数学的起源与早期发展ppt课件

合集下载

《数学发展史》课件

《数学发展史》课件
详细描述
解析几何的诞生可以追溯到17世纪,由法国数学家笛卡尔创立。笛卡尔通过引入坐标 系,将几何图形与代数方程联系起来,从而开启了用代数方法研究几何的新时代。解析 几何的诞生不仅为数学带来了新的研究工具,还为物理学、工程学等领域的发展奠定了
基础。
微积分的诞生
要点一
总结词
微积分是数学中研究连续变化和速度的分支,它的诞生标 志着数学进入了一个新的时代。
欧几里得
古希腊数学家,他撰写了《几何原 本》,系统地总结了当时的几何知 识,并建立了欧几里得几何学。
古代印度数学
印度数学家发明了阿拉伯数字 和阿拉伯数字的计数系统,为 现代数学的发展奠定了基础。
印度数学家阿叶彼海特发明了 阿拉伯数字的十进制位值记数 法,使得数字的表示和计算变 得更加简便。
印度数学家婆罗摩笈多研究了 三角形的各种恒等式,并给出 了三角函数的计算方法。
解决复杂的优化和控制问题。
量子计算与数学
量子计算原理
量子计算利用量子力学的原理进行信息处理,而数学是理解和应 用量子计算的重要工具。
线性代数与量子力学
线性代数在描述量子态和量子操作中起到关键作用,为理解量子计 算提供了数学框架。
概率论与量子测量
概率论在描述量子测量和量子随机性中也有重要应用,有助于理解 量子计算的局限性和优势。
了深远影响。
古巴比伦数学
古巴比伦数学是数学发展史上的 另一个重要阶段,其数学成就主 要表现在天文学和土地测量等方
面。
古巴比伦人使用楔形文字记录数 学问题,最早的数学文献可以追
溯到公元前18世纪左右。
古巴比伦人发展出了60进制的计 数法,以及三角形、平方根等数 学概念,这些概念对后来的数学
发展产生了重要影响。

数学史课件

数学史课件
数学方法的广泛应用
文艺复兴时期的数学家不仅关注纯粹的数学理论,还将数学知识应用于实际问题的解决中 。例如,他们在建筑设计、机械制造、航海等领域运用数学知识和方法,推动了这些领域 的进步和发展。
16
04
近代数学革命性突破
2024/1/28
17
微积分的创立与发展
2024/1/28
微积分的起源
01
古希腊时期阿基米德对面积和体积的研究为微积分学奠定了基
数理统计的兴起
19世纪,高斯、皮尔逊等数学家在概率论的基础上,发展出了数 理统计学,为数据分析提供了有力工具。
概率论与数理统计的应用
在现代科学、工程、医学、经济等领域中,概率论与数理统计发挥 着重要作用。
19
线性代数与矩阵理论的建立
2024/1/28
线性代数的起源
18世纪,高斯等数学家开始研究线性方程组,为线性代数的发展 奠定了基础。
非欧几何
研究不满足欧氏几何公理的几何体系 ,包括黎曼几何、罗氏几何等。
2024/1/28
微分几何
研究曲线、曲面等微分性质,以及流 形上的微分结构。
拓扑学
研究空间在连续变换下的性质,包括 连通性、紧致性、维数等概念。
23
代数学领域
初等代数
研究数、式、方程和不等式等基本概念和运 算规则。
抽象代数
研究群、环、域等代数结构及其性质,包括 同态、同构等概念。
数学与神秘主义
数学在古埃及神秘主义和宗教仪式中的角色 。
10
古印度数学
数字系统的创新
算术与代数的发展
0的发明及印度数字系统对现代数字的影响 。
印度数学家对算术和代数的研究,如《莉 拉瓦蒂》和《比贾经》等著作。

