一滴油的使命 马自达创驰蓝天发动机诞生记
马自达创驰蓝天发动机Mazda_sky_2.0L
MAZDA SKYACTIV-G 2.0L Gasoline EngineIchiro Hirose, Hidetoshi Kudo, Tatuhiro Kihara, Masanao Yamakawa,Mitsuo HitomiMazda Motor Corporation, Hiroshima, JapanSummaryThe SKYACTIV-G is the first gasoline engine which was developed based on Mazda's long-term vision for technology and the search of internal combustion engineers who are pursuing technologies to develop the ultimate internal combustion engine. This is done with Mazda's aim in mind to achieve a balance between enjoyable driving and environmental performance at the supreme level.The challenging target of 15% torque improvement compared with that of conventional engine was set. This was achieved by solving technological issues towards introduction of extremely high combustion ratio and a 4-2-1 exhaust system.1 IntroductionMazda is aiming at developing the ideal internal combustion engine before we see the complete EV age. We are sure we can contribute to environmental protection primarily by improving the internal combustion engine which will remain mainstream for the automotive powertrain in the mean time. We also believe that the system cost can be reduced by combining the internal combustion engine with the electric devices, which leads to marketability improvement, such as purchasing cost reduction and maintenance cost reduction. Therefore, as you can see from Figure 1, our plan is to upgrade the efficiency of base technologies for the internal combustion engine and others first, combine such technologies with the electric devices as a next step, and then introduce the combined technologies into markets one after another. We call this plan the "Building-Block Strategy".Figure 2 shows our approach toward the ideal internal combustion engine development. We consider that the approach is the same for both gasoline and diesel engines. To be more specific, bringing control factors, such as compression ratio, combustion duration, etc. to the ideal conditions means that the gasoline engine adopts advantages of the diesel engine and vice versa. The SKYACTIV-G, which has been developed based on the above-mentioned long-term technological development strategy, is the new 2.0 liter gasoline engine which will offer driving pleasure to our customers more than ever and also achieves superb environmentally-friendly performance. It is planned that the SKYACTIV-G will be gradually introduced into various markets in 2011 and thereafter.Fig. 1: MAZDA Building-Block StrategyFig. 2: Roadmap for the Ultimate Internal Combustion Engine2 Technological targetAs the first step to bring the gasoline engine closer to the ideal internal combustion engine, the technological targets were set: 15% improvement in the NEDC mode fuel economy and the full load performance respectively, compared with Mazda's existinggasoline engine (Figure 3). The idea behind these was to develop the world-best engine.Fig. 3: Functional TargetIn order to achieve the technological targets, all the controlling factors except for specific heat ratio were upgraded functionally. Considering the cost performance and assuming the natural-aspirated direct-injection engine, it was aimed to improve the compression ratio and pumping loss which were inferior to those of the diesel engine and reduce the mechanical loss further which was superior to that of the diesel engine.In particular, the functional targets were compression ratio increase to world highest 14:1 (@95RON) while keeping the same combustion period, 20% pumping loss reduction, 30% mechanical loss reduction and 10% charging efficiency improvement. Table 1 shows the main specification comparison of the current PFI engine (hereinafter referred to as "base engine") and the SKYACTIV-G.Table 1: Main Specifications3 Fuel Economy3.1 Compression ratioThe world-highest compression ratio of 14:1 was targeted. It is generally known that with only raising the compression ratio strongly, a high fuel consumption improvement cannot be gained. It was identified at the beginning of the development that primary sources for this were long combustion duration and high cooling loss due to quenching of initial flame kernel core, damping of tumble air motion at the top of the piston (Figure 4 & 5).Fig. 4: Effect of compression ratio on Constant Volume=11Fig. 5: Effect of Compression Ratio on In-cylinder FlowIn order to solve this issue, it was a must to balance two conflicting requirements: to form a large cavity while maintaining a high compression ratio. Therefore, basic designs and dimensions such as the bore diameter and the valve angle for intake and exhaust were carefully reviewed.Fig. 6: Requirements for Bore/Stroke SelectionFirst of all, as shown in Figure 6 it was decided to secure the compression ratio of 15 or more for the future. Then the bore diameter was determined to satisfy the peak power requirement with careful consideration of the small bore requirement to reduce surface-volume ratio and the valve diameter requirement. Consequently, the bore diameter was reduced from 87.5mm to 83.5mm. The valve angle was expanded from intake 19 deg./exhaust 20 deg. to intake 22 deg./exhaust 23 deg. The cavity was designed so that the flame should not touch the piston until the flame level reaches 5% MFB from the perspective of cooling loss reduction.Fig. 7: Effect of Cavity Piston on Tumble Ration and Cooling LossAs you can see from Figure 7, this cavity is effective in reducing the cooling loss and increasing tumbling flow. The cooling loss was reduced by 9% while the combustionspeed was increased as shown in Figure 8. As a result (see Figure 9), the new piston improved specific fuel consumption by 2-3% from the original piston. Further the thermal efficiency improvement effect of compression ratio came closer to thetheoretical expectation.Fig. 8: Effect of Piston Shape on Heat Release0%1%2%3%1500rpm/100kPa 1500rpm/262kPa2500rpm/100kPachanging the port angle to be gentler. With this, the combustion speed was increasedas described in Figure 11.Fig. 10:Intake Port Configuration Fig. 11:Effect of Tumble ration on Heat Release Fig. 12:Effect of Tumble ration on Combustion Duration36384042444648501 1.2 1.4 1.6 1.8Tum ble ratio [-]Target 87.5mmbore 83.5mmboreAs a result, a wider overlapping than ever before and a significantly late intake valve close timing were achieved. To be more precise, a dual S-VT (sequential valve timing system) was incorporated. The intake valve timing was set at IVC=110degATDC/EVC=50ATDC (@2000rpm/200kPa). Figure 13-15 show the pumping loss comparison between the base engine and the SKYACTIV-G. The base engine has TSCV (Tumble Swirl Control Valve) and an external EGR. In contrast, the SKYACTIV-G does not have such devices. However, the SKYACTIV-G increased the internal EGR ratio (11% to 18%), achieved intake valve close timing retarded up to 110ATDC and reduced the pumping loss by 20% without any combustion instability.2018161412105060708090100110Intake Valve Close(IVC) Timing [deg CA]40506070809010005101520Exhaust Gas Recirculation ratio [%]3.3.1 Crank/Piston/ConnrodThe diameter of the crank main journal was reduced from =47mm,while the required rigidity was maintained. In addition, the LOC (lubricant oil consumption) performance was enhanced. These improvements made it possible to use the piston ring with the tension lower than that of the current piston ring by 38%.3.3.2 Valve systemThe valve spring weight was reduced by introducing a roller follower and optimizing the cam profiles. For the chain system, the mechanical resistance was reduced due to chain behavior stabilization by reducing the wearing resistance between the high-rigid straight guide and the chain, and dividing and equalizing the load on the levers.3.3.3 Lubrication systemFirst the oil pump capacity was reduced by decreasing the pressure loss in the hydraulic pressure channel and by minimizing the hydraulic pressure requirements for hydraulic pressure-related devices. Then the hydraulic pressure during the partial load operation was reduced by adopting the electrically-controlled variable hydraulic pressure oil pump. The more effects of the variable hydraulic pressure on the fuel economy are seen under the cold condition when the viscosity and resistance are higher.3.3.4 Cooling systemThe water pump unit efficiency was upgraded by a highly effective plastic impeller and reducing the resistance in the cooling channels.Figure 19 indicates the positioning of the SKYACTIV-G in terms of friction loss by comparing with the base engine friction loss measured by a third party (under the condition of 2000rpm and all accessories included) and using the improvement rate which Mazda confirmed. It demonstrates that the SKYACTIV-G is the world's best in terms of the control factor of the friction loss as well.Fig. 17:Examples of Friction Loss ReductionFig. 