镁锑液态金属储能电池原理 Mg-Sb Liquid Metal Battery

合集下载

液态金属电池——前景广阔的电网储能新技术

液态金属电池——前景广阔的电网储能新技术

液态金属电池——前景广阔的电网储能新技术彭勃;郭姣姣;张坤;王玉平【摘要】The liquid metal battery possesses the potential advantages of simple structure,easy scale-up,and high charging-discharging current,low manufacturing cost,as well as long cycle life.And it has broad application prospects in the field of large scale grid-connected renewable energy generation and distributed micro grid energy storage.In the paper,the working principle,performance characteristics,development history and current technology status of liquid metal battery were mainly introduced.On this basis,the development trend of liquid metal battery was discussed.%液态金属电池具有结构简单、易放大、可大电流充放电、制造成本低、循环寿命长等潜在优势,在大规模可再生能源发电并网以及分布式发电与微电网领域具有广阔的应用前景.重点介绍了液态金属电池的工作原理、性能特点、发展历史、技术现状.在此基础上,讨论了液态金属电池技术的发展趋势.【期刊名称】《电源技术》【年(卷),期】2017(041)003【总页数】4页(P498-501)【关键词】液态金属电池;工作原理;性能特点;技术现状;发展趋势【作者】彭勃;郭姣姣;张坤;王玉平【作者单位】西安高压电器研究院有限责任公司,陕西西安710075;西安高压电器研究院有限责任公司,陕西西安710075;西安高压电器研究院有限责任公司,陕西西安710075;西安高压电器研究院有限责任公司,陕西西安710075【正文语种】中文【中图分类】TM912大规模储能技术在扩大可再生能源并网规模、提高电力系统供电可靠性、缩小电网峰谷差,以及微电网建设等方面具有重要作用,是建设未来智能电网,实现能源互联的支撑技术。

备考突破 高三化学专题强化集训——溶度积常数的相关计算(精编解析)

备考突破 高三化学专题强化集训——溶度积常数的相关计算(精编解析)

备考突破2020高三化学专题强化集训——溶度积常数的相关计算(精编解析)一、单选题(本大题共25小题,共50分)1.侯德榜是近代化学工业的奠基人之一,是世界制碱业的权威。

某同学在实验室模拟侯氏制碱法生产的纯碱中含有少量NaCl,下列说法正确的是A. 相同温度下,碳酸钙在纯碱溶液中的溶度积小于在水中的溶度积B. 用标准盐酸滴定一定质量的样品,可以测量出纯碱的纯度C. 用托盘天平称取样品配制溶液进行实验D. 只用硝酸银溶液,即可鉴别样品溶液中是否含有氯离子2.《环境科学》刊发了我国科研部门采用零价铁活化过硫酸钠,其中S为价去除废水中的正五价砷的研究成果,其反应机制模型如图所示。

设阿伏加德罗常数的值为,。

下列叙述正确的是A. 过硫酸钠含个过氧键B. 若参加反应,共有个被还原C. 室温下,中间产物溶于水所得饱和溶液中为D. pH越小,越有利于去除废水中的正五价砷3.常温下,用溶液分别滴定浓度均为的KCl、溶液,所得的沉淀溶解平衡图像如图所示不考虑的水解。

下列叙述正确的是A. 的数量级等于B. n点表示AgCl的不饱和溶液C. 向的混合液中滴入溶液时,先生成沉淀D. 的平衡常数为4.已知: 时,,。

下列说法正确的是A. 若向饱和溶液中加入固体,则有固体析出B. 反应的平衡常数C. 相同条件下,CuS在水中的溶解度大于在水中的溶解度D. 溶液中含固体,则溶液中的物质的量浓度为5.已知298K时下列物质的溶度积下列说法正确的是A. 等体积浓度均为的和溶液混合能产生沉淀B. 浓度均为的和混合溶液中慢慢滴入溶液时,先沉淀C. 在悬浊液中加入盐酸发生反应的离子方程式:D. 298K时,上述四种饱和溶液的物质的量浓度:6.设为阿伏加德罗常数的值,下列说法正确的是A. 时,的溶液中含有的数目为B. 的乙醇溶液中含氧原子C. 与过量氯气发生取代反应,生成气体为D. 时,则该温度下饱和溶液中含有个7.常温下,,,下列叙述不正确的是A. 浓度均为的溶液和NaCl溶液等体积混合,有白色沉淀产生B. 将的溶液滴入的KCl和的混合溶液中,先产生AgCl沉淀C. 的溶液中要产生沉淀,溶液的pH要控制在9以上D. 其他条件不变,向饱和水溶液中加入少量溶液,溶液中减小8. ,为研究用溶液将混合溶液中的和沉淀分离,绘制了 时AgCl和两种难溶化合物的溶解平衡曲线。

2020届高考化学二轮练习:专题三 第11讲 原电池含解析

2020届高考化学二轮练习:专题三 第11讲 原电池含解析

专题三第11讲1.现有二氧化硫—空气质子交换膜燃料电池,其原理如图所示。

下列说法不正确的是()A.该电池实现了制硫酸、发电、环保三位一体的结合B.该电池工作时质子从Pt1电极经过内电路流到Pt2电极C.Pt1电极附近发生的反应为:SO2+2H2O-2e-===SO2-4+4H+D.Pt2电极附近发生的反应为:O2+2e-+2H2O===4H+解析:D[A.二氧化硫—空气质子交换膜燃料电池,吸收了空气中的二氧化硫起到了环保的作用,产物中有硫酸,而且发电,A正确;B.SO2失去电子生成SO2-4,失电子,为负极,在原电池中,阳离子向正极移动,H+从Pt1(负极)向Pt2(正极)移动,B正确;C.SO2失去电子生成SO2-4,电解质溶液为酸性,根据得失电子守恒,负极的方程式为SO2+2H2O-2e-===SO2-4+4H+,C正确;D.选项中的方程式O2+2e-+2H2O===4H+,电荷不守恒和原子个数不守恒,应该为O2+4e-+4H+===2H2O,D不正确。

]2.锂—铜空气燃料电池是低成本高效电池。

该电池通过一种复杂的铜“腐蚀”现象产生电能,其中放电过程为2Li+Cu2O+H2O===2Cu+2Li++2OH-。

下列说法不正确的是()A.放电时,Li+透过固体电解质向Cu极移动B.通空气时,铜被腐蚀,产生Cu2OC.放电时,正极的电极反应式为:Cu2O+2H++2e-===2Cu+H2OD.整个反应过程中,氧化剂为O2解析:C[A.放电时,阳离子向正极移动,则Li+透过固体电解质向Cu极移动,A正确;B.放电过程为2Li+Cu2O+H2O===2Cu+2Li++2OH-,可以知道通空气时,铜被腐蚀,表面产生Cu2O,B正确;C.正极上氧气得电子生成氢氧根离子,则正极的电极反应式为O2+4e-+2H2O===4OH-,C错误;D.通空气时,铜被腐蚀,表面产生Cu2O,放电时Cu2O转化为Cu,则整个反应过程中,铜相当于催化剂,得电子的物质是氧气,所以氧气为氧化剂,D正确。

镁电池的工作原理

镁电池的工作原理

镁电池的工作原理
镁电池的工作原理是通过镁作为负极和正极活性物质之间的反应来实现电能的产生和储存。

镁电池的负极通常使用纯镁金属或者镁合金,正极则使用一种能与镁发生化学反应的氧化剂,如氧气(O2)、空气(O2和N2的混合物)、二氧化锰(MnO2)或者四氧化三铁
(Fe3O4)。

在电池中,电解质一般采用氯化镁或者其他含镁盐溶液。

在正常工作状态中,镁电池内的镁负极会发生氧化反应,将金属镁中的电子转移到正极,从而产生电流。

镁负极处的氧化反应可以以如下的方式表示:
Mg(s) → Mg2+(aq) + 2e-
同时,正极会发生还原反应,与上述的氧化反应相互配合产生电子转移。

正极的还原反应可以具体表示为:
O2(g) + 2H2O(l) + 4e- → 4OH-(aq)
这样,在电池的两个电极之间,就会建立起可用的电势差,电子将沿着外部电路流动,实现了电能的输出。

