年级数学下册期末试卷练习(Word 版 含答案)一、选择题1.如图图形中,∠1和∠2不是同位角的是( )A .B .C .D .2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )A .B .C .D .3.在平面直角坐标系中,点(3,1) P -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A .3个B .2个C .1个D .0个5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根7.如图,直线//AB CD ,E 为CD 上一点,G 为AB 上一点,BF EG ⊥,垂足为F ,若35B ∠=︒,则DEF ∠的度数为( )A .35︒B .45︒C .55︒D .65︒8.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点2021A 的坐标是( )A .(505,505)-B .(505,505)--C .(506,506)--D .(506,506)-二、填空题9. 6.213,62.13621.3.10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.三、解答题17.计算(每小题4分)(1)323(3)29()-+--(2)2335+-.(3)20203|2|8(1)-+-+-.(4)4+|﹣2 | + ( -1 )201718.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.实数A 在数轴上的对应点A 的位置如图所示,|2||3|b a a =-+-.(1)求b 的值;(2)已知2b +的小数部分是m ,8b -的小数部分是n ,求221++m n 的平方根. 二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.B解析:B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:∵选项B 中∠1和∠2是由四条直线组成,∴∠1和∠2不是同位角.故选:B .【点睛】本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.【详解】平面内,垂直于同一条直线的两直线平行;故①正确,经过直线外一点,有且只有一条直线与这条直线平行,故②正确垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误,∴正确命题有①②③,共3个,故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】根据FGB 内角和定理可知FGB ∠的度数,再根据平行线的性质即可求得DEF ∠的度数.【详解】∵BF EG ⊥∴90F ∠=︒∵35B ∠=︒∴180180903555FGB F B ∠=︒-∠-∠=︒-︒-︒=︒∵//AB CD∴55FGB DEF ∠=∠=︒.故选:C【点睛】本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.8.C【分析】根据正方形的性质找出部分An 点的坐标,根据坐标的变化找出变化规律“A4n +1(−n−1,−n−1),A4n +2(−n−1,n +1),A4n +3(n +1,n +1),A4n +4(n +1,−解析:C【分析】根据正方形的性质找出部分A n 点的坐标,根据坐标的变化找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”,依此即可得出结论.【详解】解:观察发现:A 1(−1,−1),A 2(−1,1),A 3(1,1),A 4(1,−1),A 5(−2,−2),A 6(−2,2),A 7(2,2),A 8(2,−2),A 9(−3,−3),…,∴A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数),∵2021=505×4+1,∴A 2021(−506,−506)故选C .【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”.二、填空题9.93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则 点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则24.93点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.10.(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.【详解】解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为(2,﹣1).【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴=65°.∵CE ∥BF ,∴=35°.解析:100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本解析:()1,4【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.16.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n=500,∴1000A(1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2)【分析】(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可;(2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可解析:(1)32)【分析】(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可; (2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可求出n .然后求出2m +2n +1,再求平方根.【详解】解:(1)由图知:23a <<,0a ∴>,30a ->,33∴=-=b a a(2)2325b +==2b ∴+整数部分是3,(532∴=--=-m88(35-=--=+b 8b ∴-的整数部分是6,(561=-=n ,2212()12(21)13m n m n ∴++=++=⨯-+=,221++m n 的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠; (2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠. 即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒. 答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠. 即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD∠的度数为11 18022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×25=72°,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED80∠=︒.EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI =∠BAI =α,则∠BAE =2α,如图3,∵AB ∥CD ,∴∠CHE =∠BAE =2α,∵∠AED =20°,∠I =30°,∠DKE =∠AKI ,∴∠EDI =α+30°-20°=α+10°,又∵∠EDI :∠CDI =2:1,∴∠CDI =12∠EDK =12α+5°,∵∠CHE 是△DEH 的外角,∴∠CHE =∠EDH +∠DEK , 即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK =70°+10°=80°,∴△DEK 中,∠EKD =180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和. 26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

七年级下数学期末复习测试题(三)

七年级下数学期末复习测试题(三)

