最短路径算法及其应用
两点之间最短路径算法
![两点之间最短路径算法](https://img.taocdn.com/s3/m/191605134a73f242336c1eb91a37f111f1850df7.png)
两点之间最短路径算法(实用版)目录1.算法简介2.常用算法3.算法应用4.算法优缺点正文【算法简介】两点之间最短路径算法是一种计算图(例如地图、社交网络等)中两个节点之间最短路径的算法。
在实际应用中,找到最短路径可以帮助我们节省时间、金钱和资源。
这类算法有很多种,如 Dijkstra 算法、Floyd-Warshall 算法和 Bellman-Ford 算法等。
【常用算法】1.Dijkstra 算法:该算法使用贪心策略,每次选择距离起点最近的节点进行扩展,直到到达终点。
它适用于有向图和无向图,但不适用于存在负权边的图。
2.Floyd-Warshall 算法:该算法使用动态规划策略,通过计算每个节点到其他所有节点的距离,来寻找最短路径。
它适用于有向图和无向图,也可以处理负权边,但不适用于存在负权环的图。
3.Bellman-Ford 算法:该算法结合了 Dijkstra 算法和Floyd-Warshall 算法的优点,可以在存在负权边的图中寻找最短路径,同时可以检测出是否存在负权环。
【算法应用】两点之间最短路径算法在现实生活中有很多应用,例如:1.地图导航:通过计算用户所在位置与目的地之间的最短路径,帮助用户规划出行路线。
2.社交网络:计算用户与其好友之间的最短路径,以便更快速地传递信息或找到共同的兴趣点。
3.物流配送:计算货物从产地到销售地的最短路径,以降低运输成本和提高效率。
【算法优缺点】优点:1.可以处理大规模的图结构。
2.可以找到最短路径,有助于节省时间和资源。
缺点:1.对于大规模的图,计算复杂度较高,可能导致计算速度较慢。
2.对于存在负权环的图,Bellman-Ford 算法也无法找到最短路径。
图论中的最短路径算法及其应用
![图论中的最短路径算法及其应用](https://img.taocdn.com/s3/m/ca6f5ef80d22590102020740be1e650e52eacffa.png)
在图论中,最短路径是指在一个给定的加权有向图或无向图中,两个顶点之间连接的最小权值总和的路径。
最短路径问题是图论中常见且重要的问题,而最短路径算法则是解决这类问题的关键。
最短路径算法有多种,其中最经典且常用的有Dijkstra算法、Bellman-Ford算法和Floyd-Warshall算法。
这些算法都有各自的特点和适用范围,下面将逐一介绍。
首先是Dijkstra算法。
Dijkstra算法是一种单源最短路径算法,用于计算从单个源点到图中所有其他顶点的最短路径。
算法的基本思想是通过逐步更新起始点到其他各点的最短路径,直到找到所有最短路径为止。
该算法对边的权值没有要求,可以是正值也可以是零或负值,但不能存在负权回路。
因此,Dijkstra算法适用于求解正边权的最短路径问题。
其次是Bellman-Ford算法。
Bellman-Ford算法也是一种单源最短路径算法,与Dijkstra算法相比,Bellman-Ford算法对边的权值没有任何限制,可以存在负权边和负权回路。
算法的基本思想是通过逐步松弛边来更新起始点到其他各点的最短路径,直到找到所有最短路径为止。
但由于负权回路的存在,算法可能会无限循环下去,因此需要通过限制循环次数来避免算法陷入死循环。
最后是Floyd-Warshall算法。
Floyd-Warshall算法是一种多源最短路径算法,用于计算图中任意两个顶点之间的最短路径。
算法的基本思想是通过动态规划的方式,逐步更新任意两个顶点之间的最短路径长度。
与Dijkstra算法和Bellman-Ford算法不同的是,Floyd-Warshall算法对边的权值也没有要求,可以是正值、零值或负值。
但该算法的时间复杂度较高,适用于图中顶点较少的情况。
这些最短路径算法在实际应用中有各自的优势和应用场景。
比如,Dijkstra算法常用于网络路由设计、GPS导航系统等需要求解单源最短路径的问题。
Bellman-Ford算法常用于检测负权回路、寻找图中的负环等。
最短路径问题应用案例
![最短路径问题应用案例](https://img.taocdn.com/s3/m/2d3e4f77a22d7375a417866fb84ae45c3b35c230.png)
最短路径问题应用案例最短路径算法是图论中的一项重要算法,它被广泛应用于各个领域,包括交通规划、电路设计、物流配送等。
本文将通过几个实际案例来介绍最短路径问题的应用。
案例一:交通规划在城市交通规划中,最短路径算法可以用于规划最佳的行车路线,减少交通拥堵和行车时间。
例如,某城市交通局需要规划一条从A地到B地的最短路径,他们可以使用最短路径算法来解决这个问题。
通过将城市道路网络抽象成一个图,将交叉口作为图的节点,道路作为图的边,然后使用最短路径算法找到旅行时间最短的路径。
案例二:电路设计在电路设计中,最短路径算法可以用于找到电路中两个节点之间的最短路径,以便优化电路的布局和设计。
例如,在手机电路板设计中,设计师需要找到两个关键节点之间的最短路径,以便减少信号传输的延迟和电路板的复杂性。
通过将电路图抽象成一个图,将电路中的连接线作为图的边,电路节点作为图的节点,然后使用最短路径算法找到路径长度最短的路径。
案例三:物流配送在物流配送中,最短路径算法可以用于优化货物的配送路径,减少配送成本和时间。
例如,在一家快递公司中,他们需要将货物从仓库快速送达到不同的目的地,他们可以使用最短路径算法来规划货物的配送路线。
通过将仓库、配送站点和目的地抽象成一个图,将配送路径作为图的边,配送站点和目的地作为图的节点,然后使用最短路径算法找到总配送距离最短的路径。
总结:最短路径问题是图论中的一个重要问题,在各个领域都有广泛的应用。
本文通过交通规划、电路设计、物流配送三个实际案例,介绍了最短路径算法在实际应用中的用途和方法。
通过将问题抽象成图,将节点和边的关系表示出来,并利用最短路径算法找到最优解,可以帮助解决各种实际问题。
最短路径算法的应用,不仅可以提高工作效率,还可以减少成本和资源的浪费。
最短路径算法及其应用
![最短路径算法及其应用](https://img.taocdn.com/s3/m/9db1281bc281e53a5802ffe2.png)
