圆柱和圆锥的特征与知识
(完整版)圆柱圆锥知识点总结
![(完整版)圆柱圆锥知识点总结](https://img.taocdn.com/s3/m/c797e419102de2bd9705889d.png)
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
正方体、长方体、圆柱体、圆锥体的特征各是什么?
![正方体、长方体、圆柱体、圆锥体的特征各是什么?](https://img.taocdn.com/s3/m/2e1e87cb951ea76e58fafab069dc5022abea464b.png)
正方体、长方体、圆柱体、圆锥体的特征各是什么?1、长方体的特征:有12条棱,6个面,8个角,每个角都是90度。
2、正方体的特征:在长方体中,6个面都相等的长方体是正方体。
3、圆柱特征:1)上下面均为圆且相等、平行。
2)有一个侧面为曲面。
3)上下两面外加侧面(曲面)共三个面。
4、圆锥的特征:1)圆锥是由2个面围成。
2)一个底面是平面,一个侧面是曲面。
扩展资料:具体特征:一、长方形的特征1、长方体有6个面。
每组相对的面完全相同。
2、长方体有12条棱,相对的四条棱长度相等。
按长度可分为三组,每一组有4条棱。
3、长方体有8个顶点。
每个顶点连接三条棱。
三条棱分别叫做长方体的长,宽,高。
4、长方体相邻的两条棱互相垂直。
二、正方形的特征1、有一组邻边相等且一个角是直角的平行四边形叫做正方形。
2、四条边都相等、四个角都是直角的四边形是正方形。
3、正方形的两组对边分别平行,四条边都相等;四个角都是90°;对角线互相垂直、平分且相等,每条对角线都平分一组对角。
4、有一组邻边相等且一个角是直角的平行四边形叫做正方形。
有一组邻边相等的矩形叫做正方形,有一个角是90°的菱形叫做正方形。
正方形是矩形的特殊形式,也是菱形的特殊形式。
三、圆锥体的特征1、圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
2、以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥。
四、圆柱体的特征1、旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。
2、平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。
让我们来认识圆锥体和圆柱体
![让我们来认识圆锥体和圆柱体](https://img.taocdn.com/s3/m/f81e7d0db207e87101f69e3143323968011cf4d9.png)
让我们来认识圆锥体和圆柱体圆锥体和圆柱体是我们日常生活中常见的几何体。
它们的形状都与圆有关,但具有不同的特点和用途。
在本文中,我将介绍圆锥体和圆柱体的定义、特征以及一些相关的应用。
一、圆锥体圆锥体由一个圆形底面和一个顶点连接而成,侧面是由与底面边缘相连的直线段组成。
圆锥体的特点主要有以下几点:1. 每个侧面都是一个三角形,其中的两条边是直线段,另一条边是连接底面圆的弧线;2. 顶点位于与底面圆垂直的中轴线上;3. 圆锥的高度是从底面圆心到顶点的直线距离。
圆锥体的形状灵活多样,常见的包括圆锥、直角圆锥和棱锥等。
它们在实际生活中具有广泛的应用,比如:1. 圆锥形冰淇淋:冰淇淋筒的形状就是一个圆锥体,底部是圆形,顶点是尖的,可以方便地让我们享用冰淇淋;2. 圆锥形喷泉:喷泉顶部喷水的形状通常是一个圆锥体,因为它可以使水流出更远,形成美丽的水景;3. 圆锥形纸杯:许多纸杯的形状都是圆锥体,这种形状方便我们手持杯子,喝水更加方便。
二、圆柱体圆柱体由一个圆形底面和一个与底面平行的圆形顶面连接而成,侧面由底面和顶面之间的曲面组成。
圆柱体的特点包括:1. 侧面是一个矩形,两条边垂直于底面,并且长度相等;2. 顶面和底面都是圆形,且直径相等;3. 圆柱的高度是从底面到顶面的垂直距离。
圆柱体在工程学、建筑学以及日常生活中都有着广泛的应用。
以下是一些例子:1. 圆柱形铅笔:许多铅笔的外形是一个圆柱体,这种形状方便我们握持,进行写字和画画;2. 圆柱形水瓶:许多水瓶的外形也是一个圆柱体,底面和顶面都是圆形,容易装水和倒水,方便我们饮水;3. 圆柱形筒灯:一些室内照明灯具的外形是圆柱体,比如筒灯,它可以提供均匀的光线照射。
圆锥体和圆柱体作为常见的几何体,不仅在日常生活中有实际应用,也在数学和工程学领域有着重要的地位。
对于了解和认识它们的形状和特征,有助于我们更好地应用它们,解决实际问题。
通过本文的介绍,相信你对圆锥体和圆柱体已经有了更深入的认识。
圆柱和圆锥各有什么特征