18:Typical Components for Friction Loss Reduction050100150200100020003000400050006000Engine speed (rpm)F3.4 Fuel economy in vehicle levelThe vehicle fuel economy was measured by using the C/D-class vehicles equipped with the SKYACTIV-G. Figure 20 shows its breakdown. It was verified that the SKYACTIV-G improved the fuel economy in the NEDC by 15%, compared with the current Mazda engine. This is resulted from the fuel economy improvement effects under the hot and steady conditions, such as the above-mentioned high compression ratio with pumping loss reduction (8%) and friction loss reduction (4%). There are other contributors including effects of variable hydraulic pressure under the warm-up condition where hydraulic pressure difference becomes larger, idle engine speed reduction and so on.0%2%4%6%8%10%12%14%16%Compression Ratio and Pumping Loss EffectIdle-Speed Reduction140150160170180190200210TargetBaseInitial statusFull Load Performance improvement0%15%0%15%Current EngineTargetBreakthrough by combustionFig. 22: Toque Recovery Target by Combustion Improvement4.1 Functional target for full load performance improvementRoot cause of the torque decrease are exactly deterioration in knocking resistance and efficiency drop, which resulted from an increase in the pressure and temperature in the cylinder due to the high compression ratio. Therefore, it was focused to reduce the unburned gas temperature in the cylinder at TDC and to improve the combustion duration, referring to characteristics of the DI engine with low compression ratio of 11:1. As shown in Figure 23, the functional target is equivalent to 50 degree C reduction in the gas temperature in the cylinder and reduction in combustion duration by 5 deg.CA (equivalence of approx. 20%) from the initial status of the SKYACTIV-G. In order to meet this functional target, it was focused to improve the combustion system and the exhaust system.302826242220670680690700710720730740750 Unburned gas temperature at TDC (K)Flat piston20BTDC10BTDCTDC 10ATDCCavity pistonFig. 24:Effect of Piston Shape on Flame PropagationFig. 25:Effect of Piston Shape on Heat ReleaseFig. 26:Effect of Piston Shape on Torque4.2.2 Air motion enhancementProgresses were made in the following elements, a) the bore diameter reduction to diminish the cooling loss, and b) the tumble motion enhancement to raise the combustion speed, with a view to knocking resistance enhancement. The long stroke resulting from the bore diameter reduction effectively enhanced the tumble motion. As shown in Figure 27-28, the combined technologies, the tumble motion enhancement and the bore diameter reduction, reduced the combustion duration by 2 deg.CA and improved the torque by 4%.-20020406080100120140-10103050Crank Angle (deg)87.5mm Bore Original int.port83.5mmBore Enhanced int.port4%Fig. 28: Effect of Tumble Ratio on Torque4.2.3 Air-Fuel mixture formation improvementIt was challenged to maximize the charging effect as the combustion system approach toward the gas temperature reduction in the cylinder.In order to efficiently cool down the gas temperature in the cylinder, the latent heat of fuel and multi-hole injector with 6 holes and an excellent mixing characteristic was introduced. Some elements including the fuel spray angle of each cylinder, the spray penetration and the injection ratio for split injection were optimized by utilizing CAE in order to meet various requirements, such as the mixture homogenization for getting charging effect, and the high stratification for catalyst heating up at warming up, which will be touched on later, the oil dilution and the smoke so on.In general, the spray pattern is designed to inject the fuel homogeneously into the cylinder targeting a homogeneous mixture. However,penetration of #1 spray was controlled more to reduce the oil dilution. The spray angle in the horizontal direction for the #1, #2 and #3 sprays in the first and second rows, which play an important role in stratified mixture formation, is designed so that sprayed fuel is captured by the cavity. The spray angle and penetration for the #6 spray in the bottom row is designed to enhance tumble air motion (Figure 29-30).Fig. 29: Basic Spray ConfigurationFig. 30: Visualization Results of In-Cylinder FlowFigure 31-32 indicate differentials in homogenization among three spray patterns. The Layout-A spray pattern, which the SKYACTIV-G adopted, achieved a better homogenization than the other spray patterns and much better than the traditional swirl-type spray patterns.X sprayY spray 060mm20mm 40mm 0 60mm20mm 40mm (i) Layout A (ii) Layout B (iii) Layout CX sprayY spraysFig. 33: Comparison of Mixture HomogeneityLayout B Layout AFig. 36: Comparison of gas temperature distributionThe combustion duration reduction at 4 deg. CA and 10% torque improvement from the initial status were achieved by incorporating these combustion-related technologies. The SKYACTIV-G with high compression ratio of 14 realized the same torque at low engine speed as the current DI with the compression ratio of 11.4.3 Exhaust system upgradeAlthough the torque was improved by 10% by upgrading the combustion system, as indicated in Figure 37, further 8% improvements were required to meet the torque target at low engine speed. To achieve this, it was aimed at improving the exhaustsystem. Full Load Performance improvement 0%15%0%15%Current EngineTargetBreakthroughby exh. systemFig. 37:Target for Exhaust System DevelopmentFigure 38 indicates the relation between the charging efficiency for the residual gas ratio and the gas temperature in the cylinder at TDC based on the CAE analysis. The residual gas ratio for the 4-1 exhaust system, which is the base exhaust system, isapprox. 7%. The charging efficiency is 84%. The temperature in the cylinder is 720K.6080100120140]39[K]4-1CCstatusScavengingFig. 38: Functional Target for Exhaust System DevelopmentIt is required to secure approximately 160kPa boosting pressure @ IVC in order to gain the charging efficiency sufficiently enough to meet the low-end torque target while keeping the same residual gas ratio. However, this was not an option for the SKYACTIV-G because its design concept was naturally aspiration. Therefore, an approach taken was to reduce the residual gas and the temperature in the cylinder by optimizing the use of scavenging effects. As shown in Figure 38, with scavenging effects, the residual gas was reduced by approx. 45% and the temperature in thecylinder was reduced by 39K. As a result, the charging efficiency increased by approx. 9%, which gave a positive outlook toward the low-end torque target achievement.Fig. 39: Basic Concept of Exhaust System DesignIn order to maximize scavenging effects, it was started to develop the 4-2-1 long exhaust system which is almost disappearing from the industry because of emission reasons.First the exhaust manifold basic specification was decided from the aspect of the pressure wave timing control. In order to prevent the exhaust gas from getting into another cylinder during valve overlap, in other words, in order to prevent the residual gas increase in all the engine speed ranges due to the reversal exhaust gas flow, the runner length to the exhaust manifold collector position was set to approx. 