七年级下数学期末复习测试题(三)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列计算正确的是()A.a3+a2=a5B.a2•a3=a6C.2a﹣3a=﹣a D.(3a)2=6a2 2.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(3分)若2x=m,2y=n,则2x﹣y等于()A.B.mn C.2mn D.m+4.(3分)用科学记数法表示0.000532正确的是()A.5.32×10﹣6B.5.32×10﹣5C.5.32×10﹣4D.0.532×10﹣5 5.(3分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,3cm,6cmC.2cm,5cm,6cm D.5cm,6cm,7cm6.(3分)直角三角板和直尺如图放置,若∠1=25°,则∠2的度数为()A.50°B.45°C.40°D.35°7.(3分)已知△ABC≌△DEF,∠A=60°,∠E=70°,那么∠C等于()A.40°B.50°C.60°D.70°8.(3分)如图,用不同的代数式表示图中阴影部分的面积,可得等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2+2ab﹣b2C.(a+b)(a﹣b)=a2﹣b2D.(a﹣b)2=a2﹣2ab+b29.(3分)如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是()A.B.C.D.10.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论:①AE平分∠BAC;②△ABD是等边三角形;③DE垂直平分线段AC;④△BCD是等腰三角形,其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算:(2π﹣6.28)0+(﹣)﹣2=.12.(3分)如图,∠ABC=∠DCB,只需补充条件,就可以根据“AAS”得到△ABC≌△DCB.13.(3分)等腰三角形ABC中,∠A=44°,则∠B的度数是.14.(3分)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD ∥BE,∠1=20°,则∠2的度数是.15.(3分)如图,在△ABC中,AB=AC,∠B=50°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.16.(3分)港珠澳大桥全长近55km,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的关系式为.三.解答题(共8小题,满分72分)17.(10分)计算(1)2(x2)3•x3﹣(3x3)3+(5x)2•x7(2)(6x4﹣8x3)÷(﹣2x)2 18.(7分)化简求值[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=10,y=.19.(7分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.20.(8分)如图,直线l1,l2,l3表示三条相互交叉的公路,现计划建一个加油站P,要求它到三条公路的距离相等,请用尺规画出可供选择的其中一个P点的位置(不写作法,保留作图痕迹)21.(8分)如图,地面上有一个不规则的封闭图形,为求得它的面积,小明在此封闭图形内画出一个边长为0.5米的正方形后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似看成点),记录如下:掷小石子所落的总次数(小石子所落的50150300600…有效区域内,含边界)m103578149…小石子落在正方形内(含正方形边上)的次数nn:m0.2000.2330.2570.248…(1)根据如表,如果你掷一次小石子,那么小石子落在正方形内(含正方形边上)的概率约为(精确到0.01);(2)当掷小石子所落的总次数m=1000时,小石子落在正方形内(含正方形边上)的次数n最可能为;A.105B.249C.518D.815(3)请你利用(1)中所得概率,估计整个不规则封闭图形的面积约是多少平方米?22.(10分)甲、乙两地相距200km,早上8:00货车从甲地出发将一批物资运往乙地,途中货车出现了故障,已知货车离甲地的路程y(km)与行驶时间x(h)的关系如图所示.①求货车出现故障前的速度;②若货车司机经过24分钟维修排除了故障,继续运送物资去乙地,现要求该批物货运到乙地必须在当天中午12:00,那么货车的速度应该提高到多少?23.(10分)如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段的长度就是A、B两点间的距离(2)请说明(1)成立的理由.24.(12分)尺规作图之旅如图1是一副纯手绘的画作,其中用到的主要工具就是直尺和圆规,在数学中,我们也能通过尺规作图创造出许多带有美感的图形.尺规作图起源于古希腊的数学课题,只允许使用圆规和直尺,来解决平面几何作图问题.(1)(作图原理)在两年的数学学习里中,我们认识了尺规作图,并学会用尺规作图完成一些作图问题,请仔细思考回顾,判断以下操作能否通过尺规作图实现,可以实现的画√,不能实现的画×.①过一点作一条直线.②过两点作一条直线.③画一条长为3cm的线段.④以一点为圆心,给定线段长为半径作圆.(2)(回顾思考)还记得我们用尺规作图完成的第一个问题吗?那就是“作一条线段等于已知线段”,接着,我们学习了使用尺规作图作线段的垂直平分线,作角平分线,过直线外一点作垂线……而这些尺规作图的背后都与我们学习的数学原理密切相关,下面是用尺规作一个角等于已知角的方法及说理,请补全过程.已知:如图2,∠AOB.求作:∠A′O′B′使∠A′O′B′=∠AOB作法:①如图,以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,;(3)如图3,4,过点D′画射线O′B′,则∠A′O′B′=∠AOB.说理:由作法得已知:OC=O′C′,OD=O′D′,CD=C′D′求证:∠A′O′B′=∠AOB证明:∵∴△OCD≌△O′C′D′()所以∠A′O′B′=∠AOB()(4)(小试牛刀)请按照上面的范例,完成尺规作图并说理:过直线外一点作已知直线的平行线.已知:如图5,直线l与直线外一点A.求作:过点A的直线l′,使得l∥l′.(5)(创新应用)现实生活中许多图案设计都蕴含着数学原理,如图6是一个常见商标的设计示意图.假设你拥有一家书店,请利用你手中的刻度尺和圆规,为你的书店设计一个图案.要求保留作图痕迹,并写出你的设计意图.。

