新人教版七年级上《绝对值》ppt课件
合集下载
七年级数学人教版(上册)【知识讲解】1.2.4绝对值课件
![七年级数学人教版(上册)【知识讲解】1.2.4绝对值课件](https://img.taocdn.com/s3/m/d5cca57adc36a32d7375a417866fb84ae45cc39f.png)
例如,-2的绝对值是2,记作 2 2 2的绝对值是2,记作 2 2 0的绝对值是0,记作 0 0
一个数与他的绝对值之间有什么关系?
一个正数的绝对值是它本身,一个负数的绝 对值是它的相反数,0的绝对值是0.
如何用数学符号来表示绝对值的性质呢? 如果a>0, a a 如果a<0, a a 如果a = 0, a 0
7.绝对值小于6的负整数是_____,其中最大的数是 _____,最小的数是_____。
8.绝对值等于他本身的数是_____,绝对值等于他相 反数的数是_____。
9.(1)若a>3,则 l a-3 l=____, (2)若a = 3,则 l a-3 l=____, (3)若a<3,则 l a-3 l=____,
3.在-1,0,-2,1四个数中,最小的数是( )
A -1 B 0 C -2 D 1 4.在-3,0,-2,3四个数中,大小在-1和2之间的数是()
A -3 B 0 C -2 D 3
5.将有理数-2,0,1,-4,按照从小到 大的顺序排列。
6.填空 (1)-(-4)=_____ (2) l -18 l- l -6 l=_____ (3)-l -4 l =_____ (4)- l - 5 l 比 l -4 l _____(大或小)
没有绝对值最大的数,绝对值最小的数是0.
我们知道两个正数(或0)之间怎么比较大小,例如, 0<1<0<5,15<20,……
有理数有正,负,0之分,那么,任意两个 有理数之间应该怎么比较大小呢?
思考
8 -4
-2℃是零下2℃,它比零下4℃高还是低呢? -4,-2,-1,0,1,3,5,6,7,8
通过上面最低气温的比较,你能发现数轴上有理数的大小比较的规 律了吗? 发现,温度由低到高的顺序排列,就是数轴上题目各点的位置从左 到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
一个数与他的绝对值之间有什么关系?
一个正数的绝对值是它本身,一个负数的绝 对值是它的相反数,0的绝对值是0.
如何用数学符号来表示绝对值的性质呢? 如果a>0, a a 如果a<0, a a 如果a = 0, a 0
7.绝对值小于6的负整数是_____,其中最大的数是 _____,最小的数是_____。
8.绝对值等于他本身的数是_____,绝对值等于他相 反数的数是_____。
9.(1)若a>3,则 l a-3 l=____, (2)若a = 3,则 l a-3 l=____, (3)若a<3,则 l a-3 l=____,
3.在-1,0,-2,1四个数中,最小的数是( )
A -1 B 0 C -2 D 1 4.在-3,0,-2,3四个数中,大小在-1和2之间的数是()
A -3 B 0 C -2 D 3
5.将有理数-2,0,1,-4,按照从小到 大的顺序排列。
6.填空 (1)-(-4)=_____ (2) l -18 l- l -6 l=_____ (3)-l -4 l =_____ (4)- l - 5 l 比 l -4 l _____(大或小)
没有绝对值最大的数,绝对值最小的数是0.
我们知道两个正数(或0)之间怎么比较大小,例如, 0<1<0<5,15<20,……
有理数有正,负,0之分,那么,任意两个 有理数之间应该怎么比较大小呢?