数学史PPT课件

数学史PPT课件

流形、张量、微分形式 等基本概念介绍
外微分、变分法等基本 方法探讨
微分几何在物理学中应用
1
微分几何在广义相对论中的应用
2
爱因斯坦场方程与黎曼几何的联系
时空弯曲与引力效应的解释
3
微分几何在物理学中应用
微分几何在其他物理学领域的应用举 例
量子力学、量子场论等领域的应用实 例
04
分析学领域里程碑式进展
高斯、波尔约、罗巴切夫斯基等人的贡献
非欧几何诞生及其意义
双曲几何
罗巴切夫斯基的创立,基于不同的平行公理
椭圆几何
黎曼的创立,考虑弯曲空间中的几何性质
非欧几何诞生及其意义
非欧几何的意义与影响 打破了欧几里得几何一统天下的局面
为现代数学和物理学的发展奠定了基础
拓扑空间概念引入和性质探讨
拓扑空间的定义与基本性质 开集、闭集、邻域等基本概念介绍 连续映射、同胚等拓扑性质探讨
数学应用领域的挑战
随着科技的发展,数学在各个领域的应用越来越广泛,但也面临着 一些挑战,如数学模型与实际应用之间的鸿沟、计算复杂性等。
数学研究的前沿问题
数学研究中仍有许多前沿问题有待解决,如P=NP问题、黎曼猜想等 ,这些问题对数学发展具有重要意义。
未来发展趋势预测
数学教育的创新与普及
随着教育技术的不断发展,数学教育将更加注重创新教学方法和 普及数学知识,提高全民数学素养。
数学与科技的深度融合
数学将在人工智能、大数据、量子计算等领域发挥更加重要的作用 ,推动科技进步。
跨学科合作与研究
未来数学研究将更加注重跨学科合作,与其他学科领域共同解决复 杂问题,推动数学研究的发展。
THANKS
感谢观看

数学史 第一讲 数学的起源和早期发展 课件

数学史 第一讲 数学的起源和早期发展 课件

• 亚里士多德(前384-前332)曾指出,今天十进制的 广泛采用,只不过是我们绝大多数人生来具有10个手 指这样一个解剖学事实的结果。 • 《周易。系辞下传》有“上古结绳而治,后世圣人,易 之以书契”之说。 • 南美印加部落用来记事的绳结,称为基普。
• 直到距今大约五千多年前,出现了书写记 数以及相应的记数系统。如古埃及的象形 数字、巴比伦的qi形数字、中国甲骨文数 字等等。 • 记数系统的出现使数和数的书写运算成为 可能,初等算术应运而生了。
主要工作和特点 1、采用60进制为主的记数系统。对60以内的 整数采用简单十进累计法,对大于59的数采用 六十进制的位值记法。他们还巧妙地将位置记 法推广到整数以外的分数。 例: 2、在算术方面,他们长于计算,创造了很多 成熟的算法。 例:开方根。
3、他们编制了很多数学用表,如乘法表、倒 数表、平方表、立方表、平方根表、立方根 表三、甚至还有指数对数表等等。 4、在代数领域达到了相当高度,能有效地处 理二元二次方程和一些简单的三次方程。 例: 5、在几何领域掌握了三角形、梯形等平面图 形面积和棱柱、平截头方锥等一些立体图形 的体积公式,还会利用图形相似性的概念。
2. 形的概念 • 最初的几何知识是从人们的直觉中萌发出来的。 从自然界中提取几何形式,并且在器皿制作、 建筑设计及绘画装饰中加以再现。 • 据亚里士多德的研究,古埃及几何学产生于尼 罗河泛滥后土地的重新丈量。 • 古印度的几何学的起源和宗教实践密切相关。 • 古中国的几何学的起源更多地和天文观测相联 系。
在公元前1850~前1650年之间,相当于中国的夏代。
主要工作和特点 1、十进制记数系统,但没有位值的概念。单位 分数被广泛使用。 例:整数和单位分数的表示。 莱茵德纸草书上有一张形如2/(2p+1)(p从2到 50)的分数分解成单位分数之和的表。 2、在古埃及数学中,埃及算术主要是加法, 而乘法是加法的重复。 例:乘法和除法。