湖北大学本科毕业论文(设计)题目最短路径算法及其应用姓名学号专业年级指导教师职称2011年 4月 20 日目录绪论 (1)1 图的基本概念 (1)1.1 图的相关定义 (1)1.2 图的存储结构 (2)1.2.1 邻接矩阵的表示 (2)1.2.2 邻接矩阵的相关结论 (3)2 最短路径问题 (3)2.1 最短路径 (4)2.2 最短路径算法 (4)2.2.1Dijkstra算法 (4)2.2.2Floyd算法 (5)3 应用举例 (5)3.1 Dijkstra算法在公交网络中的应用 (5)3.1.1 实际问题描述 (5)3.1.2 数学模型建立 (5)3.1.3 实际问题抽象化 (6)3.1.4 算法应用 (6)3.2 Floyd算法在物流中心选址的应用 (7)3.2.1 问题描述与数学建模 (7)3.2.2 实际问题抽象化 (7)3.2.3 算法应用 (8)参考文献 (10)附录 (11)最短路径算法及其应用摘要最短路径算法的研究是计算机科学研究的热门话题,它不仅具有重要的理论意义,而且具有重要的实用价值。
最短路径问题有广泛的应用,比如在交通运输系统、应急救助系统、电子导航系统等研究领域。
最短路径问题又可以引申为最快路径问题、最低费用问题等,但它们的核心算法都是最短路径算法。
经典的最短路径算法——Dijkstra和Floyd算法是目前最短路径问题采用的理论基础。
本文主要对Dijkstra和Floyd算法进行阐述和分析,然后运用这两个算法解决两个简单的实际问题。
【关键字】最短路径 Dijkstra算法 Floyd算法图论Shortest path algorithms and their applicationsAbstractThe research about the shortest path is a hot issue in computer science. It has both important theoretical significance and important utility value. The shortest path problem has broad application area, such as transport system, rescue system, electronic navigation system and so on. The shortest path problem can be extended to the problem of the fastest path problem and the minimum cost problem. But their core algorithms are all both the shortest path algorithms. The classical algorithms for the shortest path——Dijkstra and Floyd are the theoretical basis for solving the problems of the shortest path. The article mainly through the demonstration and analysis of the Dijkstra and Floyd algorithms, then use the algorithms to solve the two simple practical problems.【keywords】shortest path Dijkstra algorithm Floyd algorithm graph绪论随着知识经济的到来,信息将成为人类社会财富的源泉,网络技术的飞速发展与广泛应用带动了全社会对信息技术的需求,最短路径问题作为许多领域中选择最优问题的基础,在电子导航,交通旅游,城市规划以及电力,通讯等各种管网,管线的布局设计中占有重要的地位。
最短路径算法在网络路由中的应用
![最短路径算法在网络路由中的应用](https://img.taocdn.com/s3/m/8a61b592250c844769eae009581b6bd97f19bc17.png)
最短路径算法在网络路由中的应用网络路由是指在计算机网络中,确定从源节点到目标节点的最优路径的过程。
在网络通信中,如何快速准确地选择最短路径显得尤为重要。
最短路径算法作为一种重要的数学工具,被广泛应用于网络路由中。
本文将介绍最短路径算法在网络路由中的应用。
一、最短路径算法概述最短路径算法,顾名思义,是一种用于计算图中从起点到终点的最短路径的算法。
在网络路由中,图的顶点代表网络节点,图的边代表网络链接,边的权重代表路径的距离或成本。
最短路径算法通过计算路径的距离或成本,来选择出从源节点到目标节点的最优路径。
二、Dijkstra算法Dijkstra算法是一种常用的最短路径算法。
该算法以源节点为起点,逐渐扩展路径,直到找到目标节点的最短路径。
Dijkstra算法使用一个优先队列来存储尚未访问的节点,并通过不断更新节点的距离值来选择最短路径。
该算法的时间复杂度为O((V+E)logV),其中V为节点数量,E为边数量。
Dijkstra算法在网络路由中的应用广泛。
路由器通过使用Dijkstra算法,能够快速计算出从本地节点到目标节点的最短路径,并将数据包发送至该路径上的下一跳节点。
该算法能够保证网络通信的快速与高效。
三、Bellman-Ford算法Bellman-Ford算法是另一种常用的最短路径算法。
与Dijkstra算法不同,Bellman-Ford算法能够处理存在负权边的图。
该算法通过迭代求解节点之间的最短路径,直到收敛为止。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点数量,E为边数量。
在网络路由中,Bellman-Ford算法常被用于处理含有负权边的情况。
在某些网络拓扑中,节点之间的链接可能会出现故障或拥塞,导致路径的距离值发生变化。
Bellman-Ford算法能够准确计算出最短路径,帮助网络路由器调整数据包的传输路径,维持网络通信的稳定性。
四、Floyd-Warshall算法Floyd-Warshall算法是一种全局最短路径算法,能够计算图中任意两个节点之间的最短路径。
dijkstra最短路径 应用案例
![dijkstra最短路径 应用案例](https://img.taocdn.com/s3/m/c2b124ad80c758f5f61fb7360b4c2e3f572725fa.png)
Dijkstra算法是一种用于解决图的单源最短路径问题的算法,由荷兰计算机科学家埃德斯格·迪克斯特拉提出。