思考
8 -4
-2℃是零下2℃,它比零下4℃高还是低呢? -4,-2,-1,0,1,3,5,6,7,8
通过上面最低气温的比较,你能发现数轴上有理数的大小比较的规 律了吗? 发现,温度由低到高的顺序排列,就是数轴上题目各点的位置从左 到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册
![1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册](https://img.taocdn.com/s3/m/5365b7df70fe910ef12d2af90242a8956becaa3a.png)
-5.25
(3)绝对值等于5.25的负数是______;
2或-2
(4)绝对值等于2的数是_______。
【点睛】注意绝对值等于某个正数的数有两个,他们互为相反数,解题时不要遗
漏负值。
课堂练习
3. 如果| a |+| b-1 |=0,那么a = 0 ,b = 1
。
4. 已知x =30,y =-4,则| x | - 3 | y |= 18 。
B
-10
10
O
0
10
A
10
-10与10在数轴上所表示的点到原点的距离是 10个单位长度 ,它们
的 符号 不同。我们把这个距离10叫做+10和-10的 绝对值 。
新知探究
定义
距离不能是负数,所以任何
数的绝对值一定是非负数
( |a| ≥ 0)
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作|a|.
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(
√
)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
这两个数的相同部分在数轴上表
示什么?
(3)绝对值等于5.25的负数是______;
2或-2
(4)绝对值等于2的数是_______。
【点睛】注意绝对值等于某个正数的数有两个,他们互为相反数,解题时不要遗
漏负值。
课堂练习
3. 如果| a |+| b-1 |=0,那么a = 0 ,b = 1
。
4. 已知x =30,y =-4,则| x | - 3 | y |= 18 。
B
-10
10
O
0
10
A
10
-10与10在数轴上所表示的点到原点的距离是 10个单位长度 ,它们
的 符号 不同。我们把这个距离10叫做+10和-10的 绝对值 。
新知探究
定义
距离不能是负数,所以任何
数的绝对值一定是非负数
( |a| ≥ 0)
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作|a|.
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(
√
)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
这两个数的相同部分在数轴上表
示什么?
人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)
![人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)](https://img.taocdn.com/s3/m/88d463dbaef8941ea76e05f1.png)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
七年级数学上册 第一章《绝对值》教学课件 人教版
![七年级数学上册 第一章《绝对值》教学课件 人教版](https://img.taocdn.com/s3/m/0f52f1cb4793daef5ef7ba0d4a7302768f996f61.png)
当a为任意有理数时,a ___≥____ 0 .
巩教固学提目升
标
知2-练
4 (中考·娄底)若|a-1|=a-1,则a的取值范围是( A )
A.a≥1 B.a≤1 C.a<1 D.a>1
5 (中考·威海)检验4个工件,其中超过标准质量的克数 记作正数,不足标准质量的克数记为负数,从轻重的 角度看,最接近标准的工件是( A ) A.-2 B.-3 C.3 D.5
1. 一个正数的绝对值是它本身;一个负数的绝对值是 它的相反数;0的绝对值是0.即
(1)如果a>0,那么 a =a;
(2)如果a=0,那么 a =0;
(3)如果a<0,那么 a =-a.
2.非负性:任何有理数的绝对值都是非负数,即 a 0.
新教课学讲目解
标
例3 下列各式中无论m为何值,一定是正数的是
解:根据题意可知:a-2=0,b-1=0 , 所以:a=2 ,b=1.
巩教固学提目升
标
知2-练
1 绝对值最小的数是____0____;绝对值最小的负整数
是___-__1___.
2 如果 a- 1 +|b-1|=0,那么a+b=( C )
2
A.- 1
2
B. 1
2
C. 3
2
D.1
巩教固学提目升
标
3
知2-练
写出下列各式的值,并回答问题.