当这种反应进行时,金属镁逐渐被氧化并转化为镁离子,而氧化剂则被还原为氢氧根离子。

需要注意的是,镁电池需要在碱性环境中工作,因为在酸性环
境中,镁负极会发生过于剧烈的反应,导致电池寿命大大缩短。

总之,镁电池的工作原理主要依靠镁负极的氧化反应和正极的还原反应,通过镁离子和氢氧根离子的转移,在外部电路上产生电能。

镁电池原理

镁电池原理

镁电池原理
镁电池是一种新型的高性能电池,其工作原理基于镁离子的嵌入/脱嵌反应。

与传统的锂电池相比,镁电池具有更高的能量
密度和更低的成本,并且镁是一种丰富的天然资源。

镁电池的正极通常采用氧化镁(MgO)材料,负极使用金属
镁(Mg)。

在放电过程中,金属镁发生氧化反应,形成镁离
子(Mg2+),同时放出电子。

这些镁离子穿过电解质,沿着
电流路径移动,并与正极的氧化镁发生嵌入反应。

嵌入反应是指镁离子与氧化镁的结构发生相互作用,形成一种新的化合物。

在充电过程中,外部电源提供电流,将金属镁还原为镁离子,并使其脱嵌出正极材料。

脱嵌反应是指镁离子从氧化镁结构中解离出来,重新形成金属镁。

镁电池的工作原理可以简化为以下步骤:
1. 放电:金属镁发生氧化反应,形成镁离子和电子。

Mg → Mg2+ + 2e^-
2. 电子流动:电子通过外部电路流动,提供电能。

3. 离子传输:镁离子通过电解质移动,沿着电流路径进入正极。

4. 嵌入反应:镁离子与正极的氧化镁发生结构相互作用,形成化合物。

充电的反应过程与放电相反:
1. 电子流动:外部电源提供电流,反向将金属镁还原为镁离子。

2. 脱嵌反应:镁离子从氧化镁中解离出来。

3. 离子传输:镁离子通过电解质移动,返回负极。

4. 还原反应:镁离子与金属镁重新结合,形成金属镁。

总之,镁电池的工作原理是通过镁离子的嵌入/脱嵌反应实现
电能的存储和释放。

这种电池具有可靠性高、能量密度大和低成本等优点,有望成为未来电池技术的重要发展方向。

2025届广东省梅州市五华县水寨中学化学高三第一学期期中复习检测模拟试题含解析

2025届广东省梅州市五华县水寨中学化学高三第一学期期中复习检测模拟试题含解析

2025届广东省梅州市五华县水寨中学化学高三第一学期期中复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(共包括22个小题。

每小题均只有一个符合题意的选项)1、A、B、C、X为中学化学常见物质,A、B、C含有相同元素甲,可以发生如下转化(水参与的反应,水未标出)。

下列说法不正确...的是A.若A、B、C的焰色反应呈黄色、水溶液均呈碱性,则X可以是CO2B.若C为红棕色气体,则A一定为空气中含量最高的气体C.若B为FeCl3,则X一定是FeD.A可以是碳单质,也可以是O22、化学与生产、生活、技术密切相关。

下列说法正确的是A.纳米铁粉可以高效地去除被污染水体中的Pb2+、Cu2+、Cd2+、Hg2+等重金属离子,其本质是纳米铁粉对重金属离子较强的物理吸附B.“水滴石穿”不仅包含着“量变到质变”的哲学思想,同时也包含物理和化学变化C.节日燃放的烟花,是碱金属、锶、钡、铂、铁等金属元素焰色反应呈现的D.工厂中常用的静电除尘装置是根据胶体带电性的性质而设计的3、下列有关仪器的名称、图形、用途与使用操作的叙述均正确的是()选项 A B C D名称洗气瓶分液漏斗酸式滴定管冷凝管图形用途与使用操作除去Cl2中的HCl用酒精萃取碘水中的碘,分液时,碘层需从上口放出可用于量取10.00 mLNa2CO3溶液蒸馏实验中将蒸气冷凝为液体A .AB .BC .CD .D4、不能作为判断硫、氯两种元素非金属性强弱的依据是( ) A .单质氧化性的强弱 B .单质沸点的高低C .单质与氢气化合的难易D .最高价氧化物对应的水化物酸性的强弱5、香茅醛(结构如图)可作为合成青蒿素的中间体,关丁香茅醛的下列说法错误的是A .分子式为C 10H 18OB .分子中所有碳原子可能处于同一平面C .能使溴水、酸性高锰酸钾溶液褪色D .1 mol 该物质最多与2mol H 2发生加成反应6、T ℃时,在恒容密闭容器中充入一定量的H 1和CO ,在催化剂作用下发生如下反应:CO(g)+1H 1(g)CH 3OH(g)△H<0。

2021年度届山东日照市高三11月校际联合期中专业考试化学试题~(解析版)

2021年度届山东日照市高三11月校际联合期中专业考试化学试题~(解析版)

山东省日照市2021届高三11月校际联合期中考试化学试题2021.11试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部份,共8页。

满分100分。

考试历时90分钟。

答卷前,考生务必用毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题卡上规定的位置。

考试结束后,将答题卡交回。

第I卷(选择题共42分)注意事项:1.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不涂在答题卡上,只答在试卷上不得分:2.可能用到的相对原子质量:H 1 C 12 N 14 O 16 Cu 64 Ag 108本卷包括14小题,每小题3分,共42分。

每小题只有一个选项符合题意。

1. 化学与生活、环境密切相关。

下列有关说法不正确的是A. 竹炭具有超强的吸附能力,可用于吸收新装修衡宇内的有害气体B. 研发利用高效电力能源汽车,减少雾霾污染以降低呼吸系统发病率C. 胶粒不能透过半透膜,血液透析利用半透膜将有害物质移出体外D. 碘酸钾具有较强的氧化性,在食盐中加入适量碘酸钾,可抗人体老化【答案】D【解析】竹炭具有超强的吸附能力,能吸收有害气体,故A正确;研发利用高效电力能源汽车,可以减少汽车尾气排放,故B正确;血液透析利用渗析原理,用半透膜将有害物质移出体外,故C正确;氧化剂能加速人体老化,还原剂能抵抗人体老化,故D错误。

2. 下列说法正确的是A. 由NaH2PO2是正盐可推知H3PO2是一元酸B. 由同种元素组成的物质必然是纯净物C. 直径介于1~100nm之间的微粒称为胶体D. 不能与酸反映生成盐和水的氧化物,能够与碱反映生成盐和水【答案】A【解析】由NaH2PO2是正盐,说明H3PO2只能电离出一个氢,所以H3PO2是一元酸,故A正确;由同种元素组成的物质不必然是纯净物,如O二、O3,由氧元素组成,但属于混合物,故B错误;分散质粒子直径介于1~100nm之间的分散系称为胶体,故C错误;不能与酸反映生成盐和水的氧化物,也可能不与碱反映,如CO与酸碱都不反映,故D错误。

镁电池工作原理

镁电池工作原理

镁电池工作原理
镁电池是一种利用镁和正极材料反应产生电能的化学电池。

它的工作原理是基于镁与正极材料之间的氧化还原反应。

镁作为电池的负极材料,其特点是具有良好的化学活性和高电位。

在电池中,镁会从负极电极上脱去两个电子,进入电池溶液中以镁离子(Mg2+)的形式存在。

这个过程称为氧化反应,其中负极的反应可以表示为:Mg → Mg2+ + 2e-。

正极材料则是一种能够与镁离子发生还原反应的物质。

常见的正极材料包括铜氧化物(CuO)、铁氧化物(Fe2O3)等。


极上的反应可以以铜氧化物为例表示为:CuO + 2e- → Cu +
O2。

当电路闭合并外接负载时,镁离子会在正极上还原为金属镁,并释放出电子。

这些电子通过负极电极,外部电路和负载来完成电子转移,并产生电流。

反应过程可以表示为:Mg2+ + 2e- → Mg。

整个镁电池的化学反应可以简化为镁在负极氧化,通过电路流向正极进行还原的过程。

这一过程的产物是氧化镁(MgO),其在电池中通常以粉末或糊状的形式存在。

需要注意的是,镁电池工作时需要在电解质溶液中进行。

常用的电解质溶液包括氯化镁(MgCl2)溶液、硫酸镁(MgSO4)溶液等。

电解质可以促进镁离子的迁移和还原反应的进行。

总结起来,镁电池的工作原理是基于镁和正极材料之间的氧化还原反应。

通过镁在负极的氧化和在正极的还原反应,释放出电子并产生电流。

这种电池具有高能量密度、低成本、可回收等优点,但也有不足之处,如镁的反应速度较慢,使用寿命相对较短等。

高二化学学案--微项目:设计载人航天器用化学电池与氧气再生方案-----课中案

高二化学学案--微项目:设计载人航天器用化学电池与氧气再生方案-----课中案

高二化学学案微项目:设计载人航天器用化学电池与氧气再生方案课中案------化学反应中能量及物质的转化利用【素养目标】1.通过探究载人航天器用化学电池与氧气再生方案,尝试利用焓变、盖斯定律和电池原理等知识,分析评价真实环境下化学反应中能量与物质的转化,形成电源选择和氧气再生的基本思路。