该算法被广泛应用于网络路由算法、城市交通规划、通信网络等领域。
本文将从几个具体的案例出发,介绍Dijkstra最短路径算法的应用。
一、网络路由算法在现代计算机网络中,Dijkstra算法被应用于路由器之间的数据传输。
路由器之间通过Dijkstra算法计算出最短路径,以确保数据包能以最短的路径传输,从而提高网络的传输效率和稳定性。
假设有一个由多个路由器组成的网络,每个路由器之间存在多条连接线路,而每条线路都有一个权重值,代表数据传输的成本。
当一个路由器需要发送数据时,Dijkstra算法可以帮助它找到到达目的地最短且成本最小的路径。
这样,网络中的数据传输就能以最高效的方式进行,从而提升了整个网络的性能。
二、城市交通规划Dijkstra算法也被广泛应用于城市交通规划领域。
在城市交通规划中,人们通常需要找到最短路径以及最快到达目的地的方法,而Dijkstra算法正是能够满足这一需求的算法之一。
假设某城市有多条道路,每条道路都有不同的行驶时间。
当一个人需要从城市的某个地点出发到达另一个地点时,可以利用Dijkstra算法计算出最短行驶时间的路径。
这样,城市交通规划部门就可以根据这些信息对城市的交通流量进行合理分配和调度,提高城市交通的效率。
三、通信网络另一个Dijkstra算法的应用案例是在通信网络中。
通信网络通常是由多个节点和连接这些节点的线路组成的。
而节点之间的通信是通过传送数据包来实现的。
在这种情况下,Dijkstra算法可以帮助确定数据包传输的最短路径,以提高通信网络的效率和稳定性。
在一个由多个节点组成的通信网络中,当一个节点需要向另一个节点发送数据时,Dijkstra算法可以帮助确定最短路径,从而确保数据包能够以最短的路径传输到目的地。
这样一来,通信网络就能够更加稳定地进行数据传输,提高了通信网络的效率。
最短路径算法及应用
![最短路径算法及应用](https://img.taocdn.com/s3/m/ea464d3fa36925c52cc58bd63186bceb18e8ed6d.png)
最短路径算法及应用最短路径算法通常基于图的表示,其中图由节点和边组成。
每个节点代表一个位置,每条边代表两个位置之间的连通关系。
每条边都有一个权重,表示该路径的长度、成本或时间等。
最短路径算法的目标是找到从起始节点到目标节点的最短路径,使得路径上所有边的权重之和最小。
最短路径算法有多种实现方法,包括迪杰斯特拉算法、贝尔曼-福特算法和A*算法等。
迪杰斯特拉算法是一种广泛使用的算法,它适用于无负权边的图。
该算法通过维护一个候选集合,逐步选择离起始节点最近的节点,并更新与其相邻节点的最短路径。
该过程重复直到找到到目标节点的最短路径。
另一种常见的最短路径算法是贝尔曼-福特算法,该算法适用于存在负权边的图。
它通过反复迭代图的所有边来不断更新每个节点的最短路径估计值。
该算法的一个特点是,它可以处理存在负权环的图,并且可以检测到这种情况。
A*算法是一种常用于路径规划的启发式算法。
它根据每个节点的预估成本(通常使用启发函数)来选择下一个要探索的节点。
该算法通过评估每个节点的实际距离加上启发式函数的估计距离,来选择最有希望导致最短路径的节点。
1.路径规划:最短路径算法可以被用于规划最短的路径,以避开交通拥堵,节约时间和成本。
2.交通网络优化:最短路径算法可以用于优化交通网络,找到使整个网络中车辆流量最小的路径。
3.通信网络路由:在通信网络中,最短路径算法可以被用于确定数据包传输的最短路径,以最大程度地减少延迟和拥塞。
4.GPS导航:GPS导航系统使用最短路径算法来计算最短和最快的路径,以引导驾驶员到目的地。
5.配送服务:在配送服务领域,最短路径算法可以被用于确定最佳的交付序列,以减少总运输时间和成本。
6.网页排名:在引擎中,最短路径算法可以被用于计算网页之间的关联程度,以确定网页的排名和结果排序。
总而言之,最短路径算法是图论中重要的算法之一,被广泛应用于各种领域。
通过找到最短路径,这些算法可以帮助我们节约时间、成本和资源,并优化各种系统的性能。
矩阵最短路径算法
![矩阵最短路径算法](https://img.taocdn.com/s3/m/59276f1f580102020740be1e650e52ea5418ce73.png)
矩阵最短路径算法矩阵最短路径算法是一种用于求解矩阵中最短路径的常见算法。
它可以应用于多个领域,例如网络路由、图像处理、路径规划等。
本文将介绍矩阵最短路径算法的原理、应用场景以及具体实现方法。
一、算法原理矩阵最短路径算法的核心思想是通过动态规划的方式,逐步计算出从起点到终点的最短路径。
算法采用一个二维矩阵来表示路径的权重,其中每个元素代表从起点到当前位置的最短路径的权重。
通过迭代更新矩阵中的元素,最终得到起点到终点的最短路径。
具体实现过程如下:1. 创建一个与原始矩阵相同大小的二维矩阵,用于存储最短路径的权重。
2. 初始化起点位置的权重为0,其他位置的权重为无穷大。
3. 从起点出发,逐步更新矩阵中的元素,直到到达终点位置。
4. 对于每个位置,计算从起点到达该位置的路径权重。
路径权重等于上方、左方、右方、下方位置的最小路径权重加上当前位置的权重。
5. 更新矩阵中当前位置的权重为计算得到的最小路径权重。
6. 重复步骤4和步骤5,直到到达终点位置。
7. 最终得到的矩阵中,终点位置的权重即为起点到终点的最短路径权重。
二、应用场景矩阵最短路径算法在实际应用中具有广泛的应用场景。
以下是几个常见的应用场景:1. 网络路由:在计算机网络中,路由器需要选择一条最短路径来转发数据包。
矩阵最短路径算法可以帮助路由器计算出最短路径,从而实现高效的数据传输。
2. 图像处理:在图像处理中,常常需要对图像中的某些特定区域进行处理。
例如,对于一张包含多个物体的图像,我们可以使用矩阵最短路径算法来计算出从图像中的某个位置到达目标物体的最短路径,从而实现目标物体的定位和处理。
3. 路径规划:在导航系统中,我们需要找到一条最短路径来指引用户从起点到达目的地。
矩阵最短路径算法可以帮助导航系统计算出最短路径,并提供给用户最优的行驶路线。
三、实现方法矩阵最短路径算法可以使用多种编程语言来实现。
以下是一种常见的实现方法:1. 创建一个与原始矩阵相同大小的二维矩阵,用于存储最短路径的权重。
最短路径算法在货物配送中的应用
![最短路径算法在货物配送中的应用](https://img.taocdn.com/s3/m/144e5472a22d7375a417866fb84ae45c3b35c2e5.png)