1
15
=
__1_5___,2.5
=
__2_.5__ ,2 3
=
2 __3___ ;
2
-15
=___1_5__,-2来自5=_2__.5__ ,-
2 3
=
2 ___3__ ;
人教版七年级上册数学绝对值ppt课堂课件
![人教版七年级上册数学绝对值ppt课堂课件](https://img.taocdn.com/s3/m/fd0a1c445901020206409c2a.png)
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
2.若|a|+ |b-3| =0.则a =__0___,
b= __3___. 3.如果一个数的绝对值等于4.53 ,
则这个数是__4_._5_3或__-__4_.5_3____. 4.如果|x-1|=2,则x=___3或__-__1___. 5.如果a 的相反数是-0.86,那么|a|
东、西方向行驶10km,到达A、B两处(图
1.2-5)。
方向不同, (正负性)
(1)它们的行驶路线的方向相同吗?距(不离。管相方同向,)
(2)它们行驶路程的距离(线段OA、OB的长 度)相同吗?
A
10
-10
O
10
B
0
10
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
1.2.4
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
学习目标
1. 初步理解绝对值的概念,能求一个
数的绝对值. 2.通过应用绝对值解决相关问题,体 会绝对值的意义和作用.
人教版七年级上册数学课件:1.2.4绝 对值
❖
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
❖
7学习这篇课文,应该重点引导学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。
绝对值PPT教学课件
![绝对值PPT教学课件](https://img.taocdn.com/s3/m/5f90de4576eeaeaad0f33006.png)
│-5│=5 A
│4│=4 B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-5的绝对值应该记作│-5︱=?
4的绝对值应该记作 │4︱ =?
0的绝对值应该如何表示呢?
│0︱ =?
练习:
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.表示+7的点与原点的距离是 7 , 即+7的绝对值是 7 ,记作 7 7 ;
催化剂
△
2SO3
SO2 +Cl2 +2H2O = H2SO4+2HCl (氯水褪色) SO2 +Br2+2H2O = H2SO4+2HBr (溴水褪色)
4. SO2的氧化性 SO2+2H2S = 3S + 2H2O
5. SO2的漂白性
实验
现象: 品红溶液褪色,
ห้องสมุดไป่ตู้
向试管中加
加热后溶液变回红色
入5ml SO2 水溶液,滴
测试时间 0小时 1小 2小 4小 5小 后 时后 时后 时后 时后
雨水的pH值 4.74 4.63 4.57 4.53 4.53
1.请你写出酸雨开始呈酸性的化学方程式.
SO2+H2O H2SO3 2SO2+O2=2SO3 O2+2H2SO3=2 H2SO4 SO3+H2O=H2SO4
2.这种雨水的pH值逐渐减小,其原因何在? (提示:从硫元素的化合价和酸性强弱方面考虑)
练习:
6.绝对值小于3的负整数有_-_2_、_-1__;
7.
2.3
-__2_.__3,
2 15
2 __1__5_,
9
新版人教版七年级数学上册《绝对值》课件(17张)
![新版人教版七年级数学上册《绝对值》课件(17张)](https://img.taocdn.com/s3/m/86ed041fba68a98271fe910ef12d2af90242a876.png)
创设情境
两辆汽车从同一处O出发,分别向东、西方向行 驶了10千米,到达A、B两处.它们的行驶路线相同 吗? 行驶的路程分别是多少?
B
O
A
-10
0
10
10千米
10千米
做游戏
请两位同学分别站在老师的左右两边,两位同学 同时向东、西相反的方向走1米,把这两位同学所 站位置用数轴上的点表示出来.
距
距
离
离
是1
学生活动 2.互为相反数的两个数的绝对值有什么关系?
一对相反数虽然分别在原点两边,但它们 到原点的距离是相等的.所以互为相反数的两 个数的绝对值相等.
7 图1.2-7
学生活动
你能把14个气温从低到高排列吗?能把这14个数 用数轴上的点表示出来吗?观察这些点在数轴上的位 置,思考它们与温度的高低之间的关系,你觉得两个 有理数可以比较大小吗?
(B )
A.可以是负数 B.不可能是负数
C.必是正数
D.可以是正数也可以是负数
温馨提示: 认真完成作业是巩固知识的有效方法!!
12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
练习2:|-13 |的相反数是 ;若|a|=2,则a=±2 .