数学ppt课件.ppt

数学ppt课件.ppt
行病学调查等。
工程
概率与统计在工程领域的应用包 括可靠性分析、质量控制、系统
安全评估等。
THANKS
感谢观看
推断性统计
推断性统计是根据样本数 据推断总体特征的方法, 包括参数估计和假设检验 等。
方差分析
方差分析是一种通过比较 不同组数据的变异程度来 分析因素对结果影响的统 计方法。
概率与统计的应用
金融
概率与统计在金融领域的应用包 括风险评估、投资组合优化、股
票价格预测等。
医学
概率与统计在医学领域的应用包 括疾病诊断、临床试验设计、流
积分是计算函数与坐标 轴所夹的面积的过程, 表示函数在某个区间上
的定积分。
积分性质
积分的性质包括线性性 质、可加性、积分中值
定理等。
积分公式
常用的积分公式包括基 本积分公式和积分表中
的公式。
积分运算
通过积分公式和积分性 质,可以计算函数的积
分并进行运算。
导数与积分的应用
单调性判定
通过导数可以判断函数的单调性,如果函数在某区间上大 于0,则函数在此区间上单调递增;如果函数在某区间上 小于0,则函数在此区间上单调递减。
数学ppt课件
contents
目录
• 数学简介 • 代数基础 • 几何基础 • 微积分基础 • 概率与统计
01
数学简介
数学的起源与发展
数学的起源
数学起源于人类早期的生产活动 ,如计数、测量等。最早的数学 概念可以追溯到古埃及和古巴比 伦时期。
数学的发展
数学在几千年的发展过程中,经 历了不同的阶段,如古希腊数学 、中世纪欧洲数学、近代数学等 ,形成了现代数学的各个分支。
代数式与分式

《数字的起源》课件

《数字的起源》课件
人工智能的广泛应用
人工智能是数字技术的产物,未来将更加广泛地 应用于各个领域,提高生产效率和生活质量。
3
数据安全和隐私保护
随着数字技术的普及,数据安全和隐私保护将成 为越来越重要的问题,需要采取有效的措施来保 障个人隐私和数据安全。
2023
REPORTING
THANKS
感谢观看
和准确性。
数据存储和处理
数字用于表示和存储各种数据类 型,如整数、浮点数、字符等, 以及进行高效的数据处理和分析

网络安全
数字加密技术是保障网络安全的 重要手段,通过数字加密技术可 以保护数据的机密性和完整性。
商业和金融
会计和财务
数字在会计和财务领域的应用非常广泛,如记账、核算成本、编 制财务报表等,是企业管理的基础。
人工智能与数字的结合
02
人工智能与数字的结合,如智能金融、智能医疗等领域,为数
字的应用提供了更广阔的场景。
人工智能对数字的挑战
03
人工智能的发展也给数字带来了一些挑战,如数据安全、隐私
保护等问题。
未来数字的发展趋势
数字化转型
随着数字化转型的加速,越来越多的企业和个人 开始重视数字化转型,推动数字的快速发展。
刻痕计数
在某些文化中,人们使用 骨头、石头或木头等材料 刻划记号来计数。
数字的演变过程
埃及பைடு நூலகம்字
古埃及人使用基于10的数字系统,包 括象形文字和符号来表示不同的数值 。
阿拉伯数字
随着阿拉伯文化的传播,印度数字系 统逐渐演变为现代的阿拉伯数字系统 。
罗马数字
罗马人使用基于1000的数字系统,通 过组合不同的符号来表示不同的数值 。
表示数值。