最短路径算法在货物配送中的应用货物配送是现代商业运作中的一个重要环节。
在日益发展的电子商务和物流行业中,如何合理安排货物配送路线、提高物流效率成为了一个严峻的挑战。
最短路径算法作为一种常用的路线规划方法,可以在一定程度上解决这个问题。
本文将探讨最短路径算法在货物配送中的应用,并介绍其中的几种典型算法。
一、最短路径算法简介最短路径算法是一种用于计算两点之间最短路径的方法。
在货物配送中,最短路径即为货物从起始地到目的地所需行驶的最短路线。
根据不同的场景和需求,可以选择不同的最短路径算法,常用的有迪杰斯特拉算法、弗洛伊德算法和A*算法等。
二、迪杰斯特拉算法在货物配送中的应用迪杰斯特拉算法(Dijkstra's algorithm)是一种广泛应用于计算网络中最短路径的算法。
它以起始点为中心,逐步扩展搜索范围,直到找到目的地为止。
在货物配送中,可以将城市或地区抽象成一个由节点和边构成的图,节点表示不同的配送点,边表示两点之间的距离或时间成本。
运用迪杰斯特拉算法可以通过计算最短路径,确定货物配送的最佳路线,以减少行驶距离和时间。
三、弗洛伊德算法在货物配送中的应用弗洛伊德算法(Floyd's algorithm)是一种解决任意两点间最短路径问题的动态规划算法。
与迪杰斯特拉算法不同的是,弗洛伊德算法能够计算任意两点之间的最短路径,适用于规模较小的配送网络。
在货物配送中,如果需要同时考虑多个配送点之间的关系,可以使用弗洛伊德算法得出最佳的整体路线规划。
四、A*算法在货物配送中的应用A*算法(A-star algorithm)是一种启发式搜索算法,常用于解决图上的最短路径问题。
它结合了迪杰斯特拉算法和贪婪算法的优点,通过估计加权函数对搜索路径进行评估,从而找到最短路径。
在货物配送中,A*算法可以快速找到从起始点到目的地的最短路径,并且具有较高的搜索效率。
五、最短路径算法的优势与挑战最短路径算法在货物配送中有着诸多优势。
图的最短路径算法及其在网络中的应用
![图的最短路径算法及其在网络中的应用](https://img.taocdn.com/s3/m/6534f13c31126edb6f1a104f.png)
图的最短路径算法及其在网络中的应用摘要:图论是当代计算机网络重要的理论基础之一,它是计算机网络的抽象模型,是人们认识和把握计算机网络整体结构的有力手段。
图论中的最短路径算法在计算机网络的路由、优化和架构设计等方面起到了举足轻重的作用,为当代庞大的Internet的实现奠定了理论基础。
探究了图的最短路径算法及其在计算机网络中的应用。
关键词:图论;最短路径算法;计算机网络路由算法; Dijkstra算法; Bellman-Ford算法1图及最短路径算法1.1图的定义图(Graph)是由非空的顶点集合V和描述顶点间关系的弧(或边)的集合E组成的二元组,即:G=(V,E)(1)其中,V={vi∈dataobject},E={<vi ,vj>| vi ,vj ∈V} ,dataobject是具有相同性质的数据元素(即顶点)的集合;<vi,vj>表示从vi到vj有一条边单向相连称作弧,且称vi为弧尾(起点),vj为弧头(终点),此时称图为有向图。
若<vi,vj>∈E,必有<vj,vi>∈E,则可以用无序对(vi ,vj)代替这两个有序对,即从vi 到vj有一条双向边(即无向边,也可以看作双向边)相连称作边,此时图称为无向图。
图1展现了一个典型的无向图。
图1典型无向图示意图中的最短路径问题大体可以分为两大类:单源最短路径问题和任意两点间最短路径问题,由于路由算法只涉及单源最短路径问题,因此这里我们只讨论单源最短路径算法。
所谓单源最短路,是从图G=(V,E)中找出从给定源节点s∈V到V中的每个节点的最短路径。
通常,计算单源最短路有两种经典的算法,即Dijkstra算法和Bellman-Ford算法,我们先来讨论一下这两种算法。
1.2最短路径算法1.2.1基于贪心思想的Dijkstra算法Dijkstra算法是一种按路径长度递增的次序产生的最短路径的算法。
它把图中所有的顶点分为两组,第一组是已确定最短路径的顶点集合S,第二组是尚未确定最短路径的集合V-S;把V-S中的顶点按照最短路径长度递增的顺序逐个添加到S中,添加过程中始终保持从V到S中每个顶点的最短路径长度都不大于从V到V-S中任何顶点的最短路径长度,直到从V出发可以到达的顶点都在S中为止。
改进的Dijkstra最短路径算法及其应用研究
![改进的Dijkstra最短路径算法及其应用研究](https://img.taocdn.com/s3/m/c62db657fbd6195f312b3169a45177232e60e476.png)
改进的Dijkstra最短路径算法及其应用研究一、本文概述本文旨在探讨和研究一种改进的Dijkstra最短路径算法,以及其在不同领域的应用。
Dijkstra算法是一种经典的最短路径求解算法,自1956年由荷兰计算机科学家艾兹格·迪杰斯特拉提出以来,已在图论、运筹学、计算机网络等领域得到了广泛应用。
然而,随着数据规模的不断扩大和应用场景的日益复杂,传统的Dijkstra算法在某些情况下表现出了计算效率不高、内存消耗大等问题。
因此,本文致力于通过改进Dijkstra算法,提高其在处理大规模图数据时的性能,并探索其在不同领域中的实际应用。
本文首先将对传统的Dijkstra算法进行详细介绍,分析其基本原理、计算过程以及存在的问题。
在此基础上,提出一种针对大规模图数据的改进Dijkstra算法,包括算法的具体实现步骤、优化策略以及复杂度分析。
接着,本文将通过一系列实验验证改进算法的有效性和性能优势,包括在不同规模图数据上的测试、与其他最短路径算法的比较等。
本文还将探讨改进Dijkstra算法在不同领域的应用。
例如,在交通网络中,可以利用该算法快速找到两点之间的最短路径,为导航、物流等领域提供有力支持;在社交网络分析中,可以利用该算法识别用户之间的最短路径,进而分析社交关系的传播和影响;在图像处理领域,可以利用该算法进行像素间的最短路径计算,实现图像分割、边缘检测等功能。
本文将对改进的Dijkstra最短路径算法进行深入研究和探讨,旨在提高算法性能、拓展应用领域,为相关领域的研究和实践提供有益的参考和借鉴。
二、Dijkstra算法的基本原理与实现Dijkstra算法是一种用于在加权图中查找单源最短路径的算法。
该算法由荷兰计算机科学家艾兹格·迪杰斯特拉在1956年发明,并因此得名。
Dijkstra算法采用贪心策略,逐步找到从源点到其他所有顶点的最短路径。
算法的基本思想是以起始点为中心向外层层扩展,直到扩展到终点为止。