练习3:绝对值小于3.5的整数是-3,-2,-1,0,1,2,3 . 练习4:已知:x342y0,则x= -3 ,y= 2 .
课堂练习
两辆汽车从同一处O出发,分别向东、西方向行 驶了10千米,到达A、B两处.它们的行驶路线相同 吗? 行驶的路程分别是多少?
B
O
A
-10
0
10
10千米
10千米
做游戏
请两位同学分别站在老师的左右两边,两位同学 同时向东、西相反的方向走1米,把这两位同学所 站位置用数轴上的点表示出来.
距
距
离
离
是1
学生活动 2.互为相反数的两个数的绝对值有什么关系?
一对相反数虽然分别在原点两边,但它们 到原点的距离是相等的.所以互为相反数的两 个数的绝对值相等.
7 图1.2-7
学生活动
你能把14个气温从低到高排列吗?能把这14个数 用数轴上的点表示出来吗?观察这些点在数轴上的位 置,思考它们与温度的高低之间的关系,你觉得两个 有理数可以比较大小吗?
(B )
A.可以是负数 B.不可能是负数
C.必是正数
D.可以是正数也可以是负数
温馨提示: 认真完成作业是巩固知识的有效方法!!
12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
练习2:|-13 |的相反数是 ;若|a|=2,则a=±2 .
练习3:绝对值小于3.5的整数是-3,-2,-1,0,1,2,3 . 练习4:已知:x342y0,则x= -3 ,y= 2 .
课堂练习
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
![人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)](https://img.taocdn.com/s3/m/27c9ed8f4b35eefdc8d333c7.png)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
人教版七年级数学上册优质课课件绝对值ppt
![人教版七年级数学上册优质课课件绝对值ppt](https://img.taocdn.com/s3/m/4d213bf31b37f111f18583d049649b6648d709c6.png)
0
10
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
活动2:理解绝对值的概念
思考:-8与8是相反数,把它们在数轴上 表示出来,它们有什么相同之处和不同之处?
8
8
-8
0
8
-8与8在数轴上所表示的点到原点的距离是8个单位长 度,它们的符号不同。我们把这个距离8叫做+8和-8的 绝对值。
1 < 1.5 <3 <5
(3)由以上知:两个负数比较大 小,绝对值大的反而小。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2. 比较下列每组数的大小
解(法1一)(-利1和用绝–对5;值比(较2两)个-负65 数和的-大2.小7 )
如图,在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作|-5|=5。
31 2
的绝对值是3 1 记作231 2源自31 2AB
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
做一做
写出下列各数的绝对值:
一个数的绝对值与这个数有什么关系?
1,正数的绝对值是它本身; 如果a>0,那 么|a|=a;
2,负数的绝对值是它的相反数; 如果a<0, 那么|a|=-a; 3,0的绝对值是0. 如果a=0,那么|a|=0
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2、知道一个数的绝对值,求这个数
人教版初一数学 1.2.4 绝对值PPT课件
![人教版初一数学 1.2.4 绝对值PPT课件](https://img.taocdn.com/s3/m/901910e58662caaedd3383c4bb4cf7ec4afeb6a4.png)
-1 5
= 1; 5
|-2.8|=2.8.
当堂训练
能力提升题
化简: | 0.2 |=__0_.2___;
-2 3 7
=__2_73___;
| b |=__-_b___ (b<0); | a – b | =__a_-_b__(a>b).
当堂训练
拓广探索题 正答式:排第五球个比排赛球对的所质用量的好一排些球,重因量为是它有的严绝对格值规最定小的,,也现就检是离查标5个准排重 球量的的重克数量最,近超.过规定重量的克数记作正数,不足规定重量的克数 记作负数,检查结果如下:
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
导入新课
两辆汽车从同一处O出发分别向东、西方向行驶10km,到 达A、B两处.