![圆柱和圆锥各有什么特征](https://img.taocdn.com/s3/m/e3bb19685b8102d276a20029bd64783e08127d68.png)
圆柱和圆锥各有什么特征在我们的日常生活和学习中,圆柱和圆锥是常见的几何图形。
它们具有独特的特征,这些特征不仅在数学领域中具有重要意义,也在实际生活中有广泛的应用。
先来说说圆柱。
圆柱有两个底面,这两个底面是完全相同的圆形。
当我们观察一个圆柱时,会发现它的侧面是一个曲面。
这个曲面展开后是一个长方形,长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。
圆柱的高是指两个底面之间的距离,并且圆柱的高有无数条,且长度都相等。
无论从哪个角度测量,圆柱的高都是固定不变的。
圆柱的体积计算公式是底面积乘以高。
底面积就是圆的面积,即π乘以底面半径的平方。
所以圆柱的体积就是π乘以底面半径的平方再乘以高。
在实际生活中,圆柱的身影随处可见。
比如我们常见的水杯、易拉罐、柱子等,都具有圆柱的形状。
这些物品之所以设计成圆柱的形状,是因为圆柱具有稳定性,能够承受较大的压力,而且在存储和运输过程中也比较方便。
接下来聊聊圆锥。
圆锥只有一个底面,这个底面同样是一个圆形。
圆锥的侧面也是一个曲面,不过将侧面展开后是一个扇形。
圆锥的顶点到底面圆心的距离叫做圆锥的高。
与圆柱不同,圆锥只有一条高。
圆锥的体积是等底等高圆柱体积的三分之一。
其体积计算公式是三分之一乘以底面积乘以高。
在生活中,我们常见的圆锥形物体也有很多,比如圣诞帽、漏斗、尖顶的建筑等。
圆锥形状的设计往往是为了满足特定的功能需求。
比如漏斗,其圆锥形的设计可以让物质更顺畅地流动和集中。
从外观上来看,圆柱和圆锥就有明显的区别。
圆柱的形状较为规整和稳定,而圆锥则有一种尖锐和独特的视觉效果。
从性质上来说,圆柱的表面积等于两个底面圆的面积加上侧面长方形的面积。
而圆锥的表面积则是底面圆的面积加上侧面扇形的面积。
在数学计算中,对于圆柱和圆锥的相关题目,我们需要清晰地理解它们的特征和计算公式。
比如,当已知圆柱的底面半径和高,要求体积时,就能够准确地运用体积公式进行计算。
同样,对于圆锥的相关问题,也能根据其特征和公式进行求解。
小学六年级下册数学试题-圆柱圆锥知识点复习 习题巩固 冀教版 (无答案)
![小学六年级下册数学试题-圆柱圆锥知识点复习 习题巩固 冀教版 (无答案)](https://img.taocdn.com/s3/m/41209156c1c708a1284a44cd.png)
4、圆柱与圆锥展开图:米、1厘米的长方体,求剩下部分的表面积?例4:有一张长方形铁皮,如图剪下阴影部分制成圆柱体,求这个圆柱体的表面积?例5:如图,在棱长为5厘米的正方体中间挖了一个半径为2厘米的圆柱,求物体的表面积。
都是1米,求这个物体的表面积。
涂成红色的小正方体各有多少块?防锈漆,那么一共要涂多少平方厘米?如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?的表面积与体积。
容器还能装多少升水?块的高。
课堂练习1、一个盛水的圆柱形水桶,内底面周长为28.26分米,当一个长方形的物体投入水中时,水面上升1分米,量得这个长方体的长为3.14分米,宽为1分米,它的高是多少分米?2、在长为15厘米,宽为12厘米的长方体水箱中,有10厘米深的水,现沉入一个高为10厘米的圆锥形铁块(全部浸入水中),水面上升了2厘米,求圆锥的底面积?3、甲,乙两个圆柱体容器,底面积比为4:3,甲容器水深7厘米,乙容器水深3厘米,再往两容器中各注入同样多的水,直到水深相等,这时水深多少厘米?4、一个胶水瓶,它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米,当瓶子正放时,瓶内胶水深为8厘米,瓶子倒放时,空余部分为2厘米,则瓶内所装水的体积是多少?5、有A.B两个圆柱形容器,最初在容器A里装有2升水,容器B是空的。
现在往两个容器中以每分钟0.4升的流量注入水,4分钟后,两个容器的水面高度相等。
设B的底面半径为5厘米,那么A的底面直径是多少厘米?6、将棱长为5的大正方体切割成125个棱长为1的小正方体,这些小正方体的表面积总和是原大正方体表面积的多少倍?课后作业1、一个长10厘米,宽8厘米,高6厘米的长方体先削成一个最大的圆柱,再削成一个最大的圆锥,每次要削去百分之几的体积?(想一想,怎样削最大?怎样算最方便?)2、一个长方体的长为12厘米,高为8厘米,前后两个面、上面和侧面各一个面的面积之和是392平方厘米,求另外两个面积是多少平方厘米?这个长方体的体积是多少立方厘米?3、一个圆锥形沙堆,底面直径20米,高6米,用这堆沙在10米宽的公路上堆10厘米厚的路面,能铺多少米长?4、一个圆柱体的底面周长是62.8 厘米,高是30 厘米,把它加工成一个最大的长方体,削去部分的体积是多少立方厘米?5、一个圆柱体和一个圆锥体体积的比是2:1,底面积的比是1:2,如果圆柱的高是6厘米,那么圆锥的高是多少厘米?。