600 mm. This contributed to shifting the resonance point of the reverse negative pressure wave at the exhaust manifold collector during valve overlap to the relatively wide ranges of the engine speed (2000/3000/5000 rpm).Then the pipe diameter and shape of exhaust manifold were optimized to maximize the reverse negative pressure. The exhaust manifold pipe inner diameter was set to) of the exhaust pipe.Fig. 40: Basic Concept of Exhaust System DesignSince it was difficult to predict the above-mentioned 3-dimensionnal effect of exhaust manifold on pressure wave characteristics by using CAE, as you can see from Figure 40, the characteristics were optimized through the rig test with which reflection/damping of the impulse acoustic wave was acoustically analyzed. There are high correlation between the rig test result and the actual engine test result.In addition, the blow down timing and the timing of reversed negative wave coming are carefully adjusted in the engine speed range where scavenging effects are expectable by controlling the EVO timing and the IVO timing optimally.The exhaust manifold was designed to be compact and loop-shaped as shown in Figure 41 so that it was installable on 4WD vehicles and small-sized vehicles. As mentioned earlier, the exhaust manifold was developed by optimizing the tube bending radius through the acoustic rig test. It was confirmed that by doing so, the performance equal to that of the straight 4-2-1 exhaust manifold was secured without deteriorating the pressure wave transmission function, which was the basic function for this exhaust manifold.Fig. 41: Final Design of 4-2-1 Exhaust ManifoldOn the other hand, it was clarified that if the piston protruded too much, scavenging effects were spoiled even when the optimized exhaust system was used. Therefore, the piston design was changed as shown in Figure 42 as a result of the bore diameter reduction. The bore diameter decrease made it possible to reduce the piston protrusion height, maintaining the compression ratio. With this, the torque was improved as expected through the use of the scavenging effects.Thanks to the above-mentioned efforts, the charging efficiency was improved by 9% and the torque at the low engine speed was improved by 8%.Fig. 42: Final Design of Piston ShapeThe improvements in the combustion duration and the gas temperature in the cylinder, and the torque improvement effects are put together and shown in Figure 43 & 44. The temperature in the cylinder and the combustion duration which are almost equal to those of the current DI engine (compression ratio of 11:1) were finally achieved. In addition, the charging efficiency was improved as planned. With these technologies, the low-end torque of SKYACTIV-G was finally upgraded by approx. 15 % from the current DI engine, although its compression ratio was 14:1.202224262830670680690700710720730740750Unburned gas temperature at TDC (K)140150160170180190200210IntialStatusTarget2%pistonoptimisation4%Small Bore andAlirMotion opt.3%mixtureoptimization8%ScavengingIntial Status TargetFig. 44: Roadmap to the Low-End Torque TargetThe scavenging effects gained by improving the exhaust manifold design are also gained from the reverse negative pressure wave from the other exhaust components. It is designed to get scavenging effects in the wide range of the engine speed by adjusting resonance point of the reverse negative wave from the pre-silencer to 2500 rpm and that from main silencer to 1500 rpm (Figure 39).The charging efficiency was improved by adjusting the resonance point of intake system is utilized for 2250rpm where no scavenging effects are expected because the reverse positive wave resonances to valve overlap. By this effort, the flat torque curve was developed in all over engine speed range.It was also verified that the torque drop sensitivity to noise factors, such as intake air temperature, hydraulic temperature, fuel octane value, etc., was equivalent to that of existing engines.As the vehicle models which the SKYACTIV-G will be installed on will commonize the locations and functions of all the intake/exhaust system components which have impacts on torque, it is expected that all the vehicle models will exhibit almost the same torque characteristics.Through the above-mentioned efforts, the technical targets were met: 15% improvements in the fuel economy and the power performance respectively, compared with those of the current engine.The improvements of the SKYACTIV-G fuel economy and power performance under full load operation are shown in Figure 45. The specific fuel economy achieves the same level as existing Mazda diesel engines. Figure 45also shows the positioning of BSFC of SKYACTIV-G by using the base engine's specific fuel consumption measured by the third party and BSFC improvement ratio in the SKYACTIV-Gmeasured in Mazda (absolute BSFC value is just reference). The SKYACTIV-G demonstrates far better fuel consumption than other stoichiometric combustion engines. It can be said that the SKYACTIV-G stands at the world-best level. Further more, the SKYACTIV-G is foremost level in the low-end torque among the existing engines. The max. torque and max. power also stand at the top level. Full Load Performance improvement 0%15%0%15%Current Engine30032034036038040042044046048050050010001500200025003000Engine diplacement (cc)Base engine (measured by 3rd party)15%Positioning of SKYACTIV-G SKYA CTIV-GenginScatter band measured by 3rd PartyFig. 45:Positioning of SKYACTIV-G 2.0L5 Other technical issues to be overcomeAs mentioned earlier, the higher compression ratio and the 4-2-1 exhaust system were incorporated as enablers to improve the fuel economy and low-end torque. There were various technical issues that to be overcome to achieve the development goals. One was the pre-ignition control technology development for high compression ratio. The other was the emission reduction technology development for the 4-2-1 exhaust system. How they were solved will be described next.5.1 Pre-ignition controlThe pre-ignition referred here is auto-ignition of the mixture caused by high pressure and temperature in the cylinder, not the pre-ignition caused by heat spot such as high-temperature spark plug. The heat-spot pre-ignition tends to occur in the high engine speed range easily. While the auto-ignition tends to occur at the low speed where the mixture is compressed for a longer time.As existing engines with the low compression ratio have enough margins from the pre-ignition limit, so far, it is not needed to worry about the robustness against the pre-ignition so much. However, the high compression ratio introduction surely raises possible risks of pre-ignition because the temperature and the pressure in the cylinder significantly increase.In order to prevent abnormal combustions including pre-ignition even under the conditions with considering the effect of multiple noise factors, such as compression ratio raised by carbon deposit or various environmental and driving conditions on pre-ignition limit, the development was proceeded by taking three approaches below.5.1.1 Sensitivity to pre-ignitionSensitivity of various noise factors to pre-ignition was examined. Figure 46 indicate that pre-ignition tends to occur when the engine speed is lower and the intake air temp./water temp. are higher and that it tends to take place more frequently when relative air-fuel ratio(AFR) is aroundFig. 46: Pre-ignition Sensitivity of Several Noise FactorsFigure 47 illustrates the effects of split injection on pre-ignition under the conditions offull load andFig. 