2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷及答案解析

2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷及答案解析

2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列运算正确的是()A.3a2﹣a2=3B.a2+a3=a5C.a3•a2=a6D.(a2)3=a62.(2分)不等式4﹣2x<0的解集在数轴上表示正确的是()A.B.C.D.3.(2分)如图,已知AB∥CD,则下列结论成立的是()A.∠1=∠D B.∠B=∠D C.∠B=∠1D.∠D+∠2=180°4.(2分)一个正方形的边长是a,若边长增加2,则这个正方形的面积增加了()A.4B.2a C.2a+4D.4a+45.(2分)当0<x<1时,x2,,x之间的大小关系是()A.<x<x2B.<x2<x C.x<x2<D.x2<x<6.(2分)下列命题中,属于真命题的是()A.若a>b,则ac2>bc2B.若ac2>bc2,则a>bC.同位角相等D.有两个角是锐角的三角形是锐角三角形7.(2分)中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为()A.B.C.D.8.(2分)如图,AB∥CD,点E在AB的上方,G,F分别为AB,CD上的点,∠AGE,∠EFC的角平分线交于点H,∠EFD的角平分线与HG的延长线交于点M.下列结论:①HF⊥MF;②∠EFC=∠E+∠AGE;③∠E=2∠H;④若∠BGE﹣∠EFD=∠M,则∠H=40°.其中,所有正确结论的序号是()A.①②B.①②③C.①③④D.①②③④二、填空题(本大题共10小题,每小题2分,共20分)9.(2分)20=;2﹣2=.10.(2分)某品牌手机芯片采用了最新的0.000000009米的工艺制程,将数0.000000009用科学记数法表示为.11.(2分)任意写出一个解为的二元一次方程组.12.(2分)已知多边形的每个内角都等于135°,求这个多边形的边数是.(用两种方法解决问题)13.(2分)已知方程组,则x2﹣y2=.14.(2分)若3m=4,3n=5,则3m﹣2n的值为.15.(2分)如图,DE⊥AB,垂足为E,∠A=48°,∠ACB=64°,则∠D=°.16.(2分)代数式m2+6m+10的最小值为.17.(2分)若关于x的不等式组有解但没有整数解,则a的取值范围为.18.(2分)如图,△ABC中,BE是中线,点D在边BC上,BD=3CD,AD,BE相交于点O.若△BOD 的面积为6,则△AOE的面积为.三、解答题(本大题共8小题,共64分)19.(8分)分解因式:(1)x2y﹣4xy+4y;(2)2(a+b)2﹣8.20.(8分)先化简,再求值:(a+2b)(a﹣2b)﹣(a﹣2b)2,其中a=,b=﹣1.21.(8分)解不等式组并写出它的最大整数解.22.(8分)如图,△ABC中,CD是角平分线,点E,F分别在边AB,AC上,CD,BF相交于点G,∠BGC+∠EFB=180°.(1)求证∠ACD=∠AFE;(2)若∠A=60°,∠ABC=70°,求∠BEF的度数.23.(8分)为迎接校园文化节,学校计划购买甲、乙两种纪念品.已知购买3个甲种纪念品和2个乙种纪念品需要13元;购买2个甲种纪念品和5个乙种纪念品需要16元.(1)求甲、乙两种纪念品的价格各是多少元;(2)学校计划购买甲、乙两种纪念品共800件,总费用不超过2000元,那么最多能购买多少个甲种纪念品?24.(8分)(1)从“数”的角度证明:当a>b>0时,a2+b2>2ab;(2)从“形”的角度证明:当a>b>0时,a2+b2>2ab.25.(6分)如图,已知∠α,点P为直线AB外一点,在直线AB上求作点C,使得∠PCB=∠α.(要求:尺规作图,保留作图痕迹,写出必要的文字说明.)26.(10分)【初步认识】(1)如图①,线段AB,CD相交于点O,连接AD,BC.求证:∠A+∠D=∠B+∠C.【继续探索】(2)如图②,∠A=m°,∠C=n°,∠ABC,∠ADC的角平分线BP、DP相交于点P.①若m=40,n=32,求∠P的度数;②用m、n表示∠P的度数为.(3)如图③,∠ABC,∠ADC的角平分线BP,DP相交于点P,∠DAB,∠DCB的角平分线AQ,CQ 相交于点Q.若∠P=∠Q,判断AD与BC的位置关系并说明理由.2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.【分析】根据运算法则进行计算即可.【解答】解:A、3a2﹣a2=2a2,故该项不正确,不符合题意;B、a2与a3不是同类项,不能进行合并,故该项不正确,不符合题意;C、a3•a2=a5,故该项不正确,不符合题意;D、(a2)3=a6,故该项正确,符合题意;故选:D.【点评】本题考查同底数幂的乘法、幂的乘方与积的乘方、合并同类项,掌握运算法则是解题的关键.2.【分析】按照解一元一次不等式的步骤进行计算,即可解答.【解答】解:4﹣2x<0,﹣2x<﹣4,x>2,∴该不等式的解集在数轴上表示如图所示:故选:A.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的步骤是解题的关键.3.【分析】根据平行线的性质分析解答即可.【解答】解:∵AB∥CD,∴∠1=∠B.故选:C.【点评】本题考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.4.【分析】一个正方形的边长是a,若边长增加2,则边长变为(a+2),根据正方形的面积公式和作差法求得答案.【解答】解:根据题意,得(a+2)2﹣a2=4a+4.故选:D.【点评】本题考查了列代数式.解题的关键是掌握正方形的面积公式.5.【分析】本题可以采用特殊值的方法比较三个代数式的大小.【解答】解:∵0<x<1,∴令x=,∴x2=()2=,==2,∴<<2,即x2<x<.故选:D.【点评】本题考查了不等式的性质,采用特殊值法是一个比较不错的方法.6.【分析】利用不等式的性质、平行线的性质及锐角三角形的定义分别判断后即可确定正确的选项.【解答】解:A、若a>b,则ac2>bc2,当c=0时不成立,故原命题错误,是假命题,不符合题意;B、若ac2>bc2,则a>b,正确,是真命题,符合题意;C、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;D、有三个角是锐角的三角形是锐角三角形,故原命题错误,是假命题,不符合题意.故选:B.【点评】本题主要考查了命题与定理的知识,解题的关键是了解有关的定义及定理,难度不大.7.