圆柱圆锥概念
![圆柱圆锥概念](https://img.taocdn.com/s3/m/4bd81162551810a6f424865b.png)
1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱特征:无顶点,有三个面(一个侧面,两个底面,底面是圆形并且大小完全相同),两个底面间的距离就是圆柱的高,所以圆柱有无数条高。
3.圆柱的侧面沿高展开是一个长方形或正方形,长是圆柱底面周长,宽是圆柱的高。
当底面周长和高相等时,侧面沿高展开后是一个正方形。
(如果不是沿高剪开,有可能还会是平行四边形)4.圆锥特征:有一个顶点,有两个面(一个侧面,一个底面,底面是圆形),圆锥有一条高,从顶点到底面圆的圆心的连线就是圆锥的高。
(周长,底面积公式)5.圆柱的侧面积 = 底面周长×高 即S 侧=Ch 或 2πr ×h6.圆柱的表面积 = 圆柱的侧面积 +底面积×2 即S 表=S 侧+S 底×2 或2πr×h + 2×πr2 7.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、通风管等圆柱形物体。
(3)圆柱的表面积既包括一个侧面积和两个底面积的,例如油桶风等圆柱形物体。
8.圆柱的体积:一个圆柱所占空间的大小。
9.圆柱的体积=圆柱的底面积×高, 即V=sh 或 πr 2×h10.把圆锥的侧面展开得到一个扇形。
11.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V 锥= 31 Sh 或 πr 2×h ÷312.一般计算(已知半径直径周长高)求表面积和体积13.已知最后结果求其中一量(知侧面积求半径或者高;知体积求高),方法:公式倒着写用方程来解。
①一个圆柱的侧面积是平方分米,高是5分米,这个圆柱的体积是多少? ②一个圆柱的体积是立方厘米,底面周长是25.12厘米,它的高是多少厘米? ③一个圆锥的体积是立方分米,底面直径是6分米,求圆锥的高是多少分米?14.体积转移(由一种物体变为另一种物体;水中放物,物体的体积等于上升或下降的水的体积)15.切面和截面问题:一刀下去增加两个面。
圆柱的知识整理
![圆柱的知识整理](https://img.taocdn.com/s3/m/17414a59376baf1ffc4fadea.png)
圆柱的知识整理LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】三圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr2?②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr2?底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr2+2πrh体积:V柱=πr2h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
圆柱圆锥知识点总结
![圆柱圆锥知识点总结](https://img.taocdn.com/s3/m/e6bb0ef5ad51f01dc381f10f.png)
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面例2、求下面立体图形的底面周长和底面积。
半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)底面积 3.14 × 3 2 = 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31.4(米)底面积 3.14 ×(10÷2)2 = 78.5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
例3、判断:圆柱和圆锥都有无数条高。
错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
解答: 3.14 × 5 × 12 = 188.4(平方厘米)答:它的侧面积是188.4平方厘米。
圆柱与圆锥讲义
![圆柱与圆锥讲义](https://img.taocdn.com/s3/m/91da1c2f26fff705cd170af3.png)