47: Effect of Split Injection on Pre-ignitionFigure 48 demonstrates the pre-ignition robustness of SKYACTIV-G under multiple noise conditions. There are sufficient margins even with cam timing fully optimized for best torque under the nominal specifications and standard environmental conditions. However, considering the compression ratio increase due to carbon deposits and the upper limits of the temperature and the octane values so on, there are no more margins left. This indicates that the pre-ignition could occur under worst case.CompressionRationominal (14.0)nominal (14.0)nominal (14.0)nominal (14.0)worst (15.4)worst (15.4)FuelNominal 95RON 95RON 95RON 95RON 93RON worst 91RON Intake air temp.Normal(255858100100100)Normal(90100110110110Preignition MarginePreignition Limit Calibrated IVC for Best TorqueIVC controllable rangeAFR controllable rangeFig. 48:Robustness for Pre-ignitionOn the other hand, there is the pre-ignition controllable range by late IVC controlling and rich AFR operation. Please look at the right side of Figure 48.As this controllable range makes it possible to achieve the effective compression ratio which is below the pre-ignition limit even under the worst condition, pre-ignition can be prevented under any conditions as long as the pre-ignition limit is predicted in response to environment changes. The pre-ignition prediction model was developed for this reason.5.1.2 Pre-ignition prediction technologyFigure 49 shows the relation between the initial combustion position (corresponding MBF 10%) and the heat release under various engine operational conditions. The stronger the pre-ignition is, the earlier the initial combustion is. As a result, there is tendency that more heat is released. If it is possible to predict the combustion cycle where the MBF 10% is positioned at 25deg.BTDC, early signs of pre-ignition can be grasped without fail.Fig. 49: Correlation Between Predicted and Measured Pre-ignition Limit Therefore, the mean effective compression ratio where MBF10% was positioned at 25deg.BTDC was defined as the pre-ignition limit. As shown in Figure 50, Liven-Wood integral formula was used to clarify the relation between the temperature and the pressure in the cylinder which reaches the condition of pre-ignition limit. Based on this study, pre-ignition limit was described as the mean effective compression ratio under the ambient temperature condition (temperature, ambient temperature, coolant temperature etc. which can be measured by sensors existing in the engine.Fig. 50: Correlation Between Initial Combustion Position and Heat ReleaseFigure 51 indicates the correlation between the pre-ignition limit predicted based on the above formula and the measured pre-ignition limit under various conditions. They are in line with each other within +/- 0.2 of the mean effective compression ratio.Fig. 51: Ionization Current Sensor System for Pre-Ignition DetectionAs shown in Figure 47, the engine normally has enough safety against the pre-ignition limit and operates based on the IVC timing which was determined by the fuel economy/power performance requirements. However, when the intake air or hydraulic oil temperature increases extraordinary, IVC is retarded based on the pre-ignition limit predication calculated according to the above formula. With the help of。
马自达创世蓝天发动机技术与维修
摘要汽车被誉为全球第一产品和改变世界的机器,在我国近些年来,汽车结构中大量采用了高新技术,这无疑对汽车使用者与维修人员提出了更高的要求。
如果使用、维修不当,将会是汽车性能过早恶化,使用寿命缩短。
汽车对人们的工作和生活日益关系密切。
随着现代汽车的保有量增加和汽车的老化,汽车的维修成为大家广泛关注的焦点。
就目前来看随着人们对于各种硬件软件的性能要求越来越高,各项数据操控越来越精细,这就使得汽车的结构越来越复杂。
工作环境也十分的恶劣,汽车发生故障的频率依然很高。
发动机作为整个汽车的核心,对于汽车的整体作用不言而喻。
由于机动车的老化,引擎也会随之频发故障。
引擎的损坏会造成各项指标下降,尤其是功率,油耗和尾气排放有着非常大的影响。
较为重大的故障会降低汽车的安全性,甚至会造成重大的交通事故,对人身财产安全造成很严重的影响。
这篇文章主要先分析了包括中国在内的国家在汽车发动机的发展现状得出了一些重要的理论,使得能够更全面的探讨马自达创世蓝天的检测方法。
车辆发动机是车辆的关键部件,相当于车辆运行电源。
自动化程度的不断发展,使它的结构变的更加复杂,再加上一个非常恶劣的工作环境,因而增加了发动机故障的频率,并增加诊断的难度。
我们知道一辆汽车的机体,就是汽车维修的重点。
每个国家都增加了很多汽车维修站,维修人员把更多的精力和金钱都放在机体诊断上,就是为了提高工作效率。
中国改进和提高了和中国汽车产业的自动检测诊断技术,因为较大的差距使后期汽车电子的发展变得更加重要,研究在汽车故障诊断在汽车业具有很重要的现实意义。
关键词:故障诊断;发动机;维修/ 31Mazda blue sky engine technology creation andmaintenanceAbstractAutomobile is known as the world's first product and change the world of machinery, in our country in recent years, a large number of automobile structure using high and new technology, which no doubt to the car users and maintenance personnel put forward higher requirements. If the use and maintenance of improper, it will be premature deterioration of the performance of the car, the service life is shortened. Cars are becoming more and more closely related to people's work and life.With the aging of the population increase, and Hyundai cars, car maintenance becomes the focus of attention.This article mainly analyzes the first countries, including China, in the automotive engine development status of some important theory, can make a more comprehensive discussion Mazda creation detection method of the blue sky. Vehicle engine is the key to the vehicle parts, equivalent to a vehicle power supply. The continuous development of the degree of automation, make the structure more complicated, plus a very poor working environment, thus increased the frequency of the engine failure, and increase the difficulty of the diagnosis. We know that a car body, is the focus of vehicle maintenance and repair. Every country has increased a lot car repair, maintenance personnel put more energy and money in the body on the diagnosis, in order to improve the work efficiency. China to improve and raise the diagnosis technology and the automatic detection of the auto industry of China, because of the large gap between late makes the development of automotive electronics is becoming more important, the research on automobile fault diagnosis in the auto industry has very important practical significance.I / 31Key words:Fault diagnosis; engine; maintenanceII / 31目录摘要 (I)Abstract (II)1 绪论 01.1 研究背景 (1)1.2 研究目的及意义 (1)1.3 研究内容及方法 (1)1.4 国内外研究现状 (2)1.4.1 国外汽车发动机诊断技术发展概况 (2)1.4.2 我国汽车发动机诊断技术发展 (3)2 保养及维修前技术准备 (3)2.1 发动机的维修检查 (3)2.2 发动机主要零部件的检修 (4)2.2.1 曲轴的检修 (4)2.2.2 凸轮轴的检修 (5)2.2.3 活塞裂纹的检修 (5)2.2.4 气缸的检修 (5)2.3 本章小结 (6)3 发动机故障诊断基本理论 (6)3.1 发动机故障诊断分类 (6)3.2 发动机故障分析与检测方法 (7)3.2.1 使用仪器的方法 (7)3.2.2 基于信号分析处理的故障分析与检修 (7)3.3.3 基于解析模型的故障分析与检测 (8)3.2.4 基于人工智能的故障分析与检测 (8)3.3 本章小结 (9)III / 314 马自达创世蓝天型发动机故障及案例分析 (9)4.1 马自达发动机整体分析 (9)4.2 马自达发动机常见问题及维修 (11)4.2.1 马自达发动机常见问题 (11)4.2.2 马自达发动机常见问题的维修 (12)4.3 马自达发动机各电控系统的检修 (13)4.3.1 发动机燃油供给系统的检修 (13)4.3.2 马自达发动机点火系统的检修 (16)4.3.3 马自达发动机进排气系统的检修 (17)4.4 马自达创世蓝天发动机常见故障案例分析 (18)4.4.1 不能启动或启动困难检修案例 (18)4.4.2 易熄火故障的检修案例 (20)4.4.3 动力不足故障的检修案例 (22)4.5 本章小结 (24)结论 (25)致谢 (26)参考文献 (27)IV / 31“马自达创世蓝天”发动机技术与维修****1 绪论1.1 研究背景中国是世界上最大的汽车生产大国之一,到目前为止,我国汽车领域得到了前所未有的发展,到现在为止,我们国家的汽车数量比很多国家都要多。
汽车发动机的昨天,今天,明天
汽车发动机的昨天,今天,明天(2013级汽服一班,黄胜钧,罗黎冰,胡浩然,李超,卢云梦)1885年,德国工程师卡尔·本茨制成了世界上第一辆三轮车,至今已经历了129年的风雨。
在科技时代的二十一世纪,汽车已成为大街小巷随处可见的人类伙伴。
而发动机作为汽车的心脏,更是引起了很多人的关注。
这个把化学能转换为机械能的东西改变了整个世界。
推动了世界工业化的形成。
18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。
1794年,英国的斯垂特首次提出燃料与空气混合成可燃混合气的原理。
1801年,法国化学家菲利浦·勒本采用煤干馏得到的煤气和氢气做燃料,制成一台活塞发动机,从此内燃机迈出开拓性的一步。
1824年,法国的萨迪•卡诺提出了热机的循环理论。
1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。
1862年,法国铁路工程师罗彻斯,发表了等容燃烧的四冲程发动机理论,即进气、压缩、作功、排气,并指出压缩混合气是提高热效率的重要措施。
1862年1月16日他的发明获得法国专利,他并没有造出实物来说明他的理论。
1866年,奥托研制出具有划时代意义的立式活塞式四冲程奥托内燃机。
第二年,此物荣获巴黎博览会金质奖章。
1876年,奥托对四冲程内燃机又作了改进,试制出第一台实用活塞式四冲程内燃机。
1877年8月4日取得专利,并成批投入生产。
不过,奥托的内燃机以煤气为燃料,体积较大,重量约1t,还不能用在汽车上。
1879年,德国工程师卡尔·本茨首次实验成功了一台二冲程试验性发动机。
1883年8月15日,戴姆勒和迈巴赫在奥托四冲程发动机的基础上,通过改进开发出了第一台卧式汽油机。
他们再接再厉,把发动机的体积尽可能缩小,终于制成了世界上第一台轻便小巧的化油器式、电点火的小型汽油机,转速达到了当时创记录的750r/min。
这也是世界上第一台立式发动机,取名为“立钟”。
发动机DUAL S-VT技术
Dual S-VT是双可变气门正时控制系统+电子控制节气门提到创驰蓝天发动机,大家的第一印象就是省油,它的特点仅是省油吗?创驰蓝天发动机的开发理念如何来的?创驰蓝天发动机用了哪些技术来实现它的开发目标?创驰蓝天发动机相关的一系列名词是什么意思?创驰蓝天发动机和涡轮增压发动机对比又如何什么是汽油发动机?一般车用发动机分为两种,以汽油(gasoline)为燃料的汽油机和以柴油(diesel)为燃料的柴油机,所以创驰蓝天汽油机称为Skyactiv-G,创驰蓝天柴油机称为Skyactiv-D。
目前,由于油品和政策原因,国内柴油乘用车尚难以普及,Skyactiv-D目前也未引入国内,因此我们研究的重点是Skyactiv-G。
为了便于了解Skyactiv-G的特点,我们先来了解一下汽油发动机的工作原理。
右边图示是一个缸内直喷汽油机的完整工作流程,包括进气、压缩、排气、做功、排气四个行程,活塞上下往复运动,把汽油燃烧的热量转化为驱动汽车奔跑的动能。
PS.:汽油机与柴油机都属于内燃机,即燃料在发动机内部燃烧。
除活塞式的汽油机,马自达独有的转子发动机也是汽油机马自达的目标—探寻理想的发动机虽然汽油机是乘用车使用最早且应用最广泛的发动机,但是它是理想的发动机吗?当然不是,事实上汽油发动机只能够利用燃料30%的能量,另外70%以各种形式被浪费掉。
因此,各大汽车公司都在寻求提升汽油机燃料利用效率的方法,最终出现了两条技术路线,一个就是用涡轮增压,一个就是混合动力。
这两种技术有两个共同点:都在发动机外部寻求较复杂的解决方法;都认为发动机本身没有太多改进的余地。
但是马自达的工程师不这样认为,他们先明确了理想发动机应该具备的三个特征,即高效清洁排放、可靠性,以这三条来衡量,涡轮增压和混合动力都不能算是理想的发动机。
马自达的工程师决定从零开始,从发动机本身寻找改进的方法,找出了发动机内部最基本的可控因素,并对它们逐一改进,最终成功开发出Skyactiv-G,真正拥有高效率、清洁排放和可靠性的理想发动机。
打破神秘 马自达SKYACTIV创驰蓝天技术..