【分析】根据每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:根据题意可得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【分析】①根据角平分线定义设∠EGH=∠AGH=α,∠EFH=∠CFH=β,∠EFM=∠DFM=θ,则∠AGE=2α,∠EFC=2β,∠EFD=2θ,∠HFM=β+θ,根据∠EFC+∠EFD=180°得β+θ=90°,则∠HFM=90°,据此可对结论①进行判断;②过点E作EK∥AB,则EK∥AB∥CD,进而得∠KEF=180°﹣2β,∠KEG=180°﹣2α,则∠FEG=∠KEG﹣∠KEF=2β﹣2α,继而得∠FEG+∠AGE=2β,再根据∠EFC=2β可对结论②进行判断;③过点H作HT∥AB,则HT∥AB∥CD,进而得∠THG=∠AGH=α,∠THF=∠CFH=β,则∠GHF =β﹣α,由②可知∠FEG=2β﹣2α,据此可对结论③进行判断;④过点M作MN∥AB,则AB∥MN∥CD,进而得∠HMN=∠AGH=α,∠FMN=∠DFM=θ,则∠HMF =∠HMN+∠FMN=α+θ,再根据∠BGE=180°﹣2α,∠EFD=2θ,∠BGE﹣∠EFD=∠M得α+θ=60°,则∠HMF=60°,根据①可知∠HFM=90°,则∠H=30°,据此可对结论④进行判断,综上所述即可得出答案.【解答】解:①∵GH平分∠AGE,FH平分∠EFC,FM平分∠EFD,设∠EGH=∠AGH=α,∠EFH=∠CFH=β,∠EFM=∠DFM=θ,则∠AGE=2α,∠EFC=2β,∠EFD=2θ,∠HFM=∠EFH+∠EFM=β+θ,∵点F在直线CD上,∴∠EFC+∠EFD=180°,∴2β+2θ=180°,∴β+θ=90°,∴∠HFM=β+θ=90°,即HF⊥MF,故结论①正确,符合题意;②过点E作EK∥AB,如图1所示:∵AB∥CD,∴EK∥AB∥CD,∴∠KEF=180°﹣∠EFC=180°﹣2β,∠KEG=180°﹣∠AGE=180°﹣2α,∴∠FEG=∠KEG﹣∠KEF=180°﹣2α﹣(180°﹣2β)=2β﹣2α,∴∠FEG+∠AGE=2β﹣2α+2α=2β,又∵∠EFC=2β,∴∠EFC=∠FEG+∠AGE,∴结论②正确,符合题意;③过点H作HT∥AB,如图2所示:∵AB∥CD,∴HT∥AB∥CD,∴∠THG=∠AGH=α,∠THF=∠CFH=β,∴∠GHF=∠THF﹣∠THG=β﹣α,由②可知:∠FEG=2β﹣2α,∴∠FEG=2∠GHF,故结论③正确,符合题意;④过点M作MN∥AB,如图3所示:∵AB∥CD,∴AB∥MN∥CD,∴∠HMN=∠AGH=α,∠FMN=∠DFM=θ,∴∠HMF=∠HMN+∠FMN=α+θ,∵∠BGE=180°﹣∠AGE=180°﹣2α,∠EFD=2θ,又∵∠BGE﹣∠EFD=∠M,∴180°﹣2α﹣2θ=α+θ,∴α+θ=60°,∴∠HMF=α+θ=60°,由①可知:∠HFM=90°,∴∠H=180°﹣(∠HFM+∠HMF)=180°﹣(90°+60°)=30°,故结论④不正确,不符合题意.综上所述:正确的结论是①②③.故选:B.【点评】此题主要考查了平行线的性质,垂线的定义,角平分线的定义,熟练掌握平行线的性质,垂线的定义,角平分线的定义是解决问题的关键.二、填空题(本大题共10小题,每小题2分,共20分)9.【分析】根据零次幂的性质、负指数次幂的性质,进行计算即可.【解答】解:20=1,2﹣2==,故答案为:1,.【点评】考查零次幂、负指数次幂的性质,掌握零次幂、负指数次幂的性质是正确计算的前提.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000009=9×10﹣9,故答案为:9×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】根据二元一次方程组解的定义进行解答即可.【解答】解:由于x=2,y=﹣1,因此有x+y=1,x﹣y=3,所以符合条件的方程组为,故答案为:(不唯一).【点评】本题考查二元一次方程组的定义以及二元一次方程组的解,理解二元一次方程组的解是正确解答的关键.12.【分析】根据多边形的内角和公式,可得方程,根据解方程,可得答案;根据正多边形的外角相等,可得每一个外角,根据多边形的外角和除以一个外角,可得答案.【解答】解:解法一:设这个多边形是n边形,由题意,得(n﹣2)×180°=135°n,解得n=8.解法二:由正多边的性质,得每个外角等于=180°﹣135°=45°外角和除以一个外角,得360°÷45°=8.故答案为:8.【点评】本题考查了多边形内角与外角,利用了多边形的内角和公式,外角和公式.13.【分析】首先把方程组的两个方程的左右两边分别相加、相减,求出x+y、x﹣y的值;然后把求出的x+y、x﹣y的值代入x2﹣y2计算即可.【解答】解:,①+②,可得3x+3y=9,∴x+y=9÷3=3,①﹣②,可得x﹣y=1,∴x2﹣y2=(x+y)(x﹣y)=3×1=3.故答案为:3.【点评】此题主要考查了解二元一次方程组的方法,解答此题的关键是注意观察方程组的两个方程和所求的代数式之间的关系.14.【分析】同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.据此计算即可.【解答】解:∵3m=3,3n=5,∴3m﹣2n=3m÷32n=3m÷(3n)2=4÷52=,故答案为:.【点评】本题考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.15.【分析】在△ABC中根据三角形内角和定理求出∠B的度数,再根据垂线的定义得出∠BED=90°,最后在△BED中根据三角形内角和定理求出∠D的度数.【解答】解:∵∠A=48°,∠ACB=64°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣48°﹣64°=68°,∵DE⊥AB,∴∠BED=90°,∴∠D=180°﹣∠B﹣∠BED=180°﹣68°﹣90°=22°,故答案为:22.【点评】本题考查了三角形内角和定理,垂线,熟练掌握三角形内角和定理是解题的关键.16.【分析】经过计算,可知m2+6m+10=(m+3)2+1,而(m+3)2≥0,因此(m+3)2+1≥1,即可得出结果.【解答】解:m2+6m+10=(m2+6m+32)+1=(m+3)2+1,∵(m+3)2≥0,∴(m+3)2+1≥1,∴代数式m2+6m+10的最小值为1,故答案为:1.【点评】本题考查的是配方法的应用,非负数的性质,熟练掌握上述知识点是解题的关键.17.【分析】由x﹣a<0得x<a,由x﹣2>0得x>2,结合不等式组有解但没有整数解,得出2<a≤3.【解答】解:由x﹣a<0得:x<a,由x﹣2>0得:x>2,∵不等式组有解但没有整数解,∴2<a≤3,故答案为:2<a≤3.【点评】本题考查的是解一元一次不等式组和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】连接OC,根据“同高的两个三角形,其面积比等于底边长之比”得到各三角形之间的数量关系,从而求出△AOE的面积.【解答】解:连接OC.∵BD=3CD,=3S△COD=6,∴S△BOD=2,∴S△COD=S,设S△AOE∵BE是中线,=S△AOE=S,∴S△COE+S△AOE=S△BOD+S△COD+S△COE,即S△AOB+S=6+2+S,∴S△AOB=8,∴S△AOB=S△AOB+S△BOD=8+6=14,S△ACD=S△AOE+S△COE+S△COD=S+S+2=2S+2,∴S△ABD∵BD=3CD,=3S△ACD,即14=3(2S+2),解得S=,∴S△ABD∴△AOE的面积为.