体验化学的科学探究与创新意识的学科核心素养。

2.通过载人航天器的电源,了解真实化学电池的原理和装置,形成分析化学电池的一般思路。

体验化学证据推理与模型认知的学科核心素养。

3.通过本项目的学习,感受化学知识在解决实际问题中的应用价值。

体验化学学科的科学态度与社会责任的学科核心素养。

项目活动1、尝试设计载人航天器用化学电池【探究任务1】载人飞船氢氧燃料电池使用存在的问题及解决思路。

“阿波罗”飞船的主电源是以KOH溶液为离子导体的碱性氢氧燃料电池。

【问题导引】1.如图所示,氢氧燃料电池的反应产物对该电池的工作效率有什么影响?,2.该电池使用的氧气常用空气制备,由于制备工艺问题会使氧气中混有微量CO2 CO的存在对电池有什么影响?23.如果你是电池设计员,针对上述1.2中出现的问题,你会提出哪些思路或方案来解决?【探究任务2】对培根型碱性氢氧燃料电池和质子交换膜氢氧燃料电池解决电池使用中存在的问题的认知。

一种培根型碱性氢氧燃料电池质子交换膜氢氧燃料电池部分结构示意图部分结构示意图(电池工作温度为200 ℃)【问题导引】1.培根型碱性燃料电池中“循环泵”的作用是什么?2.若在上述两电池中加冷凝水接收装置,应该加在什么位置?3.试分析评价两种电池解决电解质溶液稀释和变质问题的方案。

【探究任务3】“神舟”飞船中的太阳能电池阵-镍镉蓄电池组系统的工作原理。

当飞船进入光照区时,太阳能电池为用电设备供电,同时为镍镉电池充电,电极反应为:负极Cd(OH)2+2e-===Cd+2OH-正极2Ni(OH)2+2OH--2e-===2NiOOH+2H2ONiOOH常称氢氧化氧镍或碱式氧化镍,其中Ni为+3价。

高考化学一轮复习 第9章 电化学基础 高考热点课7 高考中的新型化学电源教学案

高考化学一轮复习 第9章 电化学基础 高考热点课7 高考中的新型化学电源教学案

【高考中的新型化学电源】之小船创作 命题分析:以新型化学电源为命题背景考查原电池的结构和工作原理是高考的热点;涉及的新型化学电源种类繁多,如储氢电池、高铁电池、海洋电池、锂离子电池等。

解答此类题,不要被新材料、新情境所吓倒,只要学会迁移运用常见化学电源工作原理,正确判断正负极,写出电极反应式就能破题。

1.正、负极的判断新型电池中⎩⎪⎨⎪⎧ 负极材料⎩⎪⎨⎪⎧元素化合价升高的物质发生氧化反应的物质正极材料⎩⎪⎨⎪⎧ 元素化合价降低的物质发生还原反应的物质2.放电时正极、负极电极反应式的书写(1)首先分析物质得失电子的情况。

(2)然后再考虑电极反应生成的物质是否跟电解质溶液中的离子发生反应。

(3)对于较为复杂的电极反应,可以利用“总反应式-较简单一极的电极反应式=较复杂一极的电极反应式”的方法解决。

3.充电时阴极、阳极的判断(1)首先应搞明白原电池放电时的正、负极。

(2)再根据电池充电时阳极接正极、阴极接负极的原理进行分析。

(3)电极反应式:放电时的负极与充电时的阴极、放电时的正极与充电时的阳极分别互逆。

4.可充电电池的分析(1)“正正负负”——原电池的正极充电时要与外接电源的正极相连,原电池的负极充电时要与外接电源的负极相连。

(2)“颠颠倒倒”——原电池的正极反应倒过来,就是充电时电解池的阳极反应式。

原电池的负极反应倒过来,就是充电时电解池的阴极反应式。

[解析]该反应中,可产生电流,反应条件比较温和,没有高温高压条件,A正确;该生物燃料电池中,左端电极反应式为MV+-e-===MV2+,则左端电极是负极,应为负极区,在氢化酶作用下,发生反应H2+2MV2+===2H++2MV+,B错误;右端电极反应式为MV2++e-===MV+,是正极,在正极区N2得到电子生成NH3,发生还原反应,C正确;原电池中,内电路中H+通过交换膜由负极区向正极区移动,D正确。

[答案]B(2019·广东汕头高三期末)我国科学家开发设计一种天然气脱硫装置,利用如图装置可实现:H2S+O2―→H2O2+S。

2020届高考化学二轮题型对题必练——镁电池(强化练习题)

2020届高考化学二轮题型对题必练——镁电池(强化练习题)

2020届高考化学二轮题型对题必练——镁电池(强化练习题)1 / 182020届高考化学二轮题型对题必练——镁电池(强化练习)1. 2009年,美国麻省理工学院的唐纳德•撒多维教授领导的小组研制出一种镁一锑液态金属储能电池。

该电池工作温度为700摄氏度,其工作原理如图所示:该电池所用液体密度不同,在重力作用下分为三层,充放电时中间层熔融盐的组成及浓度不变。

下列说法正确的是( )A. 该电池放电时,正极反应式为Mg 2+−2e −=MgB. 该电池放电时,Mg(液)层生成MgCl 2,质量变大C. 该电池充电时,Mg −Sb(液)层中Mg 发生氧化反应D. 该电池充电时,熔融盐中的Cl −进入Mg −Sb(液)层2. 锂—铜空气燃料电池是一种“高容量、低成本”的新型电池。

该电池通过一种复杂的铜腐蚀“现象”产生电力,其中放电过程为2Li +Cu 2O +H 2O =2Cu +2Li ++2OH -。

下列说法不正确的是( )A. 通空气时,铜腐蚀表面产生Cu 2OB. 整个过程中,铜相当于催化剂C. 放电时,正极的电极反应式为Cu 2O +H 2O +2e −=2Cu +2OH −D. 放电时,电子透过固体电解质向Cu 极移动3.镁一次氯酸盐电池的工作原理如图,该电池反应为:Mg+ClO-+H2O=Mg(OH)2+Cl-.下列有关说法正确的是()A. 电池工作时,正极a附近的pH将增大B. 电池工作时,C溶液中的溶质是MgCl2C. 负极反应式:ClO−+2e−+H2O=Cl−+2OH−D. b电极发生还原反应,每转移0.1mol电子,理论上生成0.1 mol Cl−4.电化学在日常生活中用途广泛,图①是镁-次氯酸钠燃料电池,电池总反应为:Mg+ClO-+H2O=Cl-+Mg(OH)2↓,图②是Cr2O的工业废水的处理,下列说法正确的是()A. 图②中离子向惰性电极移动,与该极附近的OH−结合转化成Cr(OH)3除去B. 图②的电解池中,有0.084g阳极材料参与反应,阴极会有33.6mL的气体产生C. 图①中发生的还原反应是:Mg2++ClO−+H2O+2e−=Cl−+Mg(OH)2D. 若图①中3.6g镁溶解产生的电量用以图②废水处理,理论可产生10.7g氢氧化铁沉淀5.交通运输部在南海华阳礁举行华阳灯塔和赤瓜灯塔竣工发光仪式,宣布两座大型多功能灯塔正式发光并投入使用。

2019届高考化学考点42非水燃料电池必刷题

2019届高考化学考点42非水燃料电池必刷题

考点四十二非水燃料电池1.锂-空气电池原理模型如图所示,下列说法不正确...的是A.电池正极可以吸附空气中氧气作为氧化剂B.正极反应为2Li+ + O2 + 2e- Li2O2C.电解质能传递锂离子和电子,不可以用水溶液D.负极反应Li - e-=Li+【答案】C2.有报道称以硼氢化钠(NaBH4,强还原剂)和H2O2作原料的燃料电池,可用作空军通信卫星电源,其工作原理如右图所示。