打破神秘马自达SKYACTIV创驰蓝天技术[汽车之家技术] 现在以奔驰、宝马、奥迪-大众等为代表的欧系厂商似乎已经占据了当下的主流技术路线,甚至韩系车也开始屡屡展示自己的技术,而日系厂商则不约而同的选择了集体沉默,终于在今年的美国沃德十佳发动机评选中,马自达打破了沉默的局面,SKYACTIV这个看似神秘的字眼再度进入了人们的视线,SKYACTIV到底是什么?下面我们就来打破神秘,一探SKYACTIV的究竟。
什么是SKYACTIV?SKYACTIV是马自达一系列基于现有汽车工业技术的新技术集合,其中包括了柴油机、汽油机、变速器、车身和底盘技术。
SKYACTIV的中文名称叫做“创驰蓝天”,不难看出,这套技术的重点就是提升车辆的经济性,因此更具新意的动力设计就是技术上的重中之重。
在更经济环保的同时,SKYACTIV的技术重点也包括提升车辆的安全性,因此车身、悬挂等技术也同样是SKYACTIV的核心。
目前阶段SKYACTIV技术依然以内燃机为主,而到了创驰蓝天计划的后期(2015-2020年),马自达也会逐渐加大启停、能量回收等混动技术的比重,电动车也开始成为发展的重点。
●马自达SKYACTIV-G发动机与众不同之处:汽油机中高达14:1的压缩比特有技术:4-2-1排气,独特设计燃烧室,结构轻量化,VVT首先要说到的就是此次入选沃德十佳发动机的SKYACTIV2.0排量直列四缸汽油机,也就是SKYACTIV-G。
这套动力系统投放北美市场以来,获得了不少好评,不过能在投放市场第一年就入选沃德十佳,其实力确实不容小觑。
马自达2.0排量SKYACTIV-G发动机最引人注目的就是它首次在普通民用车上实现了高达14:1的汽油机压缩比,尽管在海外版马自达3等车型上装车之后,由于4-2-1排气体积过大,与防火墙冲突而被迫使用了传统的4-1排气,这一高的令人咋舌的压缩比已经调整到了12,但依然是量产车型中不多见的(普通汽油机的压缩比通常都在11或以下)。
【机械要点】马自达创驰蓝天发动机升级为第二代 采用均质充气压缩点火HCCI技术(附图)
张小只智能机械工业网马自达创驰蓝天发动机升级为第二代采用均质充气压缩点火HCCI技术(附图) 日本汽车制造商有一家很独特的公司,当世界都在研究活塞式内燃机时,它却执拗于转子发动机;当世界都向小排量涡轮增压机器转变时,它却坚守自吸的道路;甚至推出一款独一无二的小跑车。
近日,马自达将推出第二代创驰蓝天发动机,采用全新点火技术——均质充气压缩点火(HCCI),也是业界第一款采用该技术的发动机。
据美国媒体8月6日报道,马自达推出第二代创驰蓝天(SkyActiv II)发动机,采用全新点火技术——均质充气压缩点火(HCCI),整体燃效提高30%,该发动机将于2017年8月下旬的法兰克福车展亮相。
马自达将推出的新型无火花发动机采用HCCI均质压燃燃烧技术,工作原理与柴油机相类似,即无需火花塞点燃油气混合气,通过压缩气缸中的空气和燃料的混合物直到其燃烧,但依然使用汽油作为燃料。
而且,发动机将会在低转速区间保留火花塞点火,并在高转速区间切换为均质压燃的燃烧方式。
这样的设计可以降低尾气排放,同时提升动力及燃油经济性。
HCCI均质压燃燃烧技术将使用在第二代创驰蓝天(SkyActiv II)发动机中。
马自达表示,HCCI技术的核心就是取消了传统的火花塞点火方式,通过柴油发动机一般所采用的压缩汽油混合气将其压燃的方式产生动力,这样的点火方式能够使燃料更加充分燃烧,发动机整体燃效提升30%,这个燃效甚至比有些混合动力的发动机还要高。
马自达也有望成为世界上第一个量产HCCI汽油发动机的厂商。
据悉在10月下旬开幕的2017东京车展上,马自达还将发布预示全新一代马自达3设计理念的概念车。
2018年,全新一代马自达3将正式发布,而该车也将成为首款搭载第二代创驰蓝天发动机的量产车型。
不过据悉,全新一代马自达3将继续采用张小只机械知识库。
汽车典故——马自达
马自达的汽车历史马自达马自达汽车公司的原名为东洋工业公司,生产的汽车用公司创始人“松田”来命名又因“松田”的拼音为MAZDA(马自达),所以人们便习惯称为马自达。
马自达起初使用的车标,是在椭圆之中有双手捧着一个太阳,寓意马自达公司将拥有明天,马自达汽车跑遍全球。
马自达公司与福特公司合作之后,采用了新的车标,椭圆中展翅飞翔的海鸥,同时又组成“M”字样。
“M”是“MAZDA”第一个大写字母,预示该公司将展翅高飞,以无穷的创意和真诚的服务,迈向新世纪。
● 合资品牌的故事一汽马自达,是日本马自达公司和中国一汽轿车股份有限公司合资品牌。
一汽轿车引进马自达先进技术,可以使一汽轿车在保持产品的技术先进性方面,跨上一个新台阶。
而马自达面对中国这样一个已经启动的超级市场,要想达到目标,必须寻找更强有力的合作伙伴——一汽轿车股份有限公司。
因此有了今天的一汽马自达。
对于中国,马自达并不陌生。
它的中国情缘,可以追溯到1992年马自达929厢式车投放中国市场。
随后,马自达323和轻型双排皮卡来华。
不过,这三款车的销售总共才四、五千辆。
由于没有自己的销售网络,也没有打出自己的品牌,马自达在中国的“试水”波澜不惊。
转机出现在1998年。
当海南汽车制造厂加入一汽,马自达看到了在华扩展的契机,用马自达高管层的话来说,就是看到了“从地方级合作扩展到全国范围合作的机会”。
2001年,国内首款s-mpv普利马在海南新鲜出炉,打响了马自达品牌在中国销售的冲锋号,马自达品牌的3s店也开始建立。
在马自达的海外战略中,中国变得越来越重要。
马自达ceo刘易斯·布斯对于中国轿车市场的看法总结了四点,第一,中国轿车市场会不断持续发展,第二,个人消费者的比例将越来越高,第三,世界上所有的品牌和最新的产品将在中国露面,第四,中国汽车业在服务和质量上会不断提高,国际竞争力将不断增强。
『Mazda6 Wagon 2.3』此时,正是中国加入wto之际,一汽轿车为了提高产品技术水平,积极开展国际合作,并于2002年及时引进了日本马自达公司的新车型m6。
Mercedes-benz历史数据
历史数据:1878年,开始制造2冲程发动机;后来,引进Nkolaus August Otto四冲程发动机,发明电池点火系统。
1883年10月1日,卡尔-本茨与两名商人在曼海姆共同成立了奔驰合伙公司—莱茵燃气发动机厂。
公司很快发展成为25个人的公司,并于1884年获得生产汽油机的许可。
1883年,戈特利布-戴姆勒注册了“炽热管点火的燃气发动机”的和“调节发动机速度的排气阀门控制器”两项专利。
这两项专利奠定了第一部高速内燃发动机的基础。
1885年,戴姆勒和迈巴赫注册了世界上第一台高速内燃汽油发动机,因为体积小且动力足,使安装在各类车辆上成为可能。
1885年8月29日,戈特利布-戴姆勒和威廉-迈巴赫装配了世界上第一台汽油内燃机的“骑式双轮车”,成为世界上第一台摩托车1886年1月29日,卡尔发明的以汽油发动机为动力的三轮车获得专利,成为正式的世界上第一辆汽车诞生的标志。
1886年3月8日,戈特利布-戴姆勒和威廉-迈巴赫将他们新型发动机装在一辆高级马车上,从而诞生了世界上第一辆四轮汽车,并申请了专利。