故答案为:.【点评】本题考查三角形的面积,根据“同高的两个三角形,其面积比等于底边长之比”得到各三角形之间的数量关系是解题的关键.三、解答题(本大题共8小题,共64分)19.【分析】(1)先提取公因式,然后利用完全平方公式分解因式即可;(2)先提取公因式,然后利用平方差公式分解因式即可.【解答】解:(1)x2y﹣4xy+4y=y(x2﹣4x+4)=y(x﹣2)2;(2)2(a+b)2﹣8=2[(a+b)2﹣4]=2(a+b+2)(a+b﹣2).【点评】本题考查了因式分解,熟练掌握运用提取公因式法、公式法分解因式是解题的关键.20.【分析】先利用完全平方公式,平方差公式进行计算,然后把a,b的值代入化简后的式子进行计算,即可解答.【解答】解:(a+2b)(a﹣2b)﹣(a﹣2b)2=a2﹣4b2﹣(a2﹣4ab+4b2)=a2﹣4b2﹣a2+4ab﹣4b2=4ab﹣8b2,当a=,b=﹣1时,原式=4××(﹣1)﹣8×(﹣1)2=﹣2﹣8×1=﹣2﹣8=﹣10.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.21.【分析】求出每个不等式的解集,从而可得不等式组的解集,得到答案.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x<;∴不等式组的解集为﹣2<x<,∴它的最大整数解为1.【点评】本题考查解一元一次不等式组,解题的关键是求出每个不等式的解集.22.【分析】(1)根据∠BGC+∠EFB=180°,∠BGC+∠CGF=180°,得出∠CGF=∠EFG,再由平行线的判定与性质解答即可;(2)根据三角形的内角和定理求出∠ACB的度数,再根据三角形内角和定理解答即可.【解答】(1)证明:因为∠BGC+∠EFB=180°,∠BGC+∠CGF=180°,所以∠CGF=∠EFG,所以EF∥DC,因此∠ACD=∠AFE,(2)解:因为∠A=60°,∠ABC=70°,所以∠ACB=180°﹣∠A﹣∠ABC=50°,因为CD是角平分线,所以∠ACD=25°,∴∠ACD=∠AFE=25°,∴∠AEF=180°﹣60°﹣25°=95°,∴∠BEF=180°﹣95°=85°.【点评】本题考查了平行线的判定与性质,三角内角和定理,掌握平行线的性质是解题的关键.23.【分析】(1)设甲种纪念品的价格是x元,乙种纪念品的价格是y元,根据“购买3个甲种纪念品和2个乙种纪念品需要13元;购买2个甲种纪念品和5个乙种纪念品需要16元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个甲种纪念品,则购买(800﹣m)个乙种纪念品,利用总价=单价×数量,结合总价不超过2000元,可列出关于m的一元一次不等式,解之取其中的最大值,即可得出结论.【解答】解:(1)设甲种纪念品的价格是x元,乙种纪念品的价格是y元,根据题意得:,解得:.答:甲种纪念品的价格是3元,乙种纪念品的价格是2元;(2)设购买m个甲种纪念品,则购买(800﹣m)个乙种纪念品,根据题意得:3m+2(800﹣m)≤2000,解得:m≤400,∴m的最大值为400.答:最多能购买400个甲种纪念品.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【分析】(1)运用完全平方公式和非负数的性质即可;(2)构造图形,用代数式表示各个图形的面积,再根据面积之间的关系得出结论;【解答】证明:(1)∵a>b>0,∴a﹣b>0,∴(a﹣b)2>0,即a2﹣2ab+b2>0,∴a2+b2>2ab;(2)构造的图形如下,=a(a﹣b)=a2﹣ab,S长方形EFCD=b(a﹣b)=ab﹣b2,证明:∵S长方形ABCD>S长方形EFCD,由图形可得S长方形ABCD∴a2﹣ab>ab﹣b2,∴a2+b2>2ab.【点评】本题考查的是完全平方公式,用代数式表示图形的面积,再根据面积之间的关系得出结论是解决问题的关键.25.【分析】在直线AB上任取一点D,连接PD,在PD的右侧作∠DPN=∠ADP,再作PN所在的直线MN,在直线MN的下方作∠MPC=∠α,与AB的交点即为所求的点C.【解答】解:在直线AB上任取一点D,连接PD,在PD的右侧作∠DPN=∠ADP,再作PN所在的直线MN,在直线MN的下方作∠MPC=∠α,交AB于点C,则点C即为所求.【点评】本题考查作图—基本作图,平行线的判定和性质,熟练掌握基本尺规作图方法是解答本题的关键.26.【分析】(1)依据题意,在△AOD中,∠A+∠D+∠AOD=180°,则∠A+∠D=180°﹣∠AOD,又在△BOC中,∠B+∠C+∠BOC=180°,故∠B+∠C=180°﹣∠BOC,从而可以得解;(2)①依据题意,结合(1)可得,∠A+∠ADC=∠ABC+∠C,∠A+∠ADP=∠P+∠ABP,结合BP平分∠ABC,DP平分∠ADC,从而∠ADP=∠ADC,∠ABP=∠ABC,故∠A+∠ADC=∠P+∠ABC,进而可得2∠A+∠ADC=2∠P+∠ABC,又∠A+∠ADC=∠ABC+∠C,从而∠A=2∠P﹣∠C,即可得∠P=,代入计算可以得解;②依据题意,根据①∠P=,又∠A=m°,∠C=n°,进而计算可以得解;(3)依据题意,根据(2)①∠P=,同理可得,∠Q=,又∠P=∠Q,故可得∠A+∠C=∠B+∠D,又∠A+∠D=∠C+∠B,则2∠A+∠C+∠D=2∠B+∠C+∠D,从而∠A=∠B,故可得解.【解答】(1)证明:由题意,在△AOD中,∠A+∠D+∠AOD=180°,∴∠A+∠D=180°﹣∠AOD.又在△BOC中,∠B+∠C+∠BOC=180°,∴∠B+∠C=180°﹣∠BOC.又∠AOD=∠BOC,∴∠A+∠D=∠B+∠C.(2)解:①由题意,结合(1)可得,∠A+∠ADC=∠ABC+∠C,∠A+∠ADP=∠P+∠ABP.∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠ADC,∠ABP=∠ABC.∴∠A+∠ADC=∠P+∠ABC.∴2∠A+∠ADC=2∠P+∠ABC.又∠A+∠ADC=∠ABC+∠C,∴∠A=2∠P﹣∠C.∴∠P=.又∠A=m°=40°,∠C=n°=32°,∴∠P==36°.②由题意,根据①∠P=,又∠A=m°,∠C=n°,∴∠P=()°.故答案为:()°.(3)解:AD∥BC.理由如下:由题意,根据(2)①可得∠P=,同理可得,∠Q=.又∠P=∠Q,∴=.∴∠DAB+∠DCB=∠ABC+∠ADC.又∠DAB+∠ADC=∠DCB+∠ABC,∴2∠DAB+∠DCB+∠ADC=2∠ABC+∠DCB+∠ADC.∴∠DAB=∠ABC.∴AD∥BC.【点评】本题主要考查了三角形内角和定理、平行线的判定,解题时要熟练掌握并能灵活运用是关键。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。