《数学的产生于发展》课件

《数学的产生于发展》课件

04
数学与科技的关系
数学在科技发展中的作用
数学是科技发展的基础
数学为科技提供了理论支撑和工具,是解决科技问题的关键。
数学在科学研究中的应用
数学在物理、化学、生物、工程等领域中发挥了重要作用,为科学 研究提供了强大的工具。
数学在技术创新中的作用
数学在算法设计、数据分析、机器学习等领域中发挥了重要作用, 推动了技术创新和产业升级。
19世纪末,庞加莱等人创立了拓 扑学,用于研究几何图形的整体 性质。拓扑学在数学和理论物理
等领域有着重要的应用。
概率论与统计学的发展
01
概率论的起源
概率论作为数学的一个分支,起源于赌博和保险业的需求。在17世纪,
费马、帕斯卡等人开始研究概率论的基本原理。
02
大数定律和中心极限定理的发现
在19世纪,拉普拉斯和切比雪夫等人证明了概率论中的大数定律和中心
在19世纪末和20世纪初,数学家们开 始深入研究微分方程的性质和求解方 法。这些研究在理论物理、工程和经 济等领域有着广泛的应用。
实数理论的建立
在19世纪,康托尔等人建立了实数理 论,为微积分提供了严格的数学基础 。实数理论在数学分析、实变函数等 领域有着重要的应用。
03
数学的应用
物理学的数学应用
几何的发展
解析几何的兴起
在17世纪,笛卡尔等人创立了解 析几何,将几何图形与代数方程 结合起来进行研究。解析几何的 出现为微积分学的发展奠定了基
础。
微分几何的诞生
在18世纪,欧拉、克莱洛和达朗 贝尔等人创立了微分几何,用于 研究曲线和曲面的局部性质。微 分几何在理论物理和工程领域有
着广泛的应用。
拓扑学的兴起
05

2024版《数学史》数学的起源ppt课件

2024版《数学史》数学的起源ppt课件

微积分的应用
在物理学、工程学、经济学等领 域有广泛应用,如求解速度、加 速度、曲线的长度、面积、体积
等问题。
概率论与数理统计的兴起
1 2 3
概率论的起源 起源于17世纪中叶人们对机会性游戏的数学研究, 如赌博中的骰子点数问题。
数理统计的发展 随着数据收集和分析的需求增加,数理统计逐渐 从概率论中独立出来,成为一门研究如何从数据 中提取有用信息的学科。
《数学史》数学的起源ppt课件
目录
• 引言 • 古代数学的起源 • 中世纪数学的发展 • 近代数学的崛起 • 现代数学的发展与挑战 • 数学史对数学教育的启示
01
引言
Chapter
数学的定义与重要性
数学是研究数量、结构、空间及变化等概念的一门学科。
数学作为一种普遍适用的技术,有助于人们解决各种问 题,推动科技进步和社会发展。 数学在自然科学、社会科学、工程学、医学等领域都有 广泛应用,具有不可替代的重要性。
数学史的研究意义
了解数学发展的历史 进程,探究数学思想 和方法的演变。
借鉴历史经验,为现 代数学教育和研究提 供启示和借鉴。
揭示数学与人类社会、 文化、科技等方面的 互动关系。
课件内容与结构
课件内容
介绍数学的起源、早期数学的发展、古代数学的辉 煌成就、中世纪数学的停滞与复兴、近代数学的兴 起与发展等。
概率论与数理统计的应用 在金融、保险、医学、社会科学等领域有广泛应 用,如风险评估、质量控制、假设检验、回归分 析等。
代数与几何的变革
代数的抽象化
19世纪,数学家们开始研究抽象代数结构,如群、环、域 等,使得代数的研究对象从具体的数扩展到更一般的数学 对象。
几何的变革 非欧几何的兴起打破了欧几里得几何一统天下的局面,揭 示了几何学的多样性。同时,微分几何和拓扑学的发展也 为几何学注入了新的活力。