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
-3 -4.5
0
5
0 3.5 0
0
01
探究新知
知识点 2 绝对值的性质 观察这些表示绝对值的数,它们有什么共同点?
|5|=5 |100|=100 |-4.5|=4.5
|-10|=10 |-3|=3 |-5000|=5000
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作
2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值
![2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值](https://img.taocdn.com/s3/m/24851fa50342a8956bec0975f46527d3250ca654.png)
(1) 根据调查结果,指出哪些产品是合乎要求的 (即在误 差范围内的); (2) 指出合乎要求的产品中哪一个质量好一些,并用绝对 值的知识说明.
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
1.2.4 绝对值 课件 人教版七年级数学上册 (45)
![1.2.4 绝对值 课件 人教版七年级数学上册 (45)](https://img.taocdn.com/s3/m/4cb36e4f6d175f0e7cd184254b35eefdc8d315cc.png)
|-3.5|=3.5
则________________;
数轴上表示0的点到原点的距离
(4)|0|表示___________________________________,则
|0|=0
_____________.
【变式1】填空:
4
0
(1)|4|=________,|-4|=________,|0|=________;
【例1】填空:
-3
(1)|-3|表示数轴上表示________的点到原点的距离,
3
则|-3|=________;
数轴上表示5的点到原点的距离
(2)|5|表示___________________________________,则
|5|=5
__________;
数轴上表示-3.5的点到原点的距离
(3)|-3.5|表示___________________________________,
-2
(2)+(-2)=_______;
(3)-(-6)=_______;
6
-6
(4)-|-6|=_______.
4. 如图,检测4个足球,其中超过标准质量的克数记为正
数,不足标准质量的克数记为负数. 从轻重的角度看,
最接近标准的是
( C )
A
B
C
D
2
5. (1)若|x-2|=0,则x=_______;
-5或5
(2)若|x|=5,则x=___________.
【变式2】填空:
1或-1
(1)绝对值为1的数是____________;
0
(2)若|x|=0,则x=_______.
知识点 3 绝对值与数轴
则________________;
数轴上表示0的点到原点的距离
(4)|0|表示___________________________________,则
|0|=0
_____________.
【变式1】填空:
4
0
(1)|4|=________,|-4|=________,|0|=________;
【例1】填空:
-3
(1)|-3|表示数轴上表示________的点到原点的距离,
3
则|-3|=________;
数轴上表示5的点到原点的距离
(2)|5|表示___________________________________,则
|5|=5
__________;
数轴上表示-3.5的点到原点的距离
(3)|-3.5|表示___________________________________,
-2
(2)+(-2)=_______;
(3)-(-6)=_______;
6
-6
(4)-|-6|=_______.
4. 如图,检测4个足球,其中超过标准质量的克数记为正
数,不足标准质量的克数记为负数. 从轻重的角度看,
最接近标准的是
( C )
A
B
C
D
2
5. (1)若|x-2|=0,则x=_______;
-5或5
(2)若|x|=5,则x=___________.
【变式2】填空:
1或-1
(1)绝对值为1的数是____________;
0
(2)若|x|=0,则x=_______.
知识点 3 绝对值与数轴
人教版(2024)数学七年级上册1.2 有理数及其大小比较 第4课时《绝对值》PPT教学课件
![人教版(2024)数学七年级上册1.2 有理数及其大小比较 第4课时《绝对值》PPT教学课件](https://img.taocdn.com/s3/m/9fe6f4a4f605cc1755270722192e453610665bc3.png)
3.经历学习活动的过程,让学生充分感受数学与生活的密切 联系,使学生获得学习数学的信心和乐趣.
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
议一议 一个数的绝对值与这个数有什 么关系? 例如:|3|=3,|+7|=7 一个正数的绝对值是它本身; 例如:|-3|=3,|-2.3|=2.3
一个负数的绝对值是它的相反数;
0的绝对值是0.
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a
(2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
1.2.3 绝 对 值
观 察
上图中,单位长度为1米,那么 小黄狗、大白兔、小灰狗分别距 离原点多远?