初中语文 人教部编版(五四制)练习题 2023-2024学年山东省淄博市周村区七年级(下期末语文试卷

初中语文 人教部编版(五四制)练习题 2023-2024学年山东省淄博市周村区七年级(下期末语文试卷

2023-2024学年山东省淄博市周村区七年级(下)期末语文试卷(五四学制一、基础知识积累与运用(18分)1.(6分)阅读下面《紫藤萝瀑布》选段,完成问题。

每一①suì花都是上面的盛开,下面的待放。

颜色便上浅下深,好像那紫色沉淀下来了,沉淀在最嫩最小的②花b 里。

每一朵盛开的花就像是一个小小的张满了的帆,帆下带着尖底的舱。

船舱鼓鼓的,又像一个忍俊不禁的笑容,就开似的,那里装的是什么仙露③qióng 浆?我凑上去,想摘一朵。

但是我没有摘,我没有摘花的习惯。

我只是④zhù立凝望,觉得这一条紫藤萝瀑布不只在我眼前,也在我心上缓过。

(1)下列对文段中横线处应填的汉字,说法不正确的一项是A.①处词语指植物的花在茎的顶端,suì的字形应为“穗”。

B.②处词语指花没开时的花骨朵儿,bāo的字形应为“苞”。

C.③处词语指美玉,泛指精美的东西,qióng的字形应为“琼”。

D.④处词语指长时间地站着,zhù的字形应为“贮”。

(2)文段中画线的句子,在修辞手法的运用上与其它不同的一句是A.颜色便上浅下深,好像那紫色沉淀下来了。

B.每一朵盛开的花就像是一个小小的张满了的帆。

C.船舱鼓鼓的,又像一个忍俊不禁的笑容。

2.(3分)下列句子中,标点符号使用有误的一项是()A.为避免青春期因敏感而冲动“怼”人,我们应该做到:主动沟通交流,理性看待事情;提高个人修养,学会换位思考;学会静分析,正确表达意见。

B.在人民日报社新媒体中心举办的“回到小时候”主题歌会上,歌曲《如果你要写风》一经演唱,便迅速登上热榜。

C.我跳下车来,说了声:“忠爷爷再见!”就往家走去。

D.大量事实表明领先科技出现在哪里,高端人才流向哪里,发展的制高点和经济的竞争力就转向哪里。

3.(3分)下列句子中,有语病的一项是()A.公共阅读空间只有不断完善服务机制,提升服务质量,才能更好地满足不同群体的阅读需求。

2023春七年级下学期期末考试数学试题及答案

2023春七年级下学期期末考试数学试题及答案
证明:
22.先阅读理解下面例题,再按要求解答下列问题:
例:解不等式
解:因为 ,所以原不等式可化为
由有理数乘法法则“两数相乘,异号得负”,得:① ,或②
解不等式组①得 ,解不等式组②无解,
所以原不等式 的解集为 .
(1)用例题的方法解不等式 的解集为________________;
(2)解不等式 .
二、填空题(本大题共有8小题,每小题3分,共24分.)
9.计算: ________.
10.在同一平面内,若直线 , ,则直线 与 的位置关系是______.
11.已知 , ,则 ______.
12.两根木棒分别长 、 ,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长为偶数(单位: ),那么所构成的三角形周长为______ .
23.图形是一种重要 数学语言,它直观形象,能有效地表示一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.比如:用图1所示的正方形与长方形纸片可以拼成一个图2所示的正方形.
(1)问题发现利用不同的代数式表示图2中阴影部分的面积 ,写出你从中获得的等式为__________________________________;
2023春七年级期末考试数学答案
一、选择题(本大题共有8小题,每小题3分,共24分.)
1C2B3A4D5B6B7C8B
二、填空题(本大题共有8小题,每小题3分,共24分.)
9 10 11 12 或 1338
如图①,很难看出直线a、b是否平行,可添加“第三条线”(截线c),把判断两条直线的位置关系转化为判断两个角的数量关系.我们称直线c为“辅助线”.
在部分代数问题中,很难用算术直接计算出结果,于是,引入字母解决复杂问题,我们称引入的字母为“辅助元”.

初中数学七年级下期末习题(含答案解析)

初中数学七年级下期末习题(含答案解析)

一、选择题1.点M(2,-3)关于原点对称的点N的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)2.116的平方根是( )A.±12B.±14C.14D.123.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°4.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°5.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=106.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.27.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是()队名比赛场数胜场负场积分前进1410424光明149523远大147a21卫星14410b钢铁 14 0 14 14 ……………A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分8.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)9.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠310.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2B .2C .3D .﹣311.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( )A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=812.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 13.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-214.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3215.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题16.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 19.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.20.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.21.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.22.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.23.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.24.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1; (2)直接写出△A 1B 1C 1各顶点的坐标 (3)求出△A 1B 1C 1的面积27.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样) (1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案. 28.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值29.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.30.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.B4.B5.A6.A7.D8.D9.B10.B11.C12.C13.A14.A15.D二、填空题16.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平17.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD⊥AB于D∵AC2+B18.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组19.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主20.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程21.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【22.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定23.145【解析】【分析】如图:延长AB交l2于E根据平行线的性质可得∠AED=∠1根据可得AE//CD根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB交l2于E∵l24.【解析】【分析】本题可设打x折根据保持利润率不低于5可列出不等式:解出x的值即可得出打的折数【详解】设可打x折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12,∴116的平方根是12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.4.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.5.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.7.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A正确;B、b=2×4+1×10=18,选项B正确;C、a=14-7=7,选项C正确;D、设该队胜了z场,则负了(14-z)场,依题意,得:2z=14-z,解得:z=143,∵z=143不为整数,∴不存在该种情况,选项D错误.故选:D.【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.8.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.9.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B. 11.C 解析:C 【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°. 故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.13.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.14.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.15.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题16.(﹣1﹣1)【解析】试题解析:点B 的横坐标为1-2=-1纵坐标为3-4=-1所以点B 的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.18.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组19.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案.【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查,故答案为抽样调查.【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.20.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.21.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB ⊥BC ,∠1=55°,∴∠3=90°-55°=35°.∵a ∥b ,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。

七年级下学期数学期末试卷(精品#直接打印)

七年级下学期数学期末试卷(精品#直接打印)