下列说法错误..的是()A.电极b作正极,发生还原反应B.该电池的负极反应为:BH4-+8OH--8e-=BO2-+6H2OC.每消耗3 mol H2O2,转移的电子为3 molD.不考虑能量损耗,当有1mol H2O2参加反应时,即有2 mol Na+从a极区移向b极区【答案】C3.一种熔融碳酸盐燃料电池原理示意如图。

下列有关该电池的说法正确的是A.反应CH4+H2O3H2+CO,每消耗1molCH4转移8mol电子B.电池工作时,CO32-向电极A移动C.电极A上只有H2参与电极反应,反应式为H2+2OH--2e-=2H2OD.电极B上发生的电极反应为O2+4e-=2O2-【答案】B【解析】A.CH4→CO,化合价由-4价→+2价,上升6价,则1molCH4参加反应共转移6mol 电子,A错误;B.通氧气的一极为正极,则B为正极,A为负极,原电池中阴离子向负极移动,A为负极,所以CO32-向电极A移动,B正确;C.通氧气的一极为正极,则B为正极,A 为负极,负极上CO和H2被氧化生成二氧化碳和水,电极A反应为:H2+CO+2CO32--4e-=H2O+3CO2,C错误;D.B电极上氧气得电子发生还原反应O2+2CO2+4e-=2CO32-,D错误。

4.“直接煤燃料电池”能够将煤中的化学能高效、清洁地转化为电能,下图是用固体氧化物作“直接煤燃料电池”的电解质。

有关说法正确的是A.电极b为电池的负极B.电池反应为:C + CO2 = 2COC.电子由电极a沿导线流向bD.煤燃料电池比煤直接燃烧发电能量利用率低【答案】C5.如图所示是一种以液态肼(N2H4)为燃料,氧气为氧化剂,某固体氧化物为电解质的新型燃料电池。

2021届 高考化学二轮专题突破:新型电池【解析版】

2021届 高考化学二轮专题突破:新型电池【解析版】

新型电池1.(2020·泰安一模)中科院科学家设计出一套利用SO2和太阳能综合制氢方案,其基本工作原理如图所示。

下列说法错误的是()。

A.该电化学装置中,Pt电极作正极B.Pt电极的电势高于BiVO4电极的电势C.电子流向:Pt电极→导线→BiVO4电极→电解质溶液→Pt电极D.BiVO4电极上的反应式为SO32--2e-+2OH-=SO42-+H2O【解析】选C。

该装置为原电池,由Pt电极上反应(H2O→H2)或BiVO4电极上反应(SO32-→SO42-)可知,Pt电极上氢离子得电子生成氢气、发生还原反应,为正极;BiVO4电极为负极,SO32-失电子生成硫酸根、发生氧化反应。

Pt电极上氢离子得电子生成氢气,发生还原反应,Pt电极作正极,故A正确;Pt电极为正极,BiVO4电极为负极,所以Pt电极电势高于BiVO4电极,故B正确;电子从BiVO4电极(负极)经导线流向Pt电极(正极),不能进入溶液,故C错误;BiVO4电极为负极,发生氧化反应,电极反应式为SO32--2e-+2OH -=SO42-+H2O,故D正确。

2.(2020·乌鲁木齐一中一模)我国科学家开发设计一种天然气脱硫装置,利用如右图装置可实现:H2S+O2→H2O2+S。

已知甲池中有如下的转化:下列说法错误的是()。

A.该装置可将光能转化为电能和化学能B.该装置工作时,溶液中的H+从甲池经过全氟磺酸膜进入乙池C.甲池碳棒上发生电极反应:AQ+2H++2e-=H2AQD.乙池①处发生反应:H2S+I3-=3I-+S↓+2H+【解析】选B。

该装置是原电池装置,据此确定能量变化情况;原电池中阳离子移向正极;甲池中碳棒是正极,该电极上发生得电子的还原反应;在乙池中,硫化氢失电子生成硫单质,I3-得电子生成I-。

根据图中信息知道是将光能转化为电能和化学能的装置,A正确;原电池中阳离子移向正极,甲池中碳棒是正极,所以氢离子从乙池移向甲池,B错误;甲池中碳棒是正极,该电极上发生得电子的还原反应,即AQ+2H++2e-=H2AQ,C正确;在乙池中,硫化氢失电子生成硫单质,I3-得电子生成I-,发生的反应为H2S+I3-=3I-+S↓+2H+,D正确。

2019届高考化学难点剖析专题41原电池中正负极的判断讲解

2019届高考化学难点剖析专题41原电池中正负极的判断讲解

专题41 原电池中正负极的判断一、高考题再现1.(2018课标Ⅲ)一种可充电锂-空气电池如图所示。

当电池放电时,O 2与Li +在多孔碳材料电极处生成Li 2O 2-x (x =0或1)。

下列说法正确的是A. 放电时,多孔碳材料电极为负极B. 放电时,外电路电子由多孔碳材料电极流向锂电极C. 充电时,电解质溶液中Li +向多孔碳材料区迁移 D. 充电时,电池总反应为Li 2O 2-x =2Li+(1-2x)O 2 【答案】D2.(2016课标Ⅱ)Mg —AgCl 电池是一种以海水为电解质溶液的水激活电池。

下列叙述错误的是 A .负极反应式为Mg-2e -=Mg 2+B .正极反应式为Ag ++e -=AgC .电池放电时Cl -由正极向负极迁移D .负极会发生副反应Mg+2H 2O=Mg(OH)2+H 2↑ 【答案】B【解析】根据题意,电池总反应式为:Mg+2AgCl=MgCl 2+2Ag ,正极反应为:2AgCl+2e -= 2Cl -+ 2Ag ,负极反应为:Mg-2e-=Mg2+,A项正确,B项错误;对原电池来说,阴离子由正极移向负极,C项正确;由于镁是活泼金属,则负极会发生副反应Mg+2H2O=Mg(OH)2+H2↑,D项正确;答案选B。

二、考点突破1、据组成原电池的两极材料判断典例1(2018届福建省厦门市高三下学期第一次质量检查)某高性能电池的工作原理如图。

其电池反应为。

下列说法不正确的是A.放电时,b为正极B.充电时,阴极反应为Sn+Na++e-=NaSnC.放电时,负极材料Sn在很大程度上被腐蚀D.充电时,PF6-向右迁移并嵌入石墨烯中【答案】C2、根据总反应方程式判断典例2(2018届山东省潍坊市高三下学期一模考试)一种新型可逆电池的工作原理如下图所示。

放电时总反应为:Al+3C n(AlCl4)+4AlCl4-4Al2Cl7-+3C n(Cn表示石墨)。

下列说法正确的是A.放电时负极反应为: 2Al-6e-+7Cl-= Al2Cl7-B.放电时AlCl4-移向正极C.充电时阳极反应为: AlCl4-e-+C n=C n(AlCl4)D.电路中每转移3mol电子,最多有1molC n(AlCl4)被还原【答案】C3、根据电子流动方向判断典例3(2018届湖北省华大新高考联盟高三1月教学质量测评)我国科学家研制出“可充室温Na-CO2电池”(Rechargeable Room-Temperature Na-CO2 Batter-ies)现已取得突破性进展,其有望取代即将“枯竭”的锂电池,该电池结构如图所示。

镁电池的工作原理

镁电池的工作原理

镁电池的工作原理
镁电池是一种新型的电池技术,其工作原理基于镁金属与氧化剂之间的化学反应。

镁电池的两个主要组成部分是阳极和阴极。

在镁电池中,阳极通常由纯度较高的镁金属制成,而阴极则是一种氧化剂,如氧气或二氧化锰。

在正常工作状态下,镁离子从阳极释放出来,在电解质中传导,直到达到阴极。

同时,氧气或二氧化锰在阴极处与镁离子发生还原反应,生成氧化镁。

整个反应过程可以用以下化学方程式表示:
阳极:Mg → Mg2+ + 2e−
阴极:O2 + 4e− → 2O2−
综合反应:2Mg + O2 → 2MgO
这个反应过程中释放出的电子会通过外部电路进行流动,产生电流,并驱动所连接的设备或装置工作。