1888年8月,Bertha Benz(1849-1944)成为第一次驾驶汽车长途旅行的人,从Mannheim到Pforzheim往返大约200公里,Modle2型3轮木轮毂。
2 年后她拿到了第一张驾驶证1890年11月28日,在斯图加特市,戴姆勒汽车公司正式成立Daimler-Motoren-Gesellschaft(DMG),威廉-迈巴赫为总工程师。
1894年,奔驰开始生产“Velo”,采用单缸发动机。
该车是世界上第一辆量产汽车,从1894年到1901年共生产了1200辆。
1895年,“英国戴姆勒发动机集团公司”更名为“英国发动机集团公司”,该公司以35万马克的高价购买戴姆勒和迈巴赫的专利使用权,成为英国的汽车工业的鼻祖。
1896年戴姆勒汽车公司制造了世界上第一辆卡车,双缸4马力发动机,载重为1500公斤,销售给伦敦的“英国发动机集团公司”1897年,戴姆勒汽车公司正式生产商用车1898年9月戴姆勒汽车公司向艾米尔-耶里内克提供2辆8马力的“Phoenix”汽车,这是世界上第一辆发动机前置汽车,同时也是世界上第一辆4缸汽车。
新技术的示范效果
新技术的示范效果作者:牧野茂雄来源:《汽车之友》2014年第16期前几天我试驾了8月底将要发售的新款马自达2的量产试作车。
马自达2是马自达轿车中最小的车型,也是创驰蓝天技术设计的第4款产品。
估计到明年中国的长安马自达也会开始生产这款车。
马自达采用创驰蓝天技术设计的新款Roadstar也预定在年内发布。
2011年,第一款全面采用创驰蓝天技术的CX-5发售以来,马自达在日本的人气就不断上升。
其中一个原因是因为“魂动”造型,另一个原因是采用了低油耗高爆发力的柴油发动机。
日本汽车制造业者在很长时间内都没有开发面向日本国内的柴油轿车了。
因此,一般的汽车拥有者都不会想去驾驶柴油轿车。
日本国内柴油机排放法规很严,在自动挡车上搭载能满足法规的柴油机的最初只有奔驰。
而自从马自达CX-5搭载柴油机以来,日本市场重新开始对柴油机重视起来。
新马自达6柴油版也引入了日本,采用创驰蓝天技术的柴油轿车在日本已经获得了超过10万台的销量。
新马自达2也采用了魂动造型,同时也搭载了新款1.5升SKYACTIV-D 1.5柴油发动机。
这款1.5升发动机非常容易控制。
我同时试驾了6MT和6AT两款车型,在转速为1200rpm时就能给出充足扭矩。
通常,日本AT车型在获得指令后,会使用扭矩转换器来慢慢增加发动机的输出扭矩,而马自达的AT车在获得指令后立刻让发动机和变速箱直连。
丰田和日产认为这样会在变速时增加震动,因此不采用直连的方式,而马自达则因为重视扭矩增加的驾驶感觉而采用了直连。
当然这种情况下马自达的油耗会更好。
我很佩服SKYACTIV-D 1.5的设计。
发动机气缸容积小了之后冷却损失会增加,这是因为对应容积的气缸表面积比例上升了。
马自达在2.2升柴油发动机上做到了世界上同类发动机最低的14.0压缩比,而在1.5升机型上压缩比设定为14.8。
压缩比只增加了0.8,就确保了必要的吸气热量。
这个压缩比是设计中为了取得各方面平衡而采用的。
另外,2.2升发动机采用了大小两个增压器和排气门开启时间可变机构,而1.5升发动机只是用了一个增压压力可变增压器,可以同时满足冷机启动后的早期暖机效果和排气净化效果,在天冷的时候发动机起动后,由于燃烧不稳定,排气中的有害成分增加。
亮出科研创新凌云志,点燃华柴腾飞“发动机”
年,从北京理工大学车辆工程专业毕业的耿文耀怀着强烈的政治使命感,放弃了大城市高薪职位,来到了当时位于太行山深处的军工企业——华柴公司,他工作踏实,工作敬业“干一行爱一行”是行动准则,在工作中逐渐成长为战车动力领域的攻坚人,他从事发动机产品设计、新品研发、试验验证、产品质量攻关工作,负责开发研制了多个型号拥有自主知识产权的新型柴油机,是国防动力的“拓荒牛”。
研制项目先后荣获工业和信息化部国防科技进步奖项,兵器工业集团科学技术奖项,多次荣获集团公司优秀共产党员、动力院劳动模范、河北省国防科技工业优秀共产党员、河北省兵工学会优秀科技工作者,为兵器动力的发展和科技创新默默奉献着自己的青春和“核心技术要不来、买不来、讨不来。
我们必须放弃一切幻想,加快自主研发进程,一天当两天来用是他常常挂在嘴边的一句话。
在产品技术创新研究上,耿文耀和他的科研团队始终如一,肩负起了重大的责任和使命,推动了公司产品从无到有,从有到强,从单一到多个品种的快速发展。
为了做到技术自主可控,他一方面学习引进技术,一方面研究原理。
工作中他不放过任何问题,反复探究工作原理和故障机理,以问题为导向开展研究,他说做技术要做到知其然还要知其所以然,只有这样才能突破技术壁垒掌握核心技术,才能实现产品的超越。
在外贸某项目中,他负责总体设计,通过优化设计燃烧系统、供油系统等措施,使柴油机功率提升10%,通过优化冷却系统解决了强化带来的热负荷问题,提高了柴油机在环境温度55℃下的适应性,满足了项目要求。
2003年订货,为更多型号项目研制奠定基础。
不畏艰险挑战“三高试验”一台发动机服役之前,必须要经过极限测试的千锤百炼,方能满足不同地域不同领域的客户需求。
为了保证发动机在极端环境下的可靠运行,掌握一手真实精准的数据,就必须对车辆进行高原、热区、耿文耀作为试验团队负责人多次带队在“三高地区”试验,无惧极端环境,不怕艰难考验,不仅在冰天雪地中留下身影,也在高温天气下挥洒汗水,用生命抢占产品技术的制高点,用奋斗和匠心铸就华柴精品。
马自达发展历史
1920年,马自达成立于日本广岛,比丰田和日产的成立早了13年。
马自达从1927年开始生产机械制品,后因日本交通运输业的急速发展,应运转型为专业汽车生产商。
1931年,马自达推出首辆全钢制货运三轮车Mazda Go并在次年首次出口到中国的大连、奉天、青岛。
此后,马自达始终领先于其他日系品牌投身汽车制造业。
正当马自达准备进入发展快通道时,广岛在1945年遭受原子弹重创,马自达也未能幸免。
厂房全部被毁,但马自达在这样的困境下仅用4个月就实现恢复生产,而这种马自达专属的不畏困境、勇于挑战的精神也深深影响到后来的马自达人,并被带到勒芒24小时耐力赛的征程中,创造了亚洲汽车辉煌。
46年前,首先实现转子发动机量产1967年,第一辆转子发动机车型CosmoSport的诞生,其充满未来气息的完美比例,优越的驾驶性能,令世人惊叹不已。
虽然排量仅有982cc,但却能爆发出80kw的功率,超过今天市场上多数1.6L普通发动机的功率。
凭借着转子发动机的优越性能。
CosmoSport在国际赛场大显身手,马自达的运动基因也从这款车开始延续。
而转子发动机不仅仅属于跑车。
1968年,一向追求先进技术、应用先进技术的马自达,第一时间推出了搭载转子发动机的民用车型:Familia Rotary,让普通人也能够享受转子发动机带来的驾驶乐趣。
当然,转子发动机小身材大能量的特点注定它与赛道有着不解的缘分,1971年马自达推出的RX-3 Savanna就是一款专为赛道而生的车型。