第三单元圆柱与圆锥知识点一:圆柱的认识【知识点讲解】1.圆柱的特征。
圆柱是由两个底面和一个侧面围成的。
它的底面是完全相同的两个圆,侧面是一个曲面。
圆柱的侧面沿高展开后是一个长方形〔或正方形〕,这个长方形〔或正方形〕的长〔或边长〕等于圆柱的底面周长,宽〔或边长〕等于圆柱的高。
2、圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。
圆柱有无数条高。
要点提示:圆柱的侧面展开图可能是长方形、正方形,也可能是其他形状的图形,但不可能得到梯形。
【稳固练习】1、填空。
〔1〕圆柱的上下两个底面都是〔〕,它们的面积〔〕。
〔2〕把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的〔〕,圆柱的高就是它的〔〕。
〔3〕当圆柱的〔〕和〔〕相等时,它的侧面沿高展开后是一个正方形。
〔4〕圆柱有〔〕条高。
2.选择正确的答案填在〔〕里〔1〕下面物体的形状,不是圆柱体的是〔〕①日光灯管②汽油桶③粉笔〔2〕把圆柱的侧面展开不能得到〔〕①长方形②正方形③平行四边形④梯形〔3〕下面〔〕图形是圆柱的展开图。
〔单位:cm〕3.圆柱的侧面展开后可以是一个形,这个长方形面积是4.圆柱展开后可以看做一个形和两个形组成。
5.想一想,连一连。
6、一个圆柱的侧面沿高展开后是一个长12.56cm,宽6.28cm的长方形,求这个圆柱的底面半径。
能力提高一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?知识点二:圆柱的外表积【知识点讲解】1.圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
2.圆往的外表积:圆柱的外表积=侧面积+2×底面积,即S表= S侧+2 S底。
注意:求用料多少,一般采用进一法取值,以保证原材料够用.【稳固练习】1.圆柱展开后可以看做一个形和两个形组成。
所以外表积 = 2个面积 + 一个面积。
2.一个圆柱的底面半径是3厘米,高是2厘米,这个圆柱的底面周长是〔〕厘米,底面积是〔〕平方厘米,侧面积是〔〕平方厘米,外表积是〔〕平方厘米3.一个圆柱的侧面展开得到一个长方形,长方形的长是9.42厘米,宽是3厘米,这个圆柱体的侧面积是〔〕平方厘米,外表积是〔〕平方厘米。
圆柱和圆锥各有什么特征
![圆柱和圆锥各有什么特征](https://img.taocdn.com/s3/m/2207d57ca4e9856a561252d380eb6294dd8822c2.png)
圆柱和圆锥各有什么特征在我们的日常生活和学习中,圆柱和圆锥是常见的几何图形。
它们具有独特的特征,这些特征不仅在数学中有着重要的地位,也在实际生活中有着广泛的应用。
先来说说圆柱。
圆柱有两个底面,这两个底面是完全相同的圆。
想象一下,我们常见的易拉罐、水杯,它们的底部和顶部就是圆柱的两个底面。
而且这两个底面是平行的,彼此之间的距离始终保持不变,这个距离就是圆柱的高。
圆柱的侧面是一个曲面,如果我们把圆柱的侧面沿着一条高剪开,展开后会得到一个长方形。
这个长方形的长等于圆柱底面的周长,宽就等于圆柱的高。
圆柱的表面积由两个底面的面积和侧面的面积组成。
底面的面积很好计算,因为底面是圆,根据圆的面积公式πr²(其中π通常取 314,r 是底面圆的半径),就可以算出一个底面的面积,乘以 2 就是两个底面的面积。
侧面的面积则是底面周长乘以高,底面周长是2πr,所以侧面面积就是2πrh。
把两个底面面积和侧面面积相加,就得到了圆柱的表面积。
圆柱的体积计算也有专门的公式。
我们把圆柱想象成是由无数个同样大小的圆片堆叠而成的,那么它的体积就等于底面积乘以高,即 V =πr²h。
再看看圆锥。
圆锥只有一个底面,这个底面也是一个圆。
从圆锥的顶点到底面圆心的距离叫做圆锥的高。
圆锥的侧面同样是一个曲面,把圆锥的侧面展开,会得到一个扇形。
圆锥的表面积包括底面圆的面积和侧面扇形的面积。
底面圆的面积还是πr²。
而侧面扇形的面积计算相对复杂一些,需要用到圆锥母线的长度(圆锥顶点到底面圆周上任意一点的线段)。
圆锥的体积是圆柱体积的三分之一。
即 V =1/3πr²h。
在实际生活中,圆柱和圆锥的应用非常广泛。
比如建筑物中的圆柱形状的柱子,它们能够提供稳定的支撑;还有一些圆锥形的屋顶或者漏斗,能够有效地引导水流或者物料的流动。
从数学角度来看,圆柱和圆锥的特征不仅有助于我们理解空间几何的概念,还为解决很多数学问题提供了基础。
圆柱和圆锥(全部整合)
![圆柱和圆锥(全部整合)](https://img.taocdn.com/s3/m/4ddb3bab16fc700aba68fc8e.png)