数学史简介ppt可编辑全文

数学史简介ppt可编辑全文
数学史简介ppt
虽然毕达哥拉斯学派发现了无理数,但他们却严 禁泄露这一重要的发现,原因是这一发现彻底摧毁 了学派赖以安身立命的根本信念:“万物皆数”。 他们认为:“人们所知道的一切事物都包含数,因 此,没有数既不可能表达,也不可能理解任何事 物”。但要注意,毕达哥拉斯学派所说的数仅指整 数,而分数是被看作两个整数之比。但是很不幸, 是他们自己发现了正方形的对角线与边的长度之比 不能用整数或整数之比(即现在所说的有理数)表 示,也就是找不到一个数(指整数或整数之比,即 有理数)使它平方后等于2,这就动摇了他们“万物 皆数”的根本信念。他们无法解释到底世界发生了 什么事情,学派内部引起了极大的思想混乱。
数学史简介ppt
奇妙的自然数
1 , 2 , 3 , 4 , 5 ,……这些简简单单的自然数, 是我们从呀呀学语开始就认识的。它们是那样 自自然然,因而显得平淡无奇。但我们如果认 真研究一下这些数字,就会发现其中妙趣横生。 聪明的数学王子高斯在小学的时候就会巧算自 然数列之和,这正是由于他对自然数有深刻的 了解。高斯小时候在德国的一所农村小学读书。 数学老师是位从城里来的先生。他瞧不起穷人 的孩子,从不认真教他们,甚至还打骂学生。 有一天,他情绪很坏,一上课就命令学生做加 法,从1一直加到100数,学史谁简介算ppt 不到就不准回家。
随着对于数的认识的发展,无理数终于在人们心目
中取得合法地位,并逐渐发展了实数的严格理论。关
于实数理论现在已广泛应用于科学技术和日常生活之
中。
数学史简介ppt
中国传统数学中的无理数产生于开方不尽和圆 周率的计算。不过由于中国古算与古希腊数学有 着不同的传统,希腊人总是将数与形截然分开, 对涉及无限的问题总是持有恐惧的态度。中国算 学中数与形是有机统一的,中国人自始至终对关 于无限的问题总是泰然处之,能够正视无理数。

数学的ppt课件

数学的ppt课件

计算思维培养
加强计算思维的培养,提 高学生的编程能力和解决 实际问题的能力。
THANKS
感谢观看
数学与物理学的交叉
研究物理现象背后的数学原理,如混沌理论、量子力学中的数学 结构等。
数学与生物学的交叉
研究生物系统的数学模型,如生态系统的稳定性、遗传算法等。
数学与计算机科学的交叉
研究计算机科学的数学基础,如算法设计、数据结构等。
人工智能与数学的关系
人工智能算法的数学基础
机器学习、深度学习等领域需要大量的数学 知识,如线性代数、概率论和统计学等。
工程学中的数学
总结词
数学在工程学中是实现设计、分析和优化的关键工具。
详细描述
在工程设计中,数学用于建立物理模型的数学方程,进行数值分析和优化。例如,在机械工程中,数学用于分析 力学性能、热传导和振动;在航空航天工程中,数学用于设计飞行器和卫星轨道,以及进行空气动力学分析。
经济学中的数学
总结词
数学在经济学中用于描述、预测和分析经济现象和趋势。
02
微分学主要研究函数的 变化率,包括极限理论 、导数、微分等概念。
03
积分学主要研究函数的 累积量,包括定积分和 不定积分等概念。
04
微积分在自然科学、工 程技术和经济学等领域 有广泛应用。
线性代数
线性代数是研究线性 方程组、向量空间和 矩阵等数学对象的学 科。
线性代数在计算机科 学、统计学和物理学 等领域有广泛应用。
立体几何
介绍三维空间中的点、线、面等基本概念,以及球体、圆柱体、圆锥体等基本 立体的性质和表面积计算方法。
概率与统计基础
概率论
介绍概率的基本概念、概率的加法定理、条件概率、独立事件等,以及概率在决 策中的应用。