最短路径实际生活中的应用
![最短路径实际生活中的应用](https://img.taocdn.com/s3/m/764d0424f342336c1eb91a37f111f18583d00ced.png)
最短路径实际生活中的应用
最短路径算法是一种常用的图论算法,可以在图中寻找两个节点之间最短的路径。
在实际生活中,最短路径算法可以被应用于多种场景,下面将列举几个例子:
1.导航系统
众所周知,导航系统是基于地图数据实现的,而地图就是一个图。
最短路径算法可以帮助导航系统找到两个地点之间最短的路径,并在地图上标出路线,为司机提供导航服务。
2.物流配送
在物流配送过程中,物流企业需要将货物从仓库运送到客户处。
最短路径算法可以帮助物流企业确定货车的行驶路线,节约时间和成本。
此外,最短路径算法还可以帮助物流企业规划仓库的位置,让仓库与客户的距离更近,提高效率。
3.电力网络
电力网络中的电线杆和变电站可以看作是节点,它们之间的电线可以看作是边。
最短路径算法可以帮助电力公司确定电线的布局,让电线的长度更短,降低电力损耗和成本。
4.社交网络
社交网络中的用户可以看作是节点,他们之间的关注和好友关系可以看作是边。
最短路径算法可以帮助社交网络推荐好友或者关注对象,让用户之间的连接更加紧密。
总之,最短路径算法在实际生活中有着广泛的应用,它可以帮助
我们优化决策,提高效率和降低成本。
物流配送中的路径规划算法使用方法
![物流配送中的路径规划算法使用方法](https://img.taocdn.com/s3/m/e1e86c0d777f5acfa1c7aa00b52acfc788eb9f13.png)
物流配送中的路径规划算法使用方法在现代物流配送领域,对于如何高效地规划运输路径是一个至关重要的问题。
随着物流配送规模的不断增长,人们需要寻找一种能够快速、准确地计算出最优路径的算法。
路径规划算法可以帮助物流企业降低运输成本,提高配送效率。
本文将介绍一些常见的路径规划算法及其使用方法,以帮助读者了解如何应用它们来优化物流配送过程。
1. 最短路径算法最短路径算法是一种经典的路径规划算法,常用于确定两点之间的最短路径。
其中,迪杰斯特拉算法和弗洛伊德算法是两种常见的最短路径算法。
- 迪杰斯特拉算法:该算法以起点为基准,逐步确定到其他各顶点的最短路径。
步骤如下:1) 创建一个数组用于存储起点到其他顶点的最短路径长度。
2) 初始化起点到自身的最短路径长度为0,其他顶点的最短路径长度为无穷大。
3) 选择起点,并将其标记为已访问。
4) 更新起点到其相邻顶点的最短路径长度。
5) 选择一个未访问过的顶点,将其标记为已访问,并更新起点到该顶点的最短路径长度。
6) 重复步骤4和步骤5,直到所有顶点都被访问过。
- 弗洛伊德算法:该算法用于计算任意两点之间的最短路径。
其步骤如下:1) 创建一个二维数组,用于存储任意两点之间的最短路径长度。
2) 初始时,数组元素的值为两点之间的直接距离。
若两点之间没有直接路径,则将其距离设置为无穷大。
3) 通过动态规划的方式,逐步更新数组元素的值,以计算出任意两点之间的最短路径长度。
2. A*算法A*算法是一种启发式搜索算法,常用于解决具有多个目标点的路径规划问题。
该算法通过估计到目标点的距离,来选择当前节点的下一个访问节点。
- 步骤如下:1) 创建两个列表,一个用于存储已访问过的节点,一个用于存储待访问的节点。
2) 初始化起点节点,并将其加入待访问列表中。
3) 选择一个待访问节点,通过计算节点到目标点的估计距离来确定下一个访问节点。
4) 更新当前节点的相邻节点的距离和父节点,并将其加入待访问列表中。
两点之间最短路径算法
![两点之间最短路径算法](https://img.taocdn.com/s3/m/fe32cb4491c69ec3d5bbfd0a79563c1ec5dad781.png)
两点之间最短路径算法摘要:1.算法简介2.常用算法3.算法应用4.算法优缺点正文:1.算法简介两点之间最短路径算法,顾名思义,就是用于计算两点之间最短路径的算法。
在数学、物理、计算机科学等领域都有广泛的应用。
它的核心思想是在给定的图或空间中,找到连接起点和终点的一条路径,使得该路径的长度最短。
2.常用算法常用的两点之间最短路径算法有以下几种:(1)欧几里得算法:也称为欧几里得距离算法,主要用于计算平面上两点之间的最短距离。
其基本思想是:对于每一步,都将当前点与目标点连线作为新的边,不断更新当前点,直至到达目标点。
(2)曼哈顿算法:也称为“城市街区”问题算法,主要用于计算网格状图(如城市地图)中两点之间的最短路径。
其基本思想是:对于每一步,都将当前点与目标点连线作为新的边,不断更新当前点,直至到达目标点。
(3)狄拉克算法:也称为狄拉克距离算法,主要用于计算空间中两点之间的最短距离。
其基本思想是:对于每一步,都将当前点与目标点连线作为新的边,不断更新当前点,直至到达目标点。
3.算法应用两点之间最短路径算法在实际应用中具有重要意义,如在交通运输、物流配送、网络通信等领域都有广泛的应用。
例如,在城市交通规划中,通过计算两点之间的最短路径,可以有效地减少交通拥堵,提高道路通行效率;在物流配送中,通过计算货物的起点和终点之间的最短路径,可以降低运输成本,提高配送效率。
4.算法优缺点优点:(1)计算简便:算法原理简单,计算过程相对容易。
(2)适用性广:可以应用于各种类型的图(如平面图、网格图、空间图等)和各种场景。
缺点:(1)计算量较大:对于大规模的数据,计算过程可能会较为耗时。
最短路径算法附应用
![最短路径算法附应用](https://img.taocdn.com/s3/m/84f730b6daef5ef7ba0d3c2c.png)
最短路径算法及应用乘汽车旅行的人总希望找出到目的地的尽可能的短的行程。
如果有一张地图并在图上标出每对十字路口之间的距离,如何找出这一最短行程?一种可能的方法就是枚举出所有路径,并计算出每条路径的长度,然后选择最短的一条。
那么我们很容易看到,即使不考虑包含回路的路径,依然存在数以百万计的行车路线,而其中绝大多数是不值得考虑的。
在这一章中,我们将阐明如何有效地解决这类问题。
在最短路径问题中,给出的是一有向加权图G=(V,E,W),其中V为顶点集,E为有向边集,W为边上的权集。
最短路径问题研究的问题主要有:单源最短路径问题、与所有顶点对之间的最短路径问题。
一、单源最短路径问题所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点S∈V 到V中的每个结点的最短路径。