当时日本国内赛场有着“东瀛战神”称号的日产SkylineGT-R创造了50连胜的记录,但是RX-3的出现立刻终结了这一记录,并且创造了国内车赛单一车型累计夺冠100次的金字塔。
1978年爆发的石油危机是众多大马力跑车的噩梦,但从不妥协的马自达却在当年推出了RX-3的后继车型RX-7,这也是当时跑车界唯一的曙光。
作为一款纯粹的跑车,RX-7搭载了双转子发动机,车身非常流畅,同时拥有极低的风阻系数,而且它的前后轮配重达到完美的50:50。
承上启下的传奇经典
承上启下的传奇经典斯巴鲁力狮LegacySUBARU Legacy力狮自1989年诞生以来,是斯巴鲁汽车品牌史上一款承上启下的经典车系。
上至从旅行款基础上发展出了跨界鼻祖车型傲虎;下至在其基础上衍生出更为紧凑并扬名WRC赛场的翼豹车型。
Legacy在英文中有着“传承”之意,其两款车型在斯巴鲁博物馆中同台展示可见是一款非常具有纪念意义的车型Promotion特稿Legacy 力狮始终继承着斯巴鲁引以为傲并特色鲜明的技术——左右对称全时四驱系统(Symmetrical AWD)水平对置发动机(SUBARU BOXER)的黄金搭配,并沿用至全系车型上。
斯巴鲁力狮与中国的渊源可追溯到1994年,有经销商借助555港京拉力赛的热潮将斯巴鲁第二代力狮轿车首度引进国内,其水平对置发动机加全时四驱的技术特色在当年的中国进口车市上独树一帜。
第一代 Legacy力狮(1989年-1993年)第一代Legacy 力狮诞生于1989年1月,搭载了全新设计的1.8L 和2.0L 高性能16气门水平对置4缸发动机,最高马力220匹,配备了5挡手动与4挡自动变速箱,有全时四驱和前驱车型。
这款力狮是在LEONE 车型基础上,集合了斯巴鲁1000的技术特性,将斯巴鲁的核心技术进一步提升而设计的。
在力狮正式发布之前,斯巴鲁在位于美国亚利桑那州的亚利桑那试验中心进行了一次车辆耐力与性能的测试——挑战10万公里世界速度纪录,1989年1月21日凌晨3点11分56秒,历经447小时44分钟9.887秒,力狮完成了10万公里挑战,并创造了223.345km/h 的最新纪录。
同年该车型开始进入美国和欧洲市场。
1993年10月,第二代Legacy 力狮诞生。
新一代Grand Touring 车型传承了自第一代起就提出的“Grand TouringSedan&Wagon ”基本理念,并且从款式、操控性以及动力方面都逐步迈向成熟。
Grand Touring 车型的综合性能有了飞跃性提高, 并在纽伯格林(NURBURGRING )北赛道上进行了测试,对性能的提升进行了验证。
历经48年的发展 马自达3车系历史介绍
来源:汽车之家类型:原创编辑:张文君作为马自达家族中的看家产品,马自达3一直是运动小车的代名词,虽然现在看来它无比风光及辉煌,不过如果你了解马自达3历史,你就会发现其实马自达3也曾经拥有过一段无比艰难和坎坷的发展之路,而今正值国产长安马自达3星骋上市之际,也让我们来和大家一起聊一聊马自达3的发展历史。
●Axela/马自达3、Familia/马自达323的关系日本本土与海外版车型的命名区别在我们了解马自达3的历史之前,编辑认为我们有必要先把马自达3的一些命名理理清楚,因为在马自达3的发展历史上,其曾经采用了Axela、Familia、马自达323、马自达800、马自达1000等多种命名方式。
『马自达3在日本被称之为Axela』根据日本车厂Mazda的习惯,旗下多数车系都会拥有两个名字,用作内销与出口两个版本的区分之用。
因此,Mazda 3的本名称应该为Mazda Axela。
而海外市场的Mazda 3中的“3”则是用作区分车型体格之用,数字的大小与车身体型成正比,比如说别称Mazda 2的Demio与别称为Mazda 6的Atenza。
『马自达323(马自达3的前身)在日本被称之为Familia』关于Familia,其实就是马自达3的前身,它同样拥有日本国内与国外两种命名,内销名字Familia来源于西班牙语“家庭”的词源,意味着一台与众同乐的家庭车。
而出口的命名方法则有很多个,起初以排量命名的有800、1000、1200、1300等等,直到1980年福特收购马自达的20%股份后,第四代Familia在出口版命名上以Mazda 323代替了旧有的以排量命名的方式,而在随后的一段时间里,323便成为了最为广泛认知的名字。
●第一代Familia(1963-1968年)定位中小型家用车/推出之后试水成功『马自达R360』在60年代初期,马自达开始建造一些轻型轿车,其中经典的马自达R360及马自达700就是在这样的市场情况下诞生,其中马自达R360在1960年诞生,当时售价仅30万日元左右,上市之后销量一路飙升,单月销量曾一度突破了4000台。
与蓝天为伍 长安马自达CX-5
与蓝天为伍长安马自达CX-5作者:暂无来源:《汽车与运动》 2013年第9期当马自达的动感遇到创驰蓝天技术的高效与环保,你是不是也同样期待这样的碰撞会迸发出怎样的火花?文/张磊图/郝笑天如何让发动机变得高效、节能、环保,是所有厂商在研发上最重要的部分。
每个厂商也都交出了自己的答卷,小排量涡轮增压、混合动力、新能源,这些技术如今都已经不陌生。
马自达将精力投入到了发掘现有动力的潜能上,并将创驰蓝天技术作为日后发展的核心。
作为在中国推出的首款搭载此技术的国产车型,我们第一时间在长白山体验了长安马自达CX-5的高效和环保。
30%已成过去式马自达自发布SKYACTIV创驰蓝天技术开始,就吸引了全世界汽车行业相关人士的注意力。
相比其他厂家通过涡轮增压、混合动力以及新能源来改善发动机的动力和排放不同,马自达坚持在自然吸气发动机上挖掘更深的潜能。
传统的自然吸气发动机,燃料燃烧产生的能量仅有30%左右转化为动力传递到车轮上,另外的70%绝大部分都随着燃烧生成的废气被排放掉了,未充分应用的废气同时也造成了更高的污染。
将燃料燃烧产生的能量更充分的利用,等量的燃料有更多的比例转化为动力,就等于有更小比例转化为污染环境的废气。
这就是创驰蓝天技术的原动力,马自达采用的方法就是将压缩比提高,13:1的压缩比在汽油发动机中几乎没有别的厂商涉及。
此次试驾的马自达CX-5由长安马自达生产,采用了2.5L SKYACTIV-G汽油发动机,最大功率144kW,扭矩也达到了252Nm,这样的参数相比马自达老款2.5L发动机有了明显的提升。
搭配6挡SKYACTIV-D手自一体变速器,让马自达CX-5在实际驾驶中表现十分出色。
持续线性的输出,让马自达CX-5的车速提升很快,也很均匀,这也是自然吸气发动机与涡轮增压的不同。
有人喜欢自然吸气的线性,当然也有人喜欢涡轮增压的爆发力,我个人更偏向自然吸气发动机那种浑厚的底气。
当然,这要有足够的排量去支持。
海外溯源 日本体验马自达创驰蓝天技术
海外溯源日本体验马自达创驰蓝天技术作者:暂无来源:《汽车与运动》 2013年第11期文周丽娟 @周丽娟AS如何令悬挂马自达标识的产品既动感十足又紧跟如今低碳环保的步伐?我们来到了马自达的总部详细了解了这其中的奥秘9月23日至28日,日本广岛,一汽马自达率35家中国媒体记者来到马自达汽车公司本部访问,溯源马自达今年在中国推出的创驰蓝天技术及产品。