七 年 级 数 学 试 题一、填空题(每小题3分,共18分)1.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 .2.-364的绝对值等于 .3.不等式组20210x x -≤⎧⎨->⎩的整数解是 .4.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.5.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 6.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m . 二、单项选择题(每小题4分,共32分)7.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 8.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 9.比较大小:215- 1 应填( ). A 、< B 、 > C 、≤ D 、 = 10. 下列调查中,适合用抽样调查的是( ) A .一批炮弹的杀伤半 B .全国人口普查 C .全国农业普查 D .测量某班男生平均身高11.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )12.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题13.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 50014.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( )①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180°(A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④三、解答题(共70分) 15.(8分)计算:2393-+-. 322327-+16.(6分)解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.(6分)解不等式组3(2)2211132x x x x --⎧⎪-+⎨-⎪⎩<≥,并把解集表示在数轴上,写出不等式组的整数解.18.(6分)已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.19.(6分)如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) , 又因为∠3=∠4(已知), 所以∠5=∠ (等量代换),所以BC ∥EF ( ) .(第4题) 2 1 3 4B D (第14题)20.(9分)育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ 40%,其所在扇形统计图中对应的 圆心角度数是 ______144度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?21.(9分)在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x0,y0)经平移后对应点为P1(x0+4,y0-3),请画出三角 形OAB 平移后得到的三角形O1A1B1,并写出点O1、A1 、B1的坐标.22.(8分) 为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?23.(12分)为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4-1 -2 -3yA。

2023-2024学年北京市海淀区七年级下学期期末数学练习试题

2023-2024学年北京市海淀区七年级下学期期末数学练习试题

2023-2024学年北京市海淀区七年级下学期期末数学练习试题1.下列所示的图案分别是奔驰、雪铁龙、大众、三菱汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.如图,若数轴上的点A,B,C,D表示数,1,2,3,则表示数的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间3.已知是方程的一个解,则a的值为()A.B.C.D.4.如果,那么下列不等式变形正确的是()A.B.C.D.5.一辆匀速行驶的汽车在11:20距离A地50km,要在12:00之前驶过A地,设车速为km/h,根据题意可列不等式为()A.B.C.D.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,若,,则的度数为()A.B.C.D.7.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.8.关于x,y的二元一次方程的正整数解的组数有()A.1组B.2组C.3组D.4组9.如图,小球起始时位于处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是,那么小球第2024次碰到球桌边时,小球的位置是()A.B.C.D.10.2023年国家统计局公布了《2022年国民经济和社会发展统计公报》.公报显示了全国2018年至2022年货物进出口额的变化情况,根据国家统计局2022年发布的相关信息,绘制了如下的统计图.根据统计图提供的信息,下列结论正确的是()①与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升;②从2018年到2022年,进口额最多的是2022年;③2018—2022年进口额年增长率持续下降;④与2021年相比,2022年出口额增加了2.3万亿元A.①②④B.①②③C.①③④D.①②③④11.81的算术平方根是_____.12.一个正数的两个平方根是和,则的立方根为________.13.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是______.14.已知平面直角坐标系中有两点、,且轴时,求点M的坐标为________.15.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________.16.规定:在平面直角坐标系xOy中,任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为.如图①点M(-2,3)与点N(1,-1)之间的折线距离为______;如图②点P(3,-4),若点Q的坐标为(t,3),且,则t的值为__________.17.解方程组:(1)(2)18.解一元一次不等式组:.19.已知a,b均为实数,a的平方根分别是与,b是的整数部分,求的算术平方根.20.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.21.如图是一种躺椅及其简化结构示意图,扶手与底座都平行于地面,靠背与支架平行,前支架与后支架分别与交于点G和点D,与交于点N,当前支架与后支架正好垂直,时,人躺着最舒服,求此时扶手与支架的夹角及扶手与靠背的夹角的度数.22.如图,这是一架天平,天平左盘放有一个物体,质量为克,右盘放有一些砝码,每个砝码的质量为克,当右盘放有个相同的砝码时,天平处于平衡状态.(1)若,求天平处于平衡状态时的值.(2)若一个二元一次方程的解,都是正整数,我们把,称为该方程的正整数解,如:方程的正整数解为,求天平处于平衡状态下的,的正整数值.(3)期中考试后,老师计划购买笔记本和圆珠笔给表现优秀的同学作为奖品,笔记本和圆珠笔的单价均为正整数.若购买本笔记本,支圆珠笔,共需要元,求购买本笔记本和支圆珠笔的费用.23.雷锋精神是我们中华民族宝贵的精神财富,它激励着一代又一代的青少年健康成长,促进了社会文明的进步,为进一步弘扬“奉献、友爱、互助、进步”的雷锋精神,倡导志愿服务理念,树立“学雷锋”的意识,某校组织了“学习雷锋精神,爱心捐款活动”,活动结束后,学生会随机抽取了部分学生的捐款金额进行统计,并用得到的数据绘制了如下统计图(不完整).请根据相关信息,解答下列问题,(1)所抽取学生的人数为______;在扇形统计图中,捐款金额为40元所对的扇形的圆心角的度数为______,并补全条形统计图;(2)所抽取学生的捐款金额的中位数是_____元,并求出所抽取学生的平均捐款金额;(3)若该校共有1200名学生参与捐款,请你估计该校学生捐款金额不少于30元的人数.24.我们把符号“”称为二阶行列式,规定它的运算法则为,如.(1)求不等式的解集.(2)若关于的不等式的解集与(1)中的不等式解集相同,求的值.(3)若关于的不等式的解都是(1)中的不等式的解,求的取值范围.25.在四边形中,,和的角平分线或邻补角角平分线分别为和.如图1,当,都为角平分线时,小明发现,并给出下面的理由:解:∵,,,,∴,∴.又∵,,∴,∴,∴.根据小明的发现,解决下面的问题:(1)如图2,当,都为邻补角的角平分线时,与的位置关系是什么?并给出理由.(2)如图3,当是角平分线,是邻补角的角平分线时,请你探索与的位置关系,并给出理由.(提示:两直线平行,内错角相等)26.在平面直角坐标系中,对于P,Q两点给出如下定义:若点P的横纵坐标的绝对值之和等于点Q的横纵坐标的绝对值之和,则称P,Q两点为“等和点”.下图中的P,Q两点即为“等和点”.(1)已知点A的坐标为.①在点中,与点A为“等和点”的是(只填字母);②若点B在第一象限的角平分线上,且A,B两点为“等和点”,则点B的坐标为.(2)已知点C的坐标为,点D的坐标为,连接,点M为线段CD上一点,过点作x轴的垂线l,若垂线l上存在点M的“等和点”,求n的取值范围.。