与传统的锂电池或铅酸电池相比,镁电池具有多种优势。

首先,镁是一种丰富的天然资源,与锂相比具有更广泛的储量。

其次,镁的电位较低,因此在镁电池中可以实现更高的电压输出。

此外,镁电池具有较高的能量密度和较长的循环寿命。

尽管镁电池具备潜力作为替代传统电池的能源存储技术,但目前仍存在一些挑战需要克服。

例如,镁离子在电解质中的移动速度较慢,导致电池的放电速度较低。

此外,镁电池还存在着与阳极和电解液之间的副反应,可能导致电池寿命的下降。

因此,目前的研究重点主要在于改进电解质的性能,促进镁离子的移动速度,并开发更稳定的阳极材料,以提高镁电池的性能和可靠性。

历年高考化学高频考点51新型化学电源(二)

历年高考化学高频考点51新型化学电源(二)

高频考点51新型化学电源(二)
1.镁-空气电池是一种能被水激活的一次性储备电池,原理如图所示。

下列说法错误的是()
A.放电时,外电路电子由镁电极流向多孔碳材料电极
B.放电时,正极的电极反应式为O2+4e-+2H2O===4OH-
C.理论上,外电路中流过2 mol电子时,负极质量增加58 g
D.电池反应产物Mg(OH)2经过灼烧与还原可制成镁锭循环利用
2.一种突破传统电池设计理念的镁-锑液态金属储能电池的工作原理如图所示,该电池所用液体密度不同,在重力作用下分为三层,工作时中间层熔融盐的组成及浓度不变。

下列说法不正确的是()
A.放电时,Mg(液)层的质量减小
B.放电时,正极反应为Mg2++2e-===Mg
C.该电池充电时,Mg­Sb(液)层发生还原反应
D.该电池充电时,Cl-向下层移动
3.(2019·高考全国卷Ⅲ,T13)为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn(3D-Zn)可以高效沉积ZnO的特点,设计了采用强碱性电解质的3D­Zn­NiOOH 二次电池,结构如图所示。

电池反应为Zn(s)+2NiOOH(s)+H2O(l)错误!ZnO(s)+2Ni(OH)2(s)。

下列说法错误的是()
A.三维多孔海绵状Zn具有较高的表面积,所沉积的ZnO分散度高
B.充电时阳极反应为Ni(OH)2(s)+OH-(aq)-e-===NiOOH(s)+H2O(l)。

新教材高中化学设计载人航天器用化学电池与氧气再生方案鲁科版选择性必修1(含答案)

新教材高中化学设计载人航天器用化学电池与氧气再生方案鲁科版选择性必修1(含答案)

新教材高中化学鲁科版选择性必修1:课时作业8 设计载人航天器用化学电池与氧气再生方案[基础过关练]1.一种突破传统电池设计理念的镁—锑液态金属储能电池工作原理如图所示,该电池所用液体密度不同,在重力作用下分为三层,工作时中间层熔融盐的组成及浓度不变。

该电池工作一段时间后,可由太阳能电池充电。

下列说法不正确的是 ( )A.放电时,Mg(液)层的质量减小B.放电时正极反应为Mg2++2e-===MgC.该电池充电时,Mg­Sb(液)层发生还原反应D.该电池充电时,Cl-向中层和下层分界面处移动2.一种将CO2和H2O转化为燃料H2、CO及CH4的装置如图所示(电解质溶液为稀硫酸)。

下列关于该装置的叙述错误的是( )A.该装置可将电能转化为化学能B.工作时,电极a周围溶液的pH增大C.电极b上生成CH4的电极反应式为CO2+8H++8e-===CH4+2H2OD.若电极b上只产生1molCO,则通过质子交换膜的H+数目为2N A(设N A为阿伏加德罗常数的值)3.我国在太阳能光电催化—化学耦合分解硫化氢研究中获得新进展,相关装置如图所示。

下列说法正确的是 ( )A.该制氢工艺中光能最终转化为化学能B.该装置工作时,H+由b极区流向a极区C.a极上发生的电极反应为Fe3++e-===Fe2+D.a极区需不断补充含Fe3+和Fe2+的溶液4.人工光合系统装置(如图)可实现以CO2和H2O合成CH4。

下列有关说法不正确的是( )A.该装置中铜为正极B.电池工作时,H+向Cu电极移动C.GaN电极的电极反应式:2H2O-4e-===O2↑+4H+D.反应CO2+2H2O===CH4+2O2中每消耗1molCO2转移4mole-5.氢能源是最具应用前景的能源之一。

可利用太阳能光伏电池电解水制高纯氢,工作原理如图所示(电极1、电极2均为惰性电极)。

下列说法错误的是 ( )A.控制连接开关K1、K2,可交替得到H2、O2B.碱性电解液改为酸性电解液能达到同样目的C.接通K1时电极3上的电极反应为Ni(OH)2+OH--e-===NiOOH+H2OD.电极3在交替连接K1或K2过程中得以循环使用6.中科院科学家设计出一套利用SO2和太阳能综合制氢的方案,其基本工作原理如图所示。