期间在研发总部享用了一场技术饕餮盛宴;参观了发动机工厂;在马自达美祢试车场赛道试驾了即将在中国上市的旗舰型新车ATENZA;最后试乘搭载创驰蓝天技术的马自达各款车型,游览广岛及阿苏火山等日本风光。
也许是中国市场太重要,中国媒体团受到了马自达高规格的接待。
马自达研发中心专门组成号称“梦之队”的技术专家团,为中国媒体人开设了一整天的“科技日”,主讲人都是负责研发的顶级权威,其中5位公司管理层董事。
“创驰蓝天”这个名字起得好。
但是仅从字面上,真不知道是什么意思。
研发“梦之队”从六大方面详细讲解,包括:总体开发思路;发动机和变速器开发;车身和底盘开发;企业开发文化;设计造型沿革,以及创驰蓝天技术品牌推广。
马自达用了1 0 年,开发出创驰蓝天技术,创驰蓝天(SKYACTIVTECHNOLOGY)”全球革新技术平台,是“从零开始”打造的全新一代汽车高效能革新技术体系,在实现全球最高压缩比13:1的同时,对发动机、变速器、车身和底盘“四位一体”全面革新。
它是汽车整车基础技术的集大成者。
总体开发思路可以概括为对传统发动机、变速器、车身和底盘重新开发的四位一体技术。
为了汽车产业的可持续发展,他们把这项开发作为了决定马自达生死存亡的一场决战。
马自达认为到2020年前,汽车还将以传统内燃机驱动为主。
他们不反对未来实现汽车电动化,但主张有序进行,按照适合的时机进行电动化。
马自达在优先改进汽车的基本性能即“基础技术”的同时,分步骤实施“阶段式发展战略”,逐步导入制动能量回收系统、混合动力系统等电驱动技术。
独辟蹊径
独辟蹊径作者:赵斌来源:《汽车博览》2011年第12期在马自达6外表下隐藏的是创驰蓝天(SKYACTIV)技术工程样车,这是马自达在节能环保方面的最新成果,但它不同于现有的此类技术,又不仅局限于单纯的节能纯电动汽车、混合动力以及燃料电池是目前被我们熟知并且应用较广的节能环保技术。
不过它们也有着自身的局限性:首先,人类至今并未给处理废旧电池找到很好的办法,这无疑是在透支未来的环境;其次,上述环保车型的制造成本目前仍居高不下,对于普通消费者,它们就像金字塔的塔尖般可望而不可及。
基于这些原因,马自达公司认为到2020年前,燃油发动机仍将是汽车动力系统的主体,现阶段与其大力推行前卫环保技术,不如从挖掘现有内燃机的潜力入手。
他们制定了推进环保汽车的阶段式发展战略,逐步导入智能启-停、能量回收和电驱技术。
而创驰蓝天作为该战略的第一步,包括了高效发动机、高效变速箱、综合轻量化的车身和底盘三个核心内容。
创驰蓝天发动机原理一般来说,内燃机在燃料燃烧过程中所产生能量大部分会随着排气损失、冷却损失、泵送损失、机械损失等流失(图1)。
马自达认为,只要将压缩比、空燃比、燃烧时间、燃烧时机、泵送损失、机械阻力等因素进行合理配置,就能控制这些损失,从而改善内燃机效率。
上述六大因素中,汽油和柴油发动机的关键都是压缩比。
对于汽油机,通过提高压缩比能大幅改善油耗和低、中速扭矩。
柴油发动机则通过采用极低的压缩比,解决了最佳喷射时机的课题,大幅降低机械阻力,实现清洁高效。
以汽油机为例,马自达新一代高效能直喷汽油发动机实现了14.0的全球最高压缩比。
技术难点:爆震汽油机提高压缩比,能够大幅提升热效率。
理论上将压缩比从10提高到15后,热效率能够改善约9%。
不过通常的压缩比一般在10~12左右,主要原因是压缩比提高后产生的爆震会导致动力输出大幅下降(图2)。
爆震是指燃料与空气的混合气体被置于高温高压下,在正常燃烧开始前发生自燃的异常燃烧现象。
创驰蓝天发动机基本参数
创驰蓝天发动机基本参数
创驰蓝天发动机制造材料
现在市面上,像创驰蓝天汽油发动机一样采用电机调节气门正时的发动机依然非常稀罕。
用电机取代传统的液压来调节气门正时的方法可能你我都能想到,但是之所以到近年才实用化,我认为还是步进电机小型化和电子控制技术共同进步的结果。
与气门正时调节电机相比,4-2-1排气歧管对于实现13:1超高压缩比更为重要。
因为排气干涉现象是实现高压缩比的死敌,而只有4-2-1排气歧管能解决这个问题。
我们拆解的这台2.0L创驰蓝天汽油发动机采用的高压缸内直喷技术,喷射压力可高达206Bar(1Bar约等于0.98665个标准大气压)。
缸内直喷就是将燃油喷嘴安装于气缸内,直接将燃油高压喷入气缸内与进气混合,燃油雾化更加细致,燃烧效率更高。
除此以外,这款发动机的进气门还采用了电机控制VVT 系统。
电机的转动通过行星齿轮减速增扭后能够快速精确地调整进气门正时,实现了多种发动机工作循环的快速切换。
马自达开发流程
马自达开发流程When it comes to the development process of Mazda, it is essential to understand the intricate steps involved in bringing a new vehicle to market. From initial concept development to final production, every phase requires meticulous planning and execution. The passion and dedication of the Mazda team shine through in every detail, highlighting their commitment to creating high-quality vehicles that exceed customer expectations.在谈到马自达的开发流程时,了解将新车型推向市场所涉及的复杂步骤是至关重要的。
从最初的概念开发到最终生产,每个阶段都需要细致的计划和执行。
马自达团队的激情和奉献精神在每一个细节中闪耀,突显了他们致力于打造高质量车辆、超越客户期望的承诺。
One of the earliest stages in the development process is brainstorming and concept creation. This phase involves identifying market trends, consumer preferences, and technological advancements to shape the initial vision for the new vehicle. Collaborative efforts among designers, engineers, and productplanners are crucial in defining the unique selling points that will set the Mazda vehicle apart from competitors.开发流程中最早期的阶段之一是头脑风暴和概念创建。