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。

一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。

2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。

4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P (-2,1)向上平移2个单位后的点的坐标为 。

10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。

问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。

二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。

C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。

12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1.在显微镜下,一种细胞的截面可以近似地看成圆,它的半径约为0. 000 000 78m ,用科学记数法,我们可以把0. 000 000 78m 写成_______m . 2.计算:100101144⎛⎫⨯= ⎪⎝⎭_______.3.计算:2a -·()22n a +-=_______.(n 是整数)4.( ▲ )(2a -3b)=12a 2b -18ab 2.5.若方程组71ax by ax by +=⎧⎨-=⎩的解是21x y =⎧⎨=⎩,则a b -=_______.6.已知4x+y=3,且﹣1<y ≤7,则x 的取值范围是 .7.若不等式组无解,则m 的取值范围是8.把4a 2﹣2a+1加上一个单项式 ,使其成为一个完全平方式(写出一个即可)9.已知关于x 的方程x -(2x -a)=2的解是负数,则a 的取值范围是 ▲ .10.一个多边形的每一个外角都是60°,则这个多边形的内角和为________°.12.如图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是_______°.选择题:13.某人不慎将一块三角形的玻璃摔碎成如下图所示的四块(即图中标有1、2、3.,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来形状相同的三角形玻璃.应该带( )A .第1块B .第2块C .第3块D .第4块 14.如下图,AB =DB ,∠1=∠2,添加了下面的条件但仍不能判定....△ABC ≌△DBE 的是( )A .BC =BEB .∠ACB =∠DEBC .∠A =∠D D .AC =DE15.如图,DE∥BC,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A的度数是( )A.60°B.50°C.40°D.不能确定16.关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为A.-1 B.2 C.1 D.417.某中学七年级—班40名同学为灾区捐款,共捐款2000元,捐款情况如下表:由于疏忽,表格中捐款40元和50元的人数忘记填写了,若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )A.2240502000x yx y+=⎧⎨+=⎩B.2250402000x yx y+=⎧⎨+=⎩C.2240501000x yx y+=⎧⎨+=⎩D.2250401000x yx y+=⎧⎨+=⎩18.若关于x,y的二元一次方程组331224717x y kx y k-=-⎧⎨-=-⎩的解满足不等式x<0,y>0,则k的取值范围是( )A.-7<k<13B.-7<k<-13C.-3<k<13D.-7<k<319.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为A.0<x≤1 B.x≤1C.0≤x<1 D.x>020.已知等腰三角形的两条边长分别为2和3,则它的周长为A.7 B.8 C.5 D.7或821.(3x+2)(-x4+3x5)+(3x+2)(-2x4+x5)+(x+1)(3x4-4x5)与下列哪一个式子相同A.(3x4-4x5) (2x+1) B.-(3x4-4x5)(2x+3)C.(3x4-4x5) (2x+3) D.-(3x4-4x5)(2x+1)22.小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是A.7元B.8元C.9元D.10元23.下列命题:①同旁内角互补,两直线平行;②若a=b,则a=b;③直角都相等;④相等的角是对项角.它们的逆命题是真命题的个数是A.4个B.3个C.2个D.1个24.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为A.M=N B.M>N C.M<N D.M与N的大小由x的取值而定若a>b,则下列不等式中成立的是()A.a+2<b+2 B. a﹣2<b﹣2 C, 2a<2b D. ﹣2a<﹣2b 25.(2分)下列命题:①若x≠0,则x2>0;②锐角都相等;③一个角的补角大于这个角;④两条直线被第三条直线所截,同位角相等.其中,真命题的个数是()A.1B.2C.3D.4三、解答题1.计算:(每小题3分,共6分)(1)()2 301253-⎛⎫-+⨯ ⎪⎝⎭(2)33a·()452a a-2.因式分解:(1) x2+5x+6 (2) a c-b c+3a-3b(3)4m2-36mn+81n2;(4)x2-3x-10;(5)18a2-50.3.先化简,再求值:(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),其中x=13.(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=12.4.解方程组:(1)34536x y x y -=⎧⎨+=⎩ (2)57213x y x z y z +=⎧⎪+=⎨⎪+=⎩5解不等式(组)(1)334642x x--<-,并把解在数轴上表示出来;(2)()32412123x x x x ⎧-->-⎪⎨+>-⎪⎩.(3)解不等式组()5931311122x x x x ⎧-<-⎪⎨-≤-⎪⎩并写出它的整数解.6.如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CE 平分∠ACB 交AB 于E ,EF ⊥AB . (1)求证:EF ∥CD ;(2)若∠A=65°,求∠FEC 的度数.7.如图,∠DBC和∠ECB是△ABC的两个外角.(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(保留作图痕迹,不写画法)(2)过点P分别画AB、AC、BC的垂线段PM ,PN、PQ,垂足为M、N、Q;(3)垂线段PM、PN、PQ相等吗?8.如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD =∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?9.如下几个图形是五角星和它的变形.(1)图甲是一个五角星ABCDE,则∠A+∠B+∠C+∠D+∠E的度数为▲;(不必写过程)(2)如图乙,如果点B向右移动到AC上时,则∠A+∠EBD+∠C+∠D+∠E度数为▲;(不必写过程)(3)如图丙,点B向右移动到AC的另一侧时,(1)的结论成立吗?为什么?(4)如图丁,点B,E移动到∠CAD的内部时,结论又如何?(不必写过程)10.甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去▲商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.11.如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△ACE<S△ABC.12.李大爷一年前买入了A、B两种兔子共46只,目前,他所养的这两种兔子数量相同,且A种兔子的数量比买入时减少了3只,B种兔子的数量比买入时减少a只.(1)则一年前李大爷买入A种兔子▲只,目前A、B两种兔子共▲只;(用含a 的代数式表示)(2)若一年前买入的A种兔子数量多于B种兔子数量,则目前A、B两种兔子共有多少只?(3)李大爷目前准备卖出30只兔子,已知卖A种兔子可获利15元/只,卖B种兔子可获利6元/只,如果卖出的A种兔子少于15只,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.13.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM 上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.14.某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果保留整数)?15.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第_____________________秒时,直线MN恰好与直线CD 垂直.(直接写出结果)D16.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定向灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?。

相关文档
最新文档