液态金属电池原理

液态金属电池原理

液态金属电池原理液态金属电池是一种新型的电化学能量存储器件,它以液态金属作为电极材料,并通过电化学反应将化学能转化为电能。

与传统的锂离子电池相比,液态金属电池具有更高的充放电速率、更长的循环寿命以及更高的能量密度等优势。

下面将从液态金属电池的基本原理、电化学反应机制以及优缺点等方面来进行详细介绍。

液态金属电池的基本原理是利用金属活性元素的氧化还原反应来储存和释放能量。

液态金属电池由两个工作电极(阳极和阴极)和一个电解质组成。

其中,阳极和阴极由金属或金属化合物制成,电解质是一种能够导电的液体。

在电解液中,经过充电反应,阳极会释放出电子,而阴极会接受电子,通过外部电路将电子流回阳极。

当液态金属电池进行放电时,电子流则会从阴极流向阳极,产生电流。

液态金属电池的电化学反应机制主要包括阳极和阴极的氧化还原反应。

以锌空气电池为例,锌金属是阳极材料,空气(氧气)是阴极材料,电解液是能够承载离子的溶液。

在充电过程中,锌金属被氧化为锌离子,并释放出电子,反应式为:Zn→Zn2++2e-。

而空气中的氧气则被还原为氢氧根离子,反应式为:O2+4e-+2H2O→4OH-。

在放电过程中,反应则会逆转,锌离子被还原为锌金属,氢氧根离子则被氧化为氧气,产生水,从而释放出电能。

液态金属电池相对于传统的锂离子电池具有多个优点。

首先,液态金属电池具有更高的充放电速率。

由于金属活性元素的反应速度较快,液态金属电池能够实现快速的充放电过程,适用于高功率应用场景。

其次,液态金属电池具有较长的循环寿命。

由于金属活性元素在反应过程中扩散迁移较快,液态金属电池可以实现较高的循环稳定性,具有更长的使用寿命。

此外,液态金属电池还具有较高的能量密度,可以实现更高的能量储存。

然而,液态金属电池也存在一些缺点和挑战。

首先,液态金属电池中使用的金属活性元素通常较为昂贵,增加了电池的成本。

其次,液态金属电池的使用过程中会产生金属离子的迁移和析出,导致电池的容量衰减,需要进行周期性的维护和管理。

镁锑液态金属储能电池原理 Mg-Sb Liquid Metal Battery

镁锑液态金属储能电池原理 Mg-Sb Liquid Metal Battery

Magnesium −Antimony Liquid Metal Battery for Stationary Energy StorageDavid J.Bradwell,Hojong Kim,*Aislinn H.C.Sirk,†and Donald R.Sadoway *Department of Materials Science and Engineering,Massachusetts Institute of Technology,77Massachusetts Avenue,Cambridge,Massachusetts 02139-4307,United States*Supporting Informationarge-scale energy storage is poised to play a critical role in enhancing the stability,security,and reliability of tomorrow ’s electrical power grid,including the support of intermittent renewable resources.1Batteries are appealing because of their small footprint and flexible siting;however,conventional battery technologies are unable to meet the demanding low-cost and long-lifespan requirements of this application.A high-temperature (700°C)magnesium −antimony (Mg ||Sb)liquid metal battery comprising a negative electrode of Mg,a molten salt electrolyte (MgCl 2−KCl −NaCl),and a positive electrode of Sb is proposed (Figure 1).Because of density differences and immiscibility,the salt and metal phases stratify into three distinct layers.During discharge,at the negative electrode Mg is oxidized to Mg 2+(Mg →Mg 2++2e −),which dissolves into the electrolyte while the electrons are released into the external circuit.Simultaneously,at the positive electrode Mg 2+ions in the electro-lyte are reduced to Mg (Mg 2++2e −→Mg Sb ),which is deposited into the Sb electrode to form a liquid metal alloy (Mg −Sb)with attendant electron consumption from the external circuit (Figure 2).The reverse reactions occur when the battery is charged.Charging and discharging of the battery are accompanied by volumetric changes in the liquid electrodes.The difference in the chemical potentials of pure Mg (μMg )and Mg dissolved in Sb [μMg(in Sb)]generates a voltage that can be expressed as E RT F a a 2ln cell Mg(in Sb)Mg =⎡⎣⎢⎢⎤⎦⎥⎥where R is the gas constant,T is temperature in Kelvins,F is the Faraday constant,a Mg(in Sb)is the activity of Mg dissolved in Sb,and a Mg is the activity of pure Mg.Recent work on self-healing Li −Ga electrodes for lithium ion batteries has demonstrated the appeal of liquid components.2While solid electrodes are susceptible to mechanical failure by mechanisms such as electrode particle cracking,3these areinoperative in liquid electrodes,potentially endowing cells withunprecedented lifespans.The self-segregating nature of liquid electrodes and electrolytes could also facilitate inexpensive manufacturing of a battery so constructed.However,there do not appear to be economical materials options that exist as liquids at or near room temperature.Previous work with elevated-temperature liquid batteries demon-strated impressive current density capabilities (>1000mA/cm 2when discharged at 0V)with a variety of chemistries.4−7However,that work generally used prohibitively expensive metalloids (such asBi and Te)as the positive electrode.The resulting cells exhibitedself-discharge current densities of 40mA/cm 2,attributed to thesolubility of the negative electrode metal (i.e.,Na)in theReceived:October 17,2011Published:January 6,2012Figure 1.Sectioned Mg ||Sb liquid metal battery operated at 700°C showingthe three stratified liquid phases upon cooling to room temperature.The cell was filled with epoxy prior to sectioning.electrolyte.5These systems failed to achieve commercial success,possibly because of a lack of interest in grid-scale storage at that time or the use of high-cost metalloids.Sb is less costly ($7/kg average commodity price over the past 5years)and more earth-abundant than Bi ($24/kg)and Te ($150/kg).8When costs are compared on a per-mole basis (which is more relevant when considering the cost per unit of energy storage capacity),Sb ($0.74/mol)appears even more appealing than Bi ($4.40/mol)and Te ($19.19/mol).Interestingly,the use of Sb had not,until now,been demonstrated in a liquid metal battery.Mg was selected as the negative electrode material on the basis of its low cost ($5.15/kg,$0.125/mol),high earth abundance,low electronegativity,and overlapping liquid range with both Sb and candidate electrolytes.The electrolyte was MgCl 2:NaCl:KCl (50:30:20mol %),which was selected on the basis of its sufficiently low melting point (396°C 9)and the greater electrochemical stability of NaCl and KCl in comparison with MgCl 2.10Mg ||Sb single cell batteries were assembled in the fully charged state in an Ar-filled glovebox,placed inside a sealed test vessel,and heated in a vertical tube furnace to 700°C.When the cell was heated above the melting point of the molten salt,cell open-circuit voltages were found to stabilize at ∼0.44V,consistent with thermodynamic data.11The cells were electrochemically characterized by cyclic voltammetry (CV)and electrochemical impedance spectrosco-py (EIS)using a two-electrode electrochemical setup with the negative electrode (Mg)as the counter electrode/reference electrode and the positive electrode (Sb)as the working electrode.The cells exhibited negligible charge-transfer over-potentials,as demonstrated by the linearity of the current −voltage relationship in the CV scans and the absence of an obvious semicircle in the EIS scans.The slope of the CV was consistent with the area-normalized solution resistance as measured through EIS (typically 1.1Ωcm 2),further demonstrating IR voltage loss to be the dominant overpotential.There were,however,indications of mass-transport limi-tations under certain conditions.The cells exhibited increased cell impedance at lower EIS scan frequencies,suggesting that at long time periods the reaction rates might be limited by diffusion.12Mass-transport limitations could arise from local depletion of Mg 2+ions in the electrolyte at either of the electrode −electrolyte interfaces or Mg mass-transport limi-tations in the Mg −Sb electrode at the Mg −Sb electrode |electrolyte interface.Further electrochemical characterization was performed.Stepped-potential experiments indicated low leakage current densities of <1mA/cm 2,well below those of previously studied systems.This was attributed to the complexation of Mg 2+by ligand donors from the supporting electrolyte (NaCl,KCl)13and theattendant suppression of metal solubility in its halide salts.14Cells cycled at 50mA/cm 2for a predefined discharge period of 10h to a cutoff charging voltage limit of 0.85V achieved a round-trip Coulombic efficiency of 97%and a voltage efficiency of 71%,resulting in an overall energy efficiency of 69%(Figure 3a).At full discharge,the composition of the positive (bottom)liquid electrode was estimated to be 12mol %Mg and 88mol %Sb.Cells were fullydischarged at various rates ranging from 50to 200mA/cm 2with 0.05V as the discharge cutoff limit (Figure 3b).Operation at higher current density resulted in increased IR voltage loss and decreased capacity,consistentFigure 2.Schematic of a Mg ||Sb liquid metal battery comprising three liquid layers that operates at 700°C.During charging,Mg is electrochemically extracted from the Mg −Sb alloy electrode and deposited as liquid Mg on the top (negative)electrode.During discharging,the Mg electrode is consumed,and Mg is deposited into the Mg −Sb liquid bottom (positive)electrode.During charging,the battery consumes energy;upon discharge,the battery suppliesenergy.Figure3.Electrochemical performance of a Mg ||Sb liquid metal battery operated at 700°C.(a)Variation of the cell voltage with the state of charge over one cycle.The current was set at 50mA/cm 2.(b)Deep discharge results at different current rates.The theoretical cellEMF was calculated from data in the literature.11with the measured solution resistance and observed mass-transport limitations.The operating efficiency could be improved by reducing the thickness of the electrolyte or operating at lower current density.The cell performance could be optimized by changes in the current collector design and in the electrolyte composition to increase the cell conductivity.Cells were cycled more than 30times for periods of up to 2weeks and did not exhibit obvious signs of corrosion of the solid-state cell components (current collectors and walls),asdetermined through optical imaging and scanning electronmicroscopy (SEM)/energy-dispersive spectroscopy (EDS)analysis.Analysis of the positive electrodes of cells that were cooled in a discharged state revealed the presence of Mg platelets,consistent with the formation of Mg 3Sb 2(Figure 4).The Mg −Sb phase diagram indicates that a two-phase micro-structure is to be expected as a result of phase separation as the electrode is cooled from a Mg −Sb single-phase liquid regimeinto a two-phase Sb and Mg 3Sb 2regime.Stationary storage applications require devices to operate reliably for many years.In the present study,corrosion was not an issue.However,after several weeks of cycling,the cells ceased to operate.The observed cause of failure was evaporation of the molten salt electrolyte into the surrounding containment vessel,a mechanism that could be mitigated byalternative cell designs with reduced head space.In summary,an all-liquid battery with Mg and Sb liquid metal electrodes has been proposed and its performance capability demonstrated.The use of Sb as the positive electrodeand the self-segregating nature of the liquid components may enable a low-cost energy storage solution.Cells were cycledunder constant-current conditions,demonstrating high current density capabilities and negligible corrosion of the solid-state cell components over the testing period.Further work is required for evaluation of the long-term performance of the proposed cells,which may require analternative cell design.At some larger scale,the action ofelectric current flowing through the electrolyte could generateenough Joule heat to keep the components molten,therebyobviating the need for external heaters,as is the case withelectrolytic cells producing aluminum on a commercial scale.15Future work will include long-term corrosion testing of solid-state components,current collector optimization,and investigation of alternative sheath materials.While the initial cell performance results are promising,exploration of other metal −metalloid couples with still greater cell voltages and lower operating temperatures is warranted.If a low-cost,high-voltage system with sufficiently low levels of corrosion were discovered,it would findutility in a wide array of stationary storage applications.■ASSOCIATED CONTENT *Supporting InformationExperimental procedures,cell design details,heating profile,materials selection,and additional electrochemical results.This material is available free of charge via the Internet at http://.■AUTHOR INFORMATIONCorresponding Authorhojong@;dsadoway@Present Address†Department of Law,University of Victoria,Victoria,BC,Canada.■ACKNOWLEDGMENTSFinancial support from the Deshpande Center for Technological Innovation at MIT,the Chesonis Family Foundation at MIT,the Advanced Research Projects Agency-Energy (U.S.Department ofEnergy),and Total,S.A.is gratefully acknowledged.■REFERENCES(1)AdvancedElectricityStorage Technologies Programme.EnergyStorage Technologies:A Review Paper ;Australian Greenhouse Office,Department of the Environment and Heritage:Commonwealth ofAustralia,2005.(2)Deshpande,R.D.;Li,J.;Cheng,Y.T.;Verbrugge,M.W.J.Electrochem.Soc.2011,158,A845.(3)Christensen,J.;Newman,J.J.Solid State Electrochem.2006,10,293.(4)Shimotake,H.;Rogers,G.L.;Cairns,E.J.Ind.Eng.Chem.ProcessDes.Dev.1969,8,51.(5)Cairns,E.J.;Shimotake,H.Prepr.Pap. Am.Chem.Soc.,Div.FuelChem.1967,11(3),321.(6)Shimotake,H.;Cairns,E.J.In Proceedings of the Intersociety Energy ConversionEngineering Conference ;American Society of MechanicalEngineers:New York,1967.(7)Cairns,E.J.;Shimotake,H.Science 1969,164,1347.(8)Mineral Commodity Summaries 2011;U.S.Geological Survey:Reston,VA,2011.(9)Janecke,E.Z.Anorg.Allg.Chem.1950,261,218.(10)Plambeck,J.A.;Bard.,A.J.Encyclopedia of Electrochemistry of theElements ;Marcel Dekker:New York,1976;Vol.X ,pp 127−148.(11)Eckert,C.;Irwin,R.;Smith,J.Metall.Mater.Trans.B 1983,14,451.(12)Bard,A.;Faulkner,L.ElectrochemicalMethods:Fundamentals andApplications ,2nd ed.;Wiley:New York,2001.(13)Brooker,M.;Huang,C.Can.J.Chem.1980,58,168.(14)Mulcahy,M.F.R.;Heymann,E.J.Phys.Chem.1943,47,485.(15)Haupin,W.;Frank,prehensive Treatise of Electro-chemistry ;Plenum Press:New York,1981;Vol.2,pp 301−325.Figure 4.(a)Cross section of a Mg ||Sb cell.(b)SEM image of a positive electrode in the discharged state.(c)Mg EDS map showing high Mg concentrations in sectioned platelets.。