D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C
(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4
圆柱圆锥
![圆柱圆锥](https://img.taocdn.com/s3/m/b4fcd1770066f5335a812179.png)
圆柱和圆锥有关知识点一、圆柱和圆锥各部分的名称以及特征1、圆柱(1)认识圆柱各部分的名称:上下两个圆面叫做底面,圆柱的周围叫侧面,圆柱两个底面之间的距离叫做高。
(2)圆柱的特征:圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。
(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。
这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
2. 圆锥(1)认识圆锥各部分的名称:下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。
(2)圆锥的特征圆锥的底面都是一个圆。
圆锥的侧面是曲面。
一个圆锥只有一条高。
(3)圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。
(如下图所示)二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷π d = C÷π半径=圆的周长÷π÷2 r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高 C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 S表=S 侧+2S底(3) 圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V柱÷S圆柱的底面积=圆柱的体积÷高h=V柱÷S3 ( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。
苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
![苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件](https://img.taocdn.com/s3/m/ecc27bfbc0c708a1284ac850ad02de80d4d80681.png)
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?
圆柱、圆锥、圆台的几何特征课件
![圆柱、圆锥、圆台的几何特征课件](https://img.taocdn.com/s3/m/b61f116f182e453610661ed9ad51f01dc28157d4.png)
底面
圆锥的底部是一个圆面, 称为底面。
圆锥的定义与基本元素
01
02
03
04
侧面
连接底面和顶点的曲面,称为 侧面。
母线
连接底面和顶点的线段,称为 母线。
轴
通过底面的圆心与顶点连接的 直线,称为轴。
顶点
圆锥顶部的点,称为顶点。
圆锥的侧面展开图
侧面展开图是一个扇形,扇形的半径 等于圆锥的母线长,扇形的弧长等于 圆锥底面的周长。
认为圆柱、圆锥、圆台的定义只是简 单地描述了它们的形状,而忽略了它 们是由平面曲线(圆)绕固定直线 (轴)旋转而成的立体几何图形。
误区二
对于圆柱、圆锥、圆台的定义中涉及 的术语理解不准确,如“母线”、“ 轴”、“底面”等。
关于公式应用的误区
误区一
在应用圆柱、圆锥、圆台的表面积和体积公式时3
圆台的几何特征
圆台的定义与基本元素
定义
圆台是由一个大的圆平面(下底)和一个小的 圆平面(上底)以及连接两圆的侧面所围成的
几何体。
01
下底
较大的圆形平面。
03
高
上底和下底之间的垂直距离。
05
02
上底
较小的圆形平面。
04
侧面
连接上底和下底的曲面。
06
母线
连接上底和下底边缘的线段。
圆台的侧面展开图
圆柱的体积公式
V = πr^2h,其中r为底面半径,h为高。 体积等于底面积乘以高。
典型例题解析
例题1
已知圆柱的底面半径为3,高为4,求圆柱的表面积和体积。
解析
根据公式S = 2πr^2 + 2πrh和V = πr^2h,代入r = 3,h = 4,即可求出表面积和体积。
六年级数学下册第三单元(圆柱与圆锥)知识点
![六年级数学下册第三单元(圆柱与圆锥)知识点](https://img.taocdn.com/s3/m/6c154e246d175f0e7cd184254b35eefdc8d3159f.png)