首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。
(一)Dijkstra算法对于图G,如果所有Wij≥0的情形下,目前公认的最好的方法是由Dijkstra于1959年提出来的。
例1 已知如下图所示的单行线交通网,每弧旁的数字表示通过这条单行线所需要的费用,现在某人要从v1出发,通过这个交通网到v8去,求使总费用最小的旅行路线。
Dijkstra方法的基本思想是从vs出发,逐步地向外探寻最短路。
执行过程中,与每个点对应,记录下一个数(称为这个点的标号),它或者表示从vs到该点的最短路的权(称为P 标号)、或者是从vs到该点的最短路的权的上界(称为T标号),方法的每一步是去修改T标号,并且把某一个具T标号的改变为具P标号的点,从而使G中具P标号的顶点数多一个,这样至多经过n-1(n为图G的顶点数)步,就可以求出从vs到各点的最短路。
在叙述Dijkstra方法的具体步骤之前,以例1为例说明一下这个方法的基本思想。
例1中,s=1。
因为所有Wij≥0,故有d(v1, v1)=0。
解最短路径问题的两种方法及其应用
![解最短路径问题的两种方法及其应用](https://img.taocdn.com/s3/m/30d66c06f011f18583d049649b6648d7c1c708f1.png)
解最短路径问题的两种方法及其应用
最短路径问题是指在一张带权图中找到两个节点之间最短的路径。
最短路径问题是许多计算机科学和应用领域中的一个基本问题。
以下是解决这个问题的两种方法:
1. Dijkstra算法:Dijkstra算法是解决最短路径问题的一种
基本算法,它是基于贪心思想的。
该算法首先确定起始点到其他节
点的距离(记为d),然后不断扩大已确定最短距离的节点集,直
到覆盖所有节点。
Dijkstra算法适用于单源最短路径,即从一个节
点到所有其他节点的最短路径。
2. Floyd算法:Floyd算法也是一种经典的解决最短路径问题
的算法,它是一个动态规划算法。
该算法利用动态规划的思想,通
过比较任意两个节点之间经过第三点(中转点)的路径长度,更新
路径长度。
Floyd算法适用于多源最短路径,即从任意两个节点之
间的最短路径。
这两种算法可广泛应用于各种计算机科学和应用领域,如网页
排名算法、图像处理、计算机网络等。
在实际应用中,我们需要根
据实际问题的特点,选择最适合的算法。
最短路径实际生活中的应用
![最短路径实际生活中的应用](https://img.taocdn.com/s3/m/00aca472326c1eb91a37f111f18583d048640f5e.png)
最短路径实际生活中的应用
最短路径是一种基本的图论算法,它可以找到图中两个节点之间的最短路径。
在实际生活中,最短路径算法可以应用于许多场景,例如:
1. 地图导航:现代导航系统使用最短路径算法来计算出两个地点之间的最短路线。
这使得驾驶者可以选择最快或最短的路线来到达目的地。
2. 物流管理:在仓储和物流管理中,最短路径算法可以用来确定货物在仓库之间的最佳路线,以最大程度地减少运输时间和成本。
3. 交通控制:最短路径算法可以帮助城市规划者优化城市交通流量,减少交通拥堵。
这种算法可以用来设计最佳的公共交通路线和交通信号灯控制系统。
4. 通信网络:在计算机网络和通信系统中,最短路径算法可以用来确定数据包从源节点到目的节点的最短路径。
这有助于提高网络性能和减少通信延迟。
5. 社交网络:最短路径算法可以应用于社交网络分析中,帮助研究者识别社交网络中的核心节点和社区结构。
总之,最短路径算法在实际生活中有广泛的应用,这些应用不仅有助于提高生活质量,还有助于提高生产效率和经济效益。
- 1 -。
最短路径问题
![最短路径问题](https://img.taocdn.com/s3/m/aa08c7660622192e453610661ed9ad51f01d5431.png)
最短路径问题最短路径问题是图论中一个重要的研究领域,即求解两个节点之间的最短路径。
在实际生活中,最短路径问题有着广泛的应用,例如导航系统、交通规划以及网络通信等领域。
本文将介绍最短路径问题的定义、常见算法以及应用实例。
一、定义最短路径问题可以用来求解从一个节点到另一个节点的最短路径。
在图论中,最短路径通常指的是路径上的边的权重之和最小。
图可以由节点和边组成,边可以有权重,表示两个节点之间的距离或成本。
最短路径问题的目标是找到两个节点之间的路径,使得路径上的边的权重之和最小。
二、算法1. Dijkstra算法Dijkstra算法是解决最短路径问题的经典算法之一。
该算法采用贪心策略,逐步确定起点到其他节点的最短路径。
具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,所有其他节点的距离为无穷大。
(2)选择一个未被访问过的节点,标记为当前节点。
(3)对于当前节点的所有邻居节点,更新其距离为当前节点距离加上边的权重,并更新最短路径。
(4)继续选择未被访问过的节点中最短路径最小的节点,标记为当前节点,重复步骤(3)。
(5)重复步骤(3)和(4),直到所有节点都被访问过。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的数量。
2. Bellman-Ford算法Bellman-Ford算法是另一种解决最短路径问题的算法。
与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。
该算法通过迭代更新距离数组,逐步确定最短路径。
具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,其他节点的距离为无穷大。
(2)对于图中的每条边,重复以下步骤:a. 从边的起点到终点的距离是否可以通过起点到起点的距离加上边的权重来达到更小值。
b. 如果是,则更新终点的距离为该更小值。
(3)重复步骤(2)|V|-1次,其中V为节点的数量。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的数量,E为边的数量。
最短路径算法与应用中的问题分析(史上最全路径算法总结)
![最短路径算法与应用中的问题分析(史上最全路径算法总结)](https://img.taocdn.com/s3/m/8ecc20f2700abb68a982fbd8.png)
二,任意权值的单源最短路径算法,解决上述问题 2.