2021年高考化学总复习:原电池中正负极的判断

2021年高考化学总复习:原电池中正负极的判断

2021年高考化学总复习:原电池中正负极的判断1.(2019全国Ⅰ卷)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV 2+/MV +在电极与酶之间传递电子,示意图如下所示。

下列说法错误的是A. 相比现有工业合成氨,该方法条件温和,同时还可提供电能B. 阴极区,氢化酶作用下发生反应H 2+2MV 2+2H ++2MV +C. 正极区,固氮酶催化剂,N 2发生还原反应生成NH 3D. 电池工作时质子通过交换膜由负极区向正极区移动2.(2019全国Ⅲ卷)为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn (3D −Zn )可以高效沉积ZnO 的特点,设计了采用强碱性电解质的3D −Zn —NiOOH 二次电池,结构如下图所示。

电池反应为Zn(s)+2NiOOH(s)+H 2O(l)−−−→←−−−放充电电ZnO(s)+2Ni(OH)2(s)。

A. 三维多孔海绵状Zn 具有较高的表面积,所沉积的ZnO 分散度高B. 充电时阳极反应为Ni(OH)2(s)+OH −(aq)−e −NiOOH(s)+H 2O(l)C. 放电时负极反应为Zn(s)+2OH −(aq)−2e −ZnO(s)+H 2O(l)D. 放电过程中OH −通过隔膜从负极区移向正极区3.(2018课标Ⅲ)一种可充电锂-空气电池如图所示。

当电池放电时,O 2与Li +在多孔碳材料电极处生成Li 2O 2-x (x =0或1)。

下列说法正确的是A. 放电时,多孔碳材料电极为负极B. 放电时,外电路电子由多孔碳材料电极流向锂电极C. 充电时,电解质溶液中Li +向多孔碳材料区迁移D. 充电时,电池总反应为Li 2O 2-x =2Li+(1-2x)O 2 4.(2016课标Ⅱ)Mg —AgCl 电池是一种以海水为电解质溶液的水激活电池。