赶快思考啊!!!
3
-3
-2
-1
0
1
2
3
聪明的同学们一眼就可以看出来了吧。
小黄狗距离原点3米
大白兔距离原点2米 小灰狗距离原点3米
抽象
总结
在数轴上,表示一个数的点与原点的 距 离叫做该数的绝对值(absolute value)。
(1)绝对值是7的数有几个?各是什么?有没有 绝对值是-2的数 (2)绝对值是0的数有几个?各是什么
(3)绝对值小于3的数是否都小于绝对值小于5的 数? (4)绝对值小于10的整数一共有多少个?
(1)求绝对值不大于2的整数; (2)已知x是整数,且2.5<|x|<7,求x.
2、已知有理数a在数轴上对应的点如图所示:
则|a| =________
3. 如果一个数的绝对值等于3.25 ,则这个数是___ 4、如果a 的相反数是-0.74,那么|a| =______ 5. 如果|x-1|=2,则x=______.
练习一:
1.绝对值等于6的数有 绝对值是0的数是 0 。 2.比较大小:│-5│ │-0.05│ │-3│ │-8│ 0; 1;
-10、-8两数中,哪个数大?它们的绝对值呢?
表示-10的点A比表示-8的点B离开原点比较 远. 显然|-10|>|-8| 因为点A在点B的左边,所以 -10<-8. 由此得出结论: 两个负数比较大小,绝对值 大的反而小. 一个数的绝对值大于或等于0.
1.比较下列各组数的大小: (1)-1和-5 (2)- 和-2.7
本章小结
• • • • 一个正数的绝对值等于它本身 一个负数的绝对值等于它的相反数 0的绝对值等于0 互为相反数的两个数的绝对值相等-6 和 +6
3. 判断(对的打“√”,错的打“×”) :
(1)一个有理数的绝对值一定是正数。 (2)-1.4<0,则│-1.4│<0。 (3) │-32︱的相反数是32 ( ( ( ) ) )
(4) 如果两个数的绝对值相等,那么这两个数 相等 ( (5) 互为相反数的两个数的绝对值相等 (
) )
你能明白吗?
•想一想 互为相反数的两个数的绝对 值有什么关系? •一对相反数虽然分别在原点两边, 但 它们到原点的距离是相等的.
一个数a的绝对值就是数轴上表示数a的点与原点的距离.
一个数的绝对值就是在这个数的两旁各画一条 竖线,如+2的绝对值等于2,记作|+2|=2。 数a的绝对值记作|a|. 如图,在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作|-5|=5.
4. 已知有三个数a、b、c在数轴上的 位置如下图所示
c b 0 a
则a、b、c三个数从小到大的顺序是:
C < b < a
则│a│ <│c│,
│b│ <│c│
5. 足球比赛中对所用的足球有严格的规定,下面是5个足 球的质量检测结果(用正数表示超过规定质量的克数,用 负数表示不足规定质量的克数)
-20 +10 +12 -8 -11 请指出哪个足球的质量好一些,并用绝对值的知识加以说明。 答:记为-8的足球质量好一些。 因为│-20│=20,│+10│=10,│+12│=12, │-8│=8,│-11│=11 所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│ 也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好
做一做
(1)在数轴上表示下列各数,并比较它 们的大小:-15,-3,-1,-5; (2)求出(1)中各数的绝对值,并比 较它们的大小; (3)你发现了什么?
判断: (1)若一个数的绝对值是 2 , 则这个数 是2 ; (2)|5|=|-5|; (3)|-0.3|=|0.3|; (4)|3|>0; (5)|-1.4|>0; (6)有理数的绝对值一定是正数; (7)若a=b,则|a|=|b|; (8)若|a|=|b|,则a=b; (9)若|a|=-a,则a必为负数; (10)互为相反数的两个数的绝对值相等;