新人教版七年级上《绝对值》ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-6 和 +6
3. 判断(对的打“√”,错的打“×”) :
(1)一个有理数的绝对值一定是正数。 (2)-1.4<0,则│-1.4│<0。 (3) │-32︱的相反数是32 ( ( ( ) ) )
(4) 如果两个数的绝对值相等,那么这两个数 相等 ( (5) 互为相反数的两个数的绝对值相等 (
) )
议一议 一个数的绝对值与这个数有什 么关系? 例如:|3|=3,|+7|=7 一个正数的绝对值是它本身; 例如:|-3|=3,|-2.3|=2.3
一个负数的绝对值是它的相反数;
0的绝对值是0.
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a
(2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
-10、-8两数中,哪个数大?它们的绝对值呢?
表示-10的点A比表示-8的点B离开原点比较 远. 显然|-10|>|-8| 因为点A在点B的左边,所以 -10<-8. 由此得出结论: 两个负数比较大小,绝对值 大的反而小. 一个数的绝对值大于或等于0.
1.比较下列各组数的大小: (1)-1和-5 (2)- 和-2.7
4. 已知有三个数a、b、c在数轴上的 位置如下图所示
c b 0 a
则a、b、c三个数从小到大的顺序是:
C < b < a
则│a│ <│c│,
│b│ <│c│
5. 足球比赛中对所用的足球有严格的规定,下面是5个足 球的质量检测结果(用正数表示超过规定质量的克数,用 负数表示不足规定质量的克数)
-20 +10 +12 -8 -11 请指出哪个足球的质量好一些,并用绝对值的知识加以说明。 答:记为-8的足球质量好一些。 因为│-20│=20,│+10│=10,│+12│=12, │-8│=8,│-11│=11 所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│ 也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好
则|a| =________
3. 如果一个数的绝对值等于3.25 ,则这个数是___ 4、如果a 的相反数是-0.74,那么|a| =______ 5. 如果|x-1|=2,则x=______.
练习一:
1.绝对值等于6的数有 绝对值是0的数是 0 。 2.比较大小:│-5│ │-0.05│ │-3│ │-8│ 0; 1;
本章小结
• • • • 一个正数的绝对值等于它本身 一个负数的绝对值等于它的相反数 0的绝对值等于0 互为相反数的两个数的绝对值相等
你能明白吗?
•想一想 互为相反数的两个数的绝对 值有什么关系? •一对相反数虽然分别在原点两边, 但 它们到原点的距离是相等的.
一个数a的绝对值就是数轴上表示数a的点与原点的距离.
一个数的绝对值就是在这个数的两旁各画一条 竖线,如+2的绝对值等于2,记作|+2|=2。 数a的绝对值记作|a|. 如图,在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作|-5|=5.
做一做
(1)在数轴上表示下列各数,并比较它 们的大小:-15,-3,-1,-5; (2)求出(1)中各数的绝对值,并比 较它们的大小; (3)你发现了什么?
判断: (1)若一个数的绝对值是 2 , 则这个数 是2 ; (2)|5|=|-5|; (3)|-0.3|=|0.3|; (4)|3|>0; (5)|-1.4|>0; (6)有理数的绝对值一定是正数; (7)若a=b,则|a|=|b|; (8)若|a|=|b|,则a=b; (9)若|a|=-a,则a必为负数; (10)互为相反数的两个数的绝对值相等;
(1)绝对值是7的数有几个?各是什么?有没有 绝对值是-2的数 (2)绝对值是0的数有几个?各是什么
(3)绝对值小于3的数是否都小于绝对值小于5的 数? (4)绝对值小于10的整数一共有多少个?
(1)求绝对值不大于2的整数; (2)已知x是整数,且2.5<|x|<7,求x.
2、已知有理数a在数轴上对应的点如图所示:
1.2.3 绝 对 值
观 察
上图中,单位长度为1米,那么 小黄狗、大白兔、小灰狗分别距 离原点多远?
赶快Βιβλιοθήκη Baidu考啊!!!