下列叙述错误的是 A .负极反应式为Mg-2e -=Mg 2+ B .正极反应式为Ag ++e -=Ag C .电池放电时Cl -由正极向负极迁移D .负极会发生副反应Mg+2H 2O=Mg(OH)2+H 2↑1.工作原理示意图(以铜锌原电池为例)2.原电池电极的判断3. 原电池的负极一般,在原电池反应中活泼金属作负极包含两层含义:(1) “活泼”是指相对活泼而不是绝对活泼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Magnesium −Antimony Liquid Metal Battery for Stationary Energy StorageDavid J.Bradwell,Hojong Kim,*Aislinn H.C.Sirk,†and Donald R.Sadoway *Department of Materials Science and Engineering,Massachusetts Institute of Technology,77Massachusetts Avenue,Cambridge,Massachusetts 02139-4307,United States*Supporting Informationarge-scale energy storage is poised to play a critical role in enhancing the stability,security,and reliability of tomorrow ’s electrical power grid,including the support of intermittent renewable resources.1Batteries are appealing because of their small footprint and flexible siting;however,conventional battery technologies are unable to meet the demanding low-cost and long-lifespan requirements of this application.A high-temperature (700°C)magnesium −antimony (Mg ||Sb)liquid metal battery comprising a negative electrode of Mg,a molten salt electrolyte (MgCl 2−KCl −NaCl),and a positive electrode of Sb is proposed (Figure 1).Because of density differences and immiscibility,the salt and metal phases stratify into three distinct layers.During discharge,at the negative electrode Mg is oxidized to Mg 2+(Mg →Mg 2++2e −),which dissolves into the electrolyte while the electrons are released into the external circuit.Simultaneously,at the positive electrode Mg 2+ions in the electro-lyte are reduced to Mg (Mg 2++2e −→Mg Sb ),which is deposited into the Sb electrode to form a liquid metal alloy (Mg −Sb)with attendant electron consumption from the external circuit (Figure 2).The reverse reactions occur when the battery is charged.Charging and discharging of the battery are accompanied by volumetric changes in the liquid electrodes.The difference in the chemical potentials of pure Mg (μMg )and Mg dissolved in Sb [μMg(in Sb)]generates a voltage that can be expressed as E RT F a a 2ln cell Mg(in Sb)Mg =⎡⎣⎢⎢⎤⎦⎥⎥where R is the gas constant,T is temperature in Kelvins,F is the Faraday constant,a Mg(in Sb)is the activity of Mg dissolved in Sb,and a Mg is the activity of pure Mg.Recent work on self-healing Li −Ga electrodes for lithium ion batteries has demonstrated the appeal of liquid components.2While solid electrodes are susceptible to mechanical failure by mechanisms such as electrode particle cracking,3these areinoperative in liquid electrodes,potentially endowing cells withunprecedented lifespans.The self-segregating nature of liquid electrodes and electrolytes could also facilitate inexpensive manufacturing of a battery so constructed.However,there do not appear to be economical materials options that exist as liquids at or near room temperature.Previous work with elevated-temperature liquid batteries demon-strated impressive current density capabilities (>1000mA/cm 2when discharged at 0V)with a variety of chemistries.4−7However,that work generally used prohibitively expensive metalloids (such asBi and Te)as the positive electrode.The resulting cells exhibitedself-discharge current densities of 40mA/cm 2,attributed to thesolubility of the negative electrode metal (i.e.,Na)in theReceived:October 17,2011Published:January 6,2012Figure 1.Sectioned Mg ||Sb liquid metal battery operated at 700°C showingthe three stratified liquid phases upon cooling to room temperature.The cell was filled with epoxy prior to sectioning.electrolyte.5These systems failed to achieve commercial success,possibly because of a lack of interest in grid-scale storage at that time or the use of high-cost metalloids.Sb is less costly ($7/kg average commodity price over the past 5years)and more earth-abundant than Bi ($24/kg)and Te ($150/kg).8When costs are compared on a per-mole basis (which is more relevant when considering the cost per unit of energy storage capacity),Sb ($0.74/mol)appears even more appealing than Bi ($4.40/mol)and Te ($19.19/mol).Interestingly,the use of Sb had not,until now,been demonstrated in a liquid metal battery.Mg was selected as the negative electrode material on the basis of its low cost ($5.15/kg,$0.125/mol),high earth abundance,low electronegativity,and overlapping liquid range with both Sb and candidate electrolytes.The electrolyte was MgCl 2:NaCl:KCl (50:30:20mol %),which was selected on the basis of its sufficiently low melting point (396°C 9)and the greater electrochemical stability of NaCl and KCl in comparison with MgCl 2.10Mg ||Sb single cell batteries were assembled in the fully charged state in an Ar-filled glovebox,placed inside a sealed test vessel,and heated in a vertical tube furnace to 700°C.When the cell was heated above the melting point of the molten salt,cell open-circuit voltages were found to stabilize at ∼0.44V,consistent with thermodynamic data.11The cells were electrochemically characterized by cyclic voltammetry (CV)and electrochemical impedance spectrosco-py (EIS)using a two-electrode electrochemical setup with the negative electrode (Mg)as the counter electrode/reference electrode and the positive electrode (Sb)as the working electrode.The cells exhibited negligible charge-transfer over-potentials,as demonstrated by the linearity of the current −voltage relationship in the CV scans and the absence of an obvious semicircle in the EIS scans.The slope of the CV was consistent with the area-normalized solution resistance as measured through EIS (typically 1.1Ωcm 2),further demonstrating IR voltage loss to be the dominant overpotential.There were,however,indications of mass-transport limi-tations under certain conditions.The cells exhibited increased cell impedance at lower EIS scan frequencies,suggesting that at long time periods the reaction rates might be limited by diffusion.12Mass-transport limitations could arise from local depletion of Mg 2+ions in the electrolyte at either of the electrode −electrolyte interfaces or Mg mass-transport limi-tations in the Mg −Sb electrode at the Mg −Sb electrode |electrolyte interface.Further electrochemical characterization was performed.Stepped-potential experiments indicated low leakage current densities of <1mA/cm 2,well below those of previously studied systems.This was attributed to the complexation of Mg 2+by ligand donors from the supporting electrolyte (NaCl,KCl)13and theattendant suppression of metal solubility in its halide salts.14Cells cycled at 50mA/cm 2for a predefined discharge period of 10h to a cutoff charging voltage limit of 0.85V achieved a round-trip Coulombic efficiency of 97%and a voltage efficiency of 71%,resulting in an overall energy efficiency of 69%(Figure 3a).At full discharge,the composition of the positive (bottom)liquid electrode was estimated to be 12mol %Mg and 88mol %Sb.Cells were fullydischarged at various rates ranging from 50to 200mA/cm 2with 0.05V as the discharge cutoff limit (Figure 3b).Operation at higher current density resulted in increased IR voltage loss and decreased capacity,consistentFigure 2.Schematic of a Mg ||Sb liquid metal battery comprising three liquid layers that operates at 700°C.During charging,Mg is electrochemically extracted from the Mg −Sb alloy electrode and deposited as liquid Mg on the top (negative)electrode.During discharging,the Mg electrode is consumed,and Mg is deposited into the Mg −Sb liquid bottom (positive)electrode.During charging,the battery consumes energy;upon discharge,the battery suppliesenergy.Figure3.Electrochemical performance of a Mg ||Sb liquid metal battery operated at 700°C.(a)Variation of the cell voltage with the state of charge over one cycle.The current was set at 50mA/cm 2.(b)Deep discharge results at different current rates.The theoretical cellEMF was calculated from data in the literature.11with the measured solution resistance and observed mass-transport limitations.The operating efficiency could be improved by reducing the thickness of the electrolyte or operating at lower current density.The cell performance could be optimized by changes in the current collector design and in the electrolyte composition to increase the cell conductivity.Cells were cycled more than 30times for periods of up to 2weeks and did not exhibit obvious signs of corrosion of the solid-state cell components (current collectors and walls),asdetermined through optical imaging and scanning electronmicroscopy (SEM)/energy-dispersive spectroscopy (EDS)analysis.Analysis of the positive electrodes of cells that were cooled in a discharged state revealed the presence of Mg platelets,consistent with the formation of Mg 3Sb 2(Figure 4).The Mg −Sb phase diagram indicates that a two-phase micro-structure is to be expected as a result of phase separation as the electrode is cooled from a Mg −Sb single-phase liquid regimeinto a two-phase Sb and Mg 3Sb 2regime.Stationary storage applications require devices to operate reliably for many years.In the present study,corrosion was not an issue.However,after several weeks of cycling,the cells ceased to operate.The observed cause of failure was evaporation of the molten salt electrolyte into the surrounding containment vessel,a mechanism that could be mitigated byalternative cell designs with reduced head space.In summary,an all-liquid battery with Mg and Sb liquid metal electrodes has been proposed and its performance capability demonstrated.The use of Sb as the positive electrodeand the self-segregating nature of the liquid components may enable a low-cost energy storage solution.Cells were cycledunder constant-current conditions,demonstrating high current density capabilities and negligible corrosion of the solid-state cell components over the testing period.Further work is required for evaluation of the long-term performance of the proposed cells,which may require analternative cell design.At some larger scale,the action ofelectric current flowing through the electrolyte could generateenough Joule heat to keep the components molten,therebyobviating the need for external heaters,as is the case withelectrolytic cells producing aluminum on a commercial scale.15Future work will include long-term corrosion testing of solid-state components,current collector optimization,and investigation of alternative sheath materials.While the initial cell performance results are promising,exploration of other metal −metalloid couples with still greater cell voltages and lower operating temperatures is warranted.If a low-cost,high-voltage system with sufficiently low levels of corrosion were discovered,it would findutility in a wide array of stationary storage applications.■ASSOCIATED CONTENT *Supporting InformationExperimental procedures,cell design details,heating profile,materials selection,and additional electrochemical results.This material is available free of charge via the Internet at http://.■AUTHOR INFORMATIONCorresponding Authorhojong@;dsadoway@Present Address†Department of Law,University of Victoria,Victoria,BC,Canada.■ACKNOWLEDGMENTSFinancial support from the Deshpande Center for Technological Innovation at MIT,the Chesonis Family Foundation at MIT,the Advanced Research Projects Agency-Energy (U.S.Department ofEnergy),and Total,S.A.is gratefully acknowledged.■REFERENCES(1)AdvancedElectricityStorage Technologies Programme.EnergyStorage Technologies:A Review Paper ;Australian Greenhouse Office,Department of the Environment and Heritage:Commonwealth ofAustralia,2005.(2)Deshpande,R.D.;Li,J.;Cheng,Y.T.;Verbrugge,M.W.J.Electrochem.Soc.2011,158,A845.(3)Christensen,J.;Newman,J.J.Solid State Electrochem.2006,10,293.(4)Shimotake,H.;Rogers,G.L.;Cairns,E.J.Ind.Eng.Chem.ProcessDes.Dev.1969,8,51.(5)Cairns,E.J.;Shimotake,H.Prepr.Pap. Am.Chem.Soc.,Div.FuelChem.1967,11(3),321.(6)Shimotake,H.;Cairns,E.J.In Proceedings of the Intersociety Energy ConversionEngineering Conference ;American Society of MechanicalEngineers:New York,1967.(7)Cairns,E.J.;Shimotake,H.Science 1969,164,1347.(8)Mineral Commodity Summaries 2011;U.S.Geological Survey:Reston,VA,2011.(9)Janecke,E.Z.Anorg.Allg.Chem.1950,261,218.(10)Plambeck,J.A.;Bard.,A.J.Encyclopedia of Electrochemistry of theElements ;Marcel Dekker:New York,1976;Vol.X ,pp 127−148.(11)Eckert,C.;Irwin,R.;Smith,J.Metall.Mater.Trans.B 1983,14,451.(12)Bard,A.;Faulkner,L.ElectrochemicalMethods:Fundamentals andApplications ,2nd ed.;Wiley:New York,2001.(13)Brooker,M.;Huang,C.Can.J.Chem.1980,58,168.(14)Mulcahy,M.F.R.;Heymann,E.J.Phys.Chem.1943,47,485.(15)Haupin,W.;Frank,prehensive Treatise of Electro-chemistry ;Plenum Press:New York,1981;Vol.2,pp 301−325.Figure 4.(a)Cross section of a Mg ||Sb cell.(b)SEM image of a positive electrode in the discharged state.(c)Mg EDS map showing high Mg concentrations in sectioned platelets.。

相关文档
最新文档