高等代数一试题及参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数(一)考试试卷
一、单选题(每一小题备选答案中,只有一个答案就是正确的,请把您认为正确答案的题号填入答题纸内相应的表格中。错选、多选、不选均不给分,6小题,每小题4分,共24分) 1、 以下乘积中( )就是4阶行列式ij D a =展开式中取负号的项、
A 、11223344a a a a 、
B 、14233142a a a a 、
C 、12233144a a a a 、
D 、23413214a a a a 、
2.行列式1
3
4
02324a --中元素a 的代数余子式就是( )、
A 、
0324-、 B 、0324--、 C 、14
03
-、 D 、1403、 3.设,A B 都就是n 阶矩阵,若AB O =,则正确的就是( )、 A 、()()r A r B n +≤、 B 、0A =、 C 、A O =或B O =、 D 、0A ≠、
4.下列向量组中,线性无关的就是( )、
A 、{}0、
B 、{},,αβ0、
C 、{}12,,,r ααα,其中12m αα=、
D 、{}12,,
,r ααα,其中任一向量都不能表示成其余向量的线性组合、
5.设A 就是n 阶矩阵且()r A r n =<,则A 中( )、
A 、必有r 个行向量线性无关、
B 、任意r 个行向量线性无关、
C 、任意r 个行向量构成一个极大线性无关组、
D 、任意一个行向量都能被其它r 个行向量线性表出、
6.n 阶矩阵A 具有n 个不同的特征值就是A 与对角阵相似的( )条件、
A 、充要、
B 、充分非必要、
C 、必要非充分、
D 、非充分非必要、 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分)、
1.若A 为n 阶矩阵,k 为非零常数,则kA k A =、 ( )
2.若两个向量组等价,则它们包含的向量个数相同、 ( )
3.对任一排列施行偶数次对换后,排列的奇偶性不变、 ( )
4.正交矩阵的逆矩阵仍就是正交矩阵、 ( )
5.任何数域都包含有理数域、 ( ) 三、填空题(每空4分,共24分)、
1.行列式00010
2
010000
D n n
=
=- 、 2.
已
知
5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)
αβ---=--=-,
则
α= ,(,)αβ= 、
3.矩阵12311211022584311112A ---⎡⎤⎢⎥
--⎢
⎥=⎢⎥---⎢⎥--⎣⎦
,则()r A = 、 4.设线性方程组11112211
21122222
1122n n n n n n nn n n
a x a x a x
b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别
为s 与t ,则s 与t 的大小关系就是 、
5.设111123111,124111051A B ⎡⎤⎡⎤
⎢⎥⎢⎥=-=--⎢⎥⎢⎥
⎢⎥⎢⎥-⎣⎦⎣⎦
,则1A B -= 、
四、计算题(4小题,共42分)
1.计算行列式(1)111
111111111a a a a
;(2)
11111
6
5
4
1362516121612564
、(每小题6分,共12分)
2.用基础解系表出线性方程组1234512345
12345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解、(10分)
3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组、(10分)
4.求矩阵211020413A -⎡⎤
⎢⎥=⎢⎥
⎢⎥-⎣⎦
的特征根与特征向量、(10分)
一、单选题(每题4分,共24分)
二、判断题(每题2
分,共10分)
三、填空题(每空4分,共24分)
1.(1)2
(1)
!n n n --⋅; 2.(1)0;
3.3;
4.s t =;
5、35122
2
312
21211
2
-⎡⎤
⎢⎥-⎢⎥⎢⎥-⎣⎦
、 四、计算题(共42分)
1.(12分,每小题各6分) (1)解:
111
3111
1111
111311111
(3)111311111
111311111a a a a a a a a a a a a
a a a
++==+++ 、、、、、、、、、、、、、、(3分)
31
1
1
10100
(3)
(3)(1)00100
1
a a a a a a -=+=+--- 、、、、、、、、、、、、、、、、、、、(3分)
注:中间步骤形式多样,可酌情加分
(2)解:
22223
3
3
3
1
111
1
111
16541654
1
36
25
161
654121612564
1654=,此行列式为范德蒙行列式 、、、、、、(3分) 进而