六年级数学下册第三单元(圆柱与圆锥)知识点六年级数学下册第三单元(圆柱与圆锥)知识点【圆柱】圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
一、圆柱:圆柱由3个面围成。
(1)底面:圆柱的上、下两个面;(2)侧面:圆柱周围的面(上下底面除外);(3)高度:圆柱体两个底面之间的距离。
二、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱体的侧面是曲面。
(3)高度的特性:一个圆柱体的高度有无数种。
圆柱的侧面展开图:沿着高展开,展开图形是长方形。
长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch h=S侧÷CC= S侧÷hS侧=∏dh=2∏rh注:(1)当底面周长和高相等时,沿高展开图是正方形;(2)不沿高度铺展,铺展图案为平行四边形或不规则图案。
(3)无论如何展开都得不到梯形.四、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=2∏rh+∏r²×2【解题方法】一.圆柱的切割:1.横切:切面是圆,表面积增加2倍底面积,即S增=2πr22.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh二、常见的圆柱解决问题:侧面积+两个底面积:油桶、米桶、罐桶类侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池只求侧面积:烟囱、灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装底面周长:压路机压过路面长度五、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
将圆柱体切割成近似的长方体,分割的份数越多,图形越接近长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱和圆锥的特征与知识
圆柱的定义
以矩形一边所在直线为轴,其余各边旋转而成的曲面所围成的几何体。
圆柱的特征
1、 圆柱是由两个底面和一个侧面围成的。
2、 上、下两个面都是圆形,大小相等。
3、 圆柱上下一样粗。
相关概念
(1)圆柱的轴:旋转轴叫做圆柱的轴;
(2)圆柱的高:在轴上的这条边(或它的长度)叫做圆柱的高;
(3)圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;
(4)圆柱的侧面:不垂直于轴的边旋转而成的曲面叫做圆柱的侧面;
(5)圆柱的母线:无论旋转到什么位置,不垂直于轴的边叫做圆柱的母线。
圆柱的表示方法:用表示它的轴的字母表示,如图:圆柱OO ,。
底面(上、下):圆O ,
o 底面 底面 . . 高
侧面
侧面(曲面):展开:长方形
高:上、下底面的距离:圆柱的高有无数条
圆柱具有以下性质
(1)圆柱的底面是两个半径相等的圆,圆的半径等于矩形的边的长,两圆所在的平面互相平行;
(2)通过轴的各个截面是叫做轴截面,轴截面是全等的矩形;
(3)母线平行且相等,它们都垂直于底面,它们的长等于圆柱的高.
圆锥的定义
以直角三角形的一条直角边所在的直线为旋转轴,将直角三角形旋转一周而形成的曲面所围成的几何体叫做圆锥.
圆锥概念
(1)圆锥的轴:旋转轴叫做圆锥的轴;
(2)圆锥的高:在轴上的这条边(或它的长度)叫做
圆锥的高;
(3)圆锥的底面:垂直于轴的边旋转而成的圆面叫做圆锥的底面;
(4)圆锥的侧面:不垂直于轴的边旋转而成的曲面叫做圆锥的侧面;
(5)圆锥的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线;圆锥具有以下性质
(1)圆锥的底面是一个圆,圆的半径就是直角边的长,底面和轴垂直;
(2)平行于底面的截面是圆;
(3)通过轴的各个截面是轴截面,各轴截面是全等的等腰三角形;
(4)过顶点和底面相交的截面是等腰三角形;
(5)母线都过顶点且相等,各母线与轴的夹角相等。
圆锥的特征
1、一个底面和一个侧面:底面是圆形,侧面是扇形。
2、高:顶点到底面圆心的距离,只有一条。
圆柱表面积、体积
圆柱表面积=1个侧面积+2个底面积
圆柱侧面积=底面周长×高圆柱体积=底面积×高
V=sh
圆锥体积
圆锥体积=底面积×高
V=sh÷3h
l
r
h
l
r
圆台(即台体),表示:圆台OO1 .
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。