3
-3
-2
-1
0
1
2
3
聪明的同学们一眼就可以看出来了吧。
小黄狗距离原点3米
大白兔距离原点2米 小灰狗距离原点3米
抽象
总结
在数轴上,表示一个数的点与原点的 距 离叫做该数的绝对值(absolute value)。
3. 判断(对的打“√”,错的打“×”) :
(1)一个有理数的绝对值一定是正数。 (2)-1.4<0,则│-1.4│<0。 (3) │-32︱的相反数是32 ( ( ( ) ) )
(4) 如果两个数的绝对值相等,那么这两个数 相等 ( (5) 互为相反数的两个数的绝对值相等 (
) )
议一议 一个数的绝对值与这个数有什 么关系? 例如:|3|=3,|+7|=7 一个正数的绝对值是它本身; 例如:|-3|=3,|-2.3|=2.3
一个负数的绝对值是它的相反数;
0的绝对值是0.
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a
(2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
-10、-8两数中,哪个数大?它们的绝对值呢?
表示-10的点A比表示-8的点B离开原点比较 远. 显然|-10|>|-8| 因为点A在点B的左边,所以 -10<-8. 由此得出结论: 两个负数比较大小,绝对值 大的反而小. 一个数的绝对值大于或等于0.
1.比较下列各组数的大小: (1)-1和-5 (2)- 和-2.7
4. 已知有三个数a、b、c在数轴上的 位置如下图所示
c b 0 a
则a、b、c三个数从小到大的顺序是:
C < b < a
则│a│ <│c│,
│b│ <│c│
5. 足球比赛中对所用的足球有严格的规定,下面是5个足 球的质量检测结果(用正数表示超过规定质量的克数,用 负数表示不足规定质量的克数)
-20 +10 +12 -8 -11 请指出哪个足球的质量好一些,并用绝对值的知识加以说明。 答:记为-8的足球质量好一些。 因为│-20│=20,│+10│=10,│+12│=12, │-8│=8,│-11│=11 所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│ 也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好
则|a| =________
3. 如果一个数的绝对值等于3.25 ,则这个数是___ 4、如果a 的相反数是-0.74,那么|a| =______ 5. 如果|x-1|=2,则x=______.
练习一:
1.绝对值等于6的数有 绝对值是0的数是 0 。 2.比较大小:│-5│ │-0.05│ │-3│ │-8│ 0; 1;
本章小结
• • • • 一个正数的绝对值等于它本身 一个负数的绝对值等于它的相反数 0的绝对值等于0 互为相反数的两个数的绝对值相等
你能明白吗?
•想一想 互为相反数的两个数的绝对 值有什么关系? •一对相反数虽然分别在原点两边, 但 它们到原点的距离是相等的.
一个数a的绝对值就是数轴上表示数a的点与原点的距离.
一个数的绝对值就是在这个数的两旁各画一条 竖线,如+2的绝对值等于2,记作|+2|=2。 数a的绝对值记作|a|. 如图,在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作|-5|=5.
做一做
(1)在数轴上表示下列各数,并比较它 们的大小:-15,-3,-1,-5; (2)求出(1)中各数的绝对值,并比 较它们的大小; (3)你发现了什么?
判断: (1)若一个数的绝对值是 2 , 则这个数 是2 ; (2)|5|=|-5|; (3)|-0.3|=|0.3|; (4)|3|>0; (5)|-1.4|>0; (6)有理数的绝对值一定是正数; (7)若a=b,则|a|=|b|; (8)若|a|=|b|,则a=b; (9)若|a|=-a,则a必为负数; (10)互为相反数的两个数的绝对值相等;
(1)绝对值是7的数有几个?各是什么?有没有 绝对值是-2的数 (2)绝对值是0的数有几个?各是什么
(3)绝对值小于3的数是否都小于绝对值小于5的 数? (4)绝对值小于10的整数一共有多少个?
(1)求绝对值不大于2的整数; (2)已知x是整数,且2.5<|x|<7,求x.
2、已知有理数a在数轴上对应的点如图所示:
1.2.3 绝 对 值
观 察
上图中,单位长度为1米,那么 小黄狗、大白兔、小灰狗分别距 离原点多远?
赶快Βιβλιοθήκη Baidu考啊!!!
3
-3
-2
-1
0
1
2
3
聪明的同学们一眼就可以看出来了吧。
小黄狗距离原点3米
大白兔距离原点2米 小灰狗距离原点3米
抽象
总结
在数轴上,表示一个数的点与原点的 距 离叫做该数的绝对值(absolute value)。