1, 问题的描述: 给定一个有向带权图 D 与源点 v,各边上的权值为任意实数,要求找出从 v 出 发到 D 中其它各顶点的最短路径。 2, 算法的主要思想: 此种情况下我们可以用 Bellman-ford 算法。 当图中没有由带负权值的边组成的回 路时,有 n 个顶点的图中任意两个顶点之间如果存在最短路径,此路径最多有 n-1 条边。 Bellman-Ford 方法构造一个最短路径长度数组序列 dist1[u], dist2[u], …, distn-1[u],其中,dist n-1[u]是从源点 v 出发最多经过不构成带负长度边回路的 n-1 条边到达终点 u 的最短路径长度。算法的最终目的是计算出 dist
六,如果权值非负,求其总长最短的一条过全部节点的初级回路。解 决问题 7。
1,问题的描述: 给定一个正权完全图, 求其总长最短的哈密顿回路。 所谓的哈密顿回路便是无向 图中一条经过全部节点的初级回路。这个便是图论中非常经典的旅行商问题。 2,算法的主要思想: 解决旅行商问题的一种比较精确的求解方法是分支与界法。 分支与界法的基本思路是: 1, 首先将边权由小到大排序,初始界 d0 。 2, 在边权序列中依次选边进行深探,直到选取 n 条边,判断是否构成 H 回路, 若是, d0 d (s1) ,结束。 3, 继续深探, 依次删除当前 si 中的最长边, 加入后面第一条待选边, 进行深探, 如果它是 H 回路且 d( si ) d 0 ,则 d0 d ( si ) 作为界。 4, 退栈过程,不能再深探时需要退栈。如果栈空,结束,其最佳值为 d0。否则 如果新分支的 d( si ) d 0 ,继续退栈;若 d(si)<d0,转 3. 这种搜索过程是在不断的构造分支与确定界值。一旦确定了界值,则对大于等于 界值的分支不在搜索, 而且最后得到的界值就是问题的最佳解。但是在最坏的情 况下,该算法的时间复杂度是 O(n!)。因此在实际问题中,我们经常采用近似算 法求解问题的近似最优解,近似算法中比较好的是“便宜”算法。 便宜算法的基本思路: 初始化时 T=(1,1); S ={2,3, · · · ,n} T 是一个不断扩充的初级回路,最初是一个自环。首先我们选取 S 中与 T 距离最 近的节点 j。设(j,t)是相应的边,这时节点 j 或插入到回路 T 中 t 的前面或者 插入到其后面,这根据 j 插入后回路 T 长度增量的大小而定。即如果 ,则插入到 t 与 t1 之间,否则 w ( j ,t ) w ( j ,t 1) w( t ,t 1) w (j t , ) w (j t , 2 ) w t ( t, 2 ) 插入在 t 与 t2 之间。
最短路算法的应用
![最短路算法的应用](https://img.taocdn.com/s3/m/b860ed5b58eef8c75fbfc77da26925c52cc5911a.png)
最短路算法的应用最短路径算法的应用最短路径算法(Shortest Path Algorithm)是图论中的经典问题,其目标是在一个加权有向图或无向图中找到两个顶点之间的最短路径。
最短路径算法在现实生活中有着广泛的应用,包括交通导航、网络路由、物流运输等领域。
本文将详细介绍最短路径算法的原理及其应用。
一、最短路径算法的原理最短路径算法的核心思想是通过遍历图中的节点,并计算出每个节点到起始节点的最短路径值(即距离)。
最短路径算法主要有以下两种经典算法:1. 迪杰斯特拉算法(Dijkstra's Algorithm):迪杰斯特拉算法用于求解单源最短路径问题,即给定一个起始节点,计算其到图中所有其他节点的最短路径。
该算法的步骤如下:(1)初始化:设置起始节点的最短路径值为0,其他节点的最短路径值为无穷大。
(2)选择最短路径值最小的节点,并将其标记为已访问。
(3)更新相邻节点的最短路径值:对于当前节点的所有相邻节点,通过比较经过当前节点的路径长度与已记录的最短路径值,更新最短路径值。
(4)重复步骤(2)和(3),直到所有节点都被标记为已访问。
(5)得到起始节点到图中其他节点的最短路径值。
2. 贝尔曼-福特算法(Bellman-Ford Algorithm):贝尔曼-福特算法用于求解任意两个节点之间的最短路径,可以处理存在负权边的图。
该算法的步骤如下:(1)初始化:设置起始节点的最短路径值为0,其他节点的最短路径值为无穷大。
(2)对所有边进行松弛操作:遍历图中的所有边,通过比较经过当前边的路径长度与已记录的最短路径值,更新最短路径值。
(3)重复步骤(2)|V|-1次(其中|V|为图中节点的个数),以保证所有节点的最短路径值被正确计算。
(4)检测是否存在负权回路:再次遍历图中的所有边,如果经过某条边的路径长度仍然可以被缩短,则说明图中存在负权回路,无法得到最短路径。
(5)得到任意两个节点之间的最短路径值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北大学本科毕业论文(设计)题目最短路径算法及其应用姓名学号专业年级指导教师职称2011年 4月 20 日目录绪论 (1)1 图的基本概念 (1)1.1 图的相关定义 (1)1.2 图的存储结构 (2)1.2.1 邻接矩阵的表示 (2)1.2.2 邻接矩阵的相关结论 (3)2 最短路径问题 (3)2.1 最短路径 (4)2.2 最短路径算法 (4)2.2.1Dijkstra算法 (4)2.2.2Floyd算法 (5)3 应用举例 (5)3.1 Dijkstra算法在公交网络中的应用 (5)3.1.1 实际问题描述 (5)3.1.2 数学模型建立 (5)3.1.3 实际问题抽象化 (6)3.1.4 算法应用 (6)3.2 Floyd算法在物流中心选址的应用 (7)3.2.1 问题描述与数学建模 (7)3.2.2 实际问题抽象化 (7)3.2.3 算法应用 (8)参考文献 (10)附录 (11)最短路径算法及其应用摘要最短路径算法的研究是计算机科学研究的热门话题,它不仅具有重要的理论意义,而且具有重要的实用价值。
最短路径问题有广泛的应用,比如在交通运输系统、应急救助系统、电子导航系统等研究领域。
最短路径问题又可以引申为最快路径问题、最低费用问题等,但它们的核心算法都是最短路径算法。
经典的最短路径算法——Dijkstra和Floyd算法是目前最短路径问题采用的理论基础。
本文主要对Dijkstra和Floyd算法进行阐述和分析,然后运用这两个算法解决两个简单的实际问题。
【关键字】最短路径 Dijkstra算法 Floyd算法图论Shortest path algorithms and their applicationsAbstractThe research about the shortest path is a hot issue in computer science. It has both important theoretical significance and important utility value. The shortest path problem has broad application area, such as transport system, rescue system, electronic navigation system and so on. The shortest path problem can be extended to the problem of the fastest path problem and the minimum cost problem. But their core algorithms are all both the shortest path algorithms. The classical algorithms for the shortest path——Dijkstra and Floyd are the theoretical basis for solving the problems of the shortest path. The article mainly through the demonstration and analysis of the Dijkstra and Floyd algorithms, then use the algorithms to solve the two simple practical problems.