数学史简介ppt

数学史简介ppt
总结词
分析时代的来临
详细描述
18世纪的数学以分析学的发展为主导。数学家们开始深入研究微积分,并扩展到复数、无穷级数等领域。几何学 也取得了重大进展,如非欧几何的发现,对后来的物理学和哲学产生了深远影响。
19世纪的数学
总结词
数学的全面发展
VS
详细描述
19世纪的数学呈现出全面发展的态势。 代数、几何、分析等各个领域都取得了重 大突破。同时,数学开始与其他学科交叉 融合,如数学物理、数论等。数学的公理 化体系也开始建立,为数学的严谨性和可 靠性提供了保障。
和技能。
早期数学的发展主要集中在计数 、测量和图形等方面,这些技能 对于当时的人类来说是至关重要
的。
古代数学的发展
古代数学的发展主要集中在埃及 、巴比伦、印度、中国等文明古
国。
这些文明古国在数学方面都有重 要的贡献,如埃及的几何学、巴 比伦的代数和三角学、印度的数
字系统和中国的算术等。
古代数学的发展对于后来的科学 和技术发展起到了重要的推动作
$number {01} 汇报人:可编辑
2023-12-27
数学史简介
目录
• 数学的起源 • 中世纪数学 • 现代数学的发展 • 20世纪的数学 • 当代数学的挑战与前景
01
数学的起源
数学的起源
数学起源于人类早期的生产和生 活实践,如计数、测量、图形等