【keywords】shortest path Dijkstra algorithm Floyd algorithm graph绪论随着知识经济的到来,信息将成为人类社会财富的源泉,网络技术的飞速发展与广泛应用带动了全社会对信息技术的需求,最短路径问题作为许多领域中选择最优问题的基础,在电子导航,交通旅游,城市规划以及电力,通讯等各种管网,管线的布局设计中占有重要的地位。
最短路径,顾名思义就是在所有的路径中找到一条距离最短的路径,而我们所说的最短路径通常不仅仅指地理意义的距离最短,还可以引申到其他的度量,如时间,费用,路线容量等。
相应地,最短路径问题就成为最快路径问题,最低费用问题等,所以我们所说的最短路径也可以看作是最优路径问题。
最短路径问题在交通网络结构的分析,交通运输路线(公路、铁路、河流航运线、航空线、管道运输线路等)的选择,通讯线路的建造与维护,运输货流的最小成本分析,城市公共交通网络的规划等,都有直接应用的价值。
最短路径问题在实际中还常用于汽车导航系统以及各种应急系统等(如110报警、119火警以及120医疗救护系统)这些系统一般要求计算出到出事地点的最佳路线的时间应该在1s 到3s 内,在行车过程中还需要实时计算出车辆前方的行驶路线,这就决定了最短路径问题的实现应该是高效的。
最短路径问题一直是计算机科学,运筹学,交通工程学,地理信息学等学科的一个研究热点。
经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。
1 图论基本概念图(graph)是一种较线性表和树更为复杂的数据结构,图与线性表和树的结构区别表现在结点之间的关系上,线性表中的每个结点(除首尾结点外)都有一个前驱结点和一个后继结点,结点与结点之间的关系是一对一的关系;树上的每个结点都有一个父结点(根结点除外)和一个或多个孩子结点(叶子结点除外),结点与结点的关系是一对多的关系;而图中结点之间的关系是多对多的关系,结点与结点之间的连接是任意的,每对结点间可以有连接也可以没有连接。
1.1 图的相关定义图G 是由一个非空的顶点集合V 和一个描述顶点之间多对多关系的边集合E 组成的一个数据结构,记为G V,E =<>,其中:(1)12n V {v ,v ,...,v }=是有限的顶点集合,i v 称为顶点,简称点,V 称为顶点集。
(2)E 是有限集合,称为边集。
E 中每个元素都有V 中的顶点与之对应,称之为边。
定义1 无向图和有向图如果连接某两个不同顶点间的边是有方向的,则称该边为有向边。
有向边用有序对i j V ,V <>表示,其中i V 表示源点,j V 表示终点。
如果图G 的所有边都是有向边,则称图G 为有向图。
如果连接某两个不同顶点间的边是没有方向的,则称该边为无向边。
无向边用无序对i j (V ,V )表示,边i j (V ,V )和边j i (V ,V )代表同一条边。
如果图G 中的所有边都是无向边,则称图G 为无向图。
定义2 邻接点与邻接边在图G V,E =<>中,若两个顶点i V 和j V 是一条边的端点,则称这两个顶点互为邻接点,否则i V 与j V 称为不邻接的。
类似地,具有公共顶点的两条边称为邻接边。
定义3 度①有向图入度:有向图中以顶点i V 为终点的边的数目,称为顶点i V 的入度。
出度:有向图中以顶点i V 为源点的边的数目,称为顶点i V 的出度。
②无向图无向图中,与顶点i V 相关连的边的个数为顶点i V 的度。
定义4 路径在无向图G V,E =<>中,从顶点i V 到j V 的一条路径是一个顶点序列 (i V ,i1V ,i2V ,…,im V ,j V ),称为从顶点i V 到j V 的一条路径。
如果是有向图,则路径也是有向的,路径的长度是指路径上的边或弧的数目。
如果序列中第一个顶点和最后一个顶点相同的路径称为回路或环。
如果序列中顶点不重复出现的路径称为简单路径。
定义5 连通在无向图G 中,如果从顶点i V 到顶点j V 有路径存在,则称i V 和j V 是连通的。
若图中任意两个顶点都连通的无向图称为连通图。
在有向图中如果从顶点i V 到顶点j V 有路径存在,则称i V 到j V 是连通的。
若图中的每一对顶点都连通的有向图称为强连通图。
定义6 权与网如果图的边或弧具有与之相关的数,则这种与连接顶点i V 和j V 的边或弧相关的数i j W(V ,V )就称为边或弧的权。
带权的图就称为网。
权可以用来描述从一个顶点到另一个顶点的距离或耗费。
如果把道路交通网中的道路起点、终点和交叉口表示为顶点,把道路表示威连接顶点的弧,把道路的长度、通行时间等属性表示为道路的权,那么道路网就被抽象成为带权的图,而与之相关的问题就可以利用图论的方法进行分析。
1.2 图的存储结构图的存储结构除了要存储图中各个顶点本身的信息外,同时还要存储顶点与顶点之间的所有关系(边的信息)。
常用的图的存储结构有邻接矩阵、邻接表、十字邻接表和邻接多重表。
由于本文主要用到第一种,故只介绍第一种。
1.2.1 邻接矩阵的表示邻接矩阵是表示顶点之间相邻关系的矩阵。
设G V,E =<>,是具有n (n 大于0)个顶点的图,顶点的顺序依次为(0V ,1V ,…,n-1V ),则G 的邻接矩阵A 是n 阶方阵,其定义如下:A[i][j]=10⎧⎨⎩i j i j v ,v E v ,v E ∈∈对于无向图(),对于有向图<>其它情况若G 是网,则邻接矩阵可定义为: A[i][j]=i jw 0⎧⎨∞⎩,或 i j i j v ,v v ,v E ∈若()或<>其它情况邻接矩阵定义如下:int adjmatrix =Array[n][n]。
邻接矩阵的数据类型定义如下:#define MAXV <最大顶点个数> / /最多顶点个数 typedef struct vertex {int num; / /顶点编号 char data; / /顶点的信息 }VertexType ;typedf stuct {int n,e; / /顶点个数,边的条数 VertexType vexs[MAXV]; / /顶点集合 int edges[MAXV][MAXV]; / /边的结合 }MGraph;1.2.2 邻接矩阵的相关结论在无向图的邻接矩阵具有以下特征: (1)矩阵是对称的;(2)第i 行或第i 列中l 的个数为顶点i 的度; (3)矩阵中1的个数为图中边的数目;(4)很容易判断顶点i 和顶点j 之间是否有边相连(看矩阵中i 行j 列值是否为l)。
而有向图的邻接矩阵的特征为: (1)矩阵不一定是对称的;(2)第i 行中1的个数为顶点i 的出度; (3)第j 列l 的个数为顶点j 的入度; (4)矩阵中1的个数为图中弧的数目;(5)很容易判断顶点i 和顶点j 之间是否有弧相连。
2 最短路径问题所谓最短路径即是从图G 中某对顶点i V 和j V (i j ≠)之间的所有路径中选出权值之和最短的一条路径作为顶点i V 到顶点j V 的最短路径。