原始社会的人类通过观察和实验 ,逐渐发展出了基本的数学概念
2
中国数学家在解决实际问题方面有着卓越的成就 ,如南北朝时期的祖冲之在圆周率计算方面的贡 献。
3洲的数学
中世纪欧洲数学在文艺复兴时期得到了迅速的发展,如意大利的达芬奇、 法国的韦达等。
中世纪欧洲数学家在几何、代数、三角学等领域做出了重要的贡献,如欧 几里得的《几何原本》、阿基米德的《论球与圆柱》等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郭金彬, 孔国平. 中国传统数学思想史. 北京: 科学出版社, 2004
第一章 数学的起源与早期发展
1.1 数与形概念的产生
• 从原始的“数”到抽象的“数”概念的形成, 是一个缓慢、渐进的过程。人从生产活动中认 识到了具体的数,导致了记数法。“屈指可数” 表明人类记数最原始、最方便的工具是手指。
• 数学贡献:记数制,基本的算术运算,分数运算,一 次方程,正方形、矩形、等腰梯形等图形的面积公式, 近似的圆面积,锥体体积等。
• 公元前4世纪希腊人征服埃及以后,这一古老的数学 及的数学
莱茵德纸草书 莫斯科纸草书
1.2.2 美索不达米亚数学
• 两河流域(美索不达米亚)文明上溯到距今 6000年之前,几乎和埃及人同时发明了文字 “楔形文字”。
主要参考书
朱家生.数学史.北京: 高等教育出版社,2004 [美]克莱因. 古今数学思想. 牛津大学出版社, 1972(中译本: 北京大
学数学系数学史翻译组译, 上海科学技术出版社, 1979~1981, 4卷本)
张奠宙. 20世纪数学经纬. 上海: 华东师范大学出版社, 2002 吴文俊主编. 世界著名数学家传记(上、下册). 北京: 科学出版社,
• 了解古代美索不达米亚文明的主要文献是泥版, 迄今已有约50万块泥版出土。
• 现在泥版文书中大约有300多块是数学文献。
• 泥版楔形文、普林顿322。
古代巴比伦的数学
泥版楔形文 322
普林顿
1.2.3 古代印度的数学
• 背景:古印度简况。
• 古代和中世纪,富庶的南亚次大陆几乎不断地处于外 族的侵扰之下,所以古代印度文化不可避免地呈现出 多元复杂的背景,最显著的特色是其宗教性。
1.2.4 西汉以前的中国数学
• 《史记·夏本纪》大禹治水(公元前21世纪) 中提到 “左规矩,右准绳”,表明使用了规、矩、准、绳等作 图和测量工具,而且知道“勾三股四弦五”。
• 考古学的成就,充分说明了中国数学的起源与早期发展。
• 西安半坡村遗址、殷墟商代甲骨文、算筹、龙山里耶秦 简。
• 公元3-4世纪成书的《孙子算经》记载说:“凡算之法, 先识其位,一纵十横,百立千僵,千十相望,万百相 当。”
1995
程民德主编. 中国现代数学家传(5卷本). 南京: 江苏教育出版社,
1994-2002
中国大百科全书编辑委员会. 中国大百科全书(数学卷). 北京: 中国大
百科全书出版社, 1988
王元, 严士健, 石钟慈, 谈德颜编译. 数学百科全书(5卷本). 北京:
科学出版社, 1994-2000
状。
2 数学史要学习什么?
数学史的分期:
一、数学的起源与早期发展(公元前6世纪) 二、初等数学时期(公元前6世纪-16世纪) 三、近代数学时期(17世纪-18世纪) 四、现代数学时期(1820年-现在)
文明背景
• 文明背景(古代埃及、古代巴比伦、古印度、 中国简史、古希腊简史),帝国兴衰(罗马帝 国、阿拉伯帝国、神圣罗马帝国、波旁王朝、 哈布斯堡王朝、普鲁士王国、奥匈帝国),宗 教特色(印度教、犹太教、基督教、天主教、 伊斯兰教、佛教),革命文化运动(欧洲翻译 运动、文艺复兴运动、哥白尼革命、英国产业 革命、法国启蒙运动、法国大革命、欧洲1848 年革命)。
• 早期几种记数系统,如古埃及、古巴比伦、中 国甲骨文、古希腊、古印度、玛雅等。
• 世界上不同年代出现了五花八门的进位制和眼 花缭乱的记数符号体系,足以证明数学起源的 多元性和数学符号的多样性。
手指计数(伊朗,1966) 结绳计数(秘鲁,1972)
数学起源
西安半坡遗址出土的陶器残片
SUCCESS
• 数学史的意义:数学史研究数学概念、 数学方法和数学思想的起源与发展,及 其与社会、经济和一般文化的联系。对 于深刻认识作为科学的数学本身,及全 面了解整个人类文明的发展都具有重要 的意义。
庞加莱: 如果我们想要预见数
学的将来,适当的途径是
研究这门科学的历史和现
Poincaré (法, 1854-1912年)
• 吠陀时期(公元前10-前3世纪)。《吠陀》成书于 公元前15-前5世纪,印度婆罗门教的经典。残留的 《吠陀》中有《绳法经》(前8-前2世纪),这是印 度最早的数学文献。
• 阿育王石柱记录了现在阿拉伯数字的最早形态。
• 公元前2-公元3世纪的印度数学,可参考的资料主要 是“巴克沙利手稿”,出现了完整的十进制数码,其 中有“•”(点)表示0,有公元876年的“瓜廖尔石 碑”为证。
主要数学成就
• 处于数学中心区发展的主要成就,介绍100多位著名数 学家的工作及重要著作,各个历史时期中国数学的状况, 传统的几何、代数、三角的基础上发展起来的近代数学 的主要成就:解析几何与微积分学,及近现代数学分支, 如射影几何、非欧几何、微分几何、复变函数论、微分 方程、动力系统、变分法、实变函数论、泛函分析、数 论、布尔代数、逻辑代数、数理逻辑、抽象代数、集合 论、图论、拓扑学、概率论等。
• 中国传统数学的最大特点是建立在筹算基础之上,是中 国传统数学对人类文明的特殊贡献,这与西方及阿拉伯 数学是明显不同的。
数学史教程
--李文林
主讲人 张 卫
导言
1 为什么要开设数学史课?
• 数学史--人类文明史的重要篇章 • 数学史的概念:数学史主要研究数学科学发生发展
及其规律,简单地说就是研究数学的历史。它不仅 追溯数学内容、思想和方法的演变、发展过程,而 且还探索影响这种过程的各种因素,以及历史上数 学科学的发展对人类文明所带来的影响。 • 研究对象:不仅包括具体的数学内容,而且涉及历 史学、哲学、文化学、宗教等社会科学与人文科学 内容,是一门交叉性学科。
THANK YOU
2019/8/27
1.2 河谷文明与早期数学
1.2.1 古代埃及的数学
• 背景:古代埃及简况。
• 埃及人创造了连续3000多年的辉煌历史,发明了铜器、 创造了文字、掌握了较高的天文学和几何学知识,建 造了巍峨宏伟的神庙和金字塔。
• 古埃及最重要的传世数学文献:纸草书,如莱茵德纸 草书、莫斯科纸草书。
相关文档
最新文档