晶闸管触发电路的基本要求

合集下载

7-7晶闸管的触发电路

7-7晶闸管的触发电路
线性好的晶闸管整流电路,常采用由晶体 管组成的触发电路。常见的有同步电压为 锯齿波的晶体管触发电路。 • 见P237图7-41 • 特点: 移相范围大,输出电压和电流线性好, 适用于大中容量的晶闸管。
• (4)单结晶体管的特点 • 1)单结晶体管发射极电压等于峰点电压时,单结
晶体管导通,导通之后,当发射极电压小于谷点 电压时,管子由导通变为截止,谷点电压在2-5v 之间。 • 2)单结晶体管的发射极与第一基极的电阻RB1是 一个阻值随发射极电流增大而减小的电阻, RB2 则是一个与发射极电流无关的电阻。 • 3)不同的晶体管有不同的UP、UV,若电源电压不 同,二者也会改变,在触发电路中常选用UV大一 些或IV大一些的单结晶体管。
单结晶体管振荡电路
• 因此,在电容器两端得到锯齿波,在输出端得 到脉冲尖顶波。
• 调整RC可以调整电容充放电速度,使输出波形 前移或移,从而控制晶闸管的触发时刻。RC乘 积较大时,后移。
单结晶体管触发电路
• 3、单结晶体管触发电路 • 由于每半个周期内第一个脉冲将晶体管触发后,
后面的脉冲均无作用,因此只要改变每半周第一 个脉冲产生的时间即改变了控制角α的大小,在实 际中可利用改变充电电阻R的方法来实现改变控 制角从
① 截止区:当uEB1<UP时,PN结反偏,单结管截止。 ② 负阻区:当uEB1>UP,PN结正偏,iE猛增,uEB1
反而减小,呈现负阻效应。
③ 饱和区:当uEB1下降到谷点以后,iE增加,uEB1
也有所增加,但变化较小,器件进入饱和区,当
uEB1<Uv时管子重新截止。
单结晶体管的特点
• 2、单结晶体管振荡电路
E R1
当电源接通时电源通过R对C充电,E点电位逐渐升高, 当上升到up时,单结管导通,发射极电流突然增大, 电容C通过发射极、第一基极、电阻R1放电,由于R1 很小,故放电速度快,电容两端电压下降很快,uO下 降很快,当下降到单结晶体管的谷点电压,单结晶体管 截止,输出电流、电压为0。接着电源又重新开始对C 充电,重复以上过程。

晶闸管对触发电路的要求

晶闸管对触发电路的要求

晶闸管对触发电路的要求触发脉冲的作用各种电力电子器件的门极或控制极的控制电路都应提供符合一定要求的触发脉冲。

对于晶闸管的触发脉冲来说,其主要作用是决定晶闸管的导通时刻,同时还应提供相应的门极触发电压和门极触发电流。

触发脉冲除了包括脉冲的电压和电流参数外,还应有脉冲的陡度和后沿波形,脉冲的相序和相角以及与主电路的同步关系,同时还须考虑门控电路与主电路的绝缘隔离问题和抗干扰、防止误触发问题.由于晶闸管是半控型器件,管子导通后即失去控制作用,为了减少门极损耗,故门极输出不用直流而用单脉冲或双脉冲,有时还采用由许多单脉冲组成的脉冲列,以代替宽脉冲。

触发脉冲参数要求触发脉冲的主要参数有触发电流、脉冲宽度等,具体要求如下: (1)触发电流-—晶闸管是电流控制型器件,只有在门极里注入一定幅值的触发电流时才能触发导通。

由于晶闸管伏安特性的分散性,以及触发电压和触发电流随温度变化的特性,所以触发电路所提供的触发电压和触发电流应大于产品目录所提供的可触发电压和可触发电流,从而保证晶闸管的可靠触发,但不得超过规定的门极最大允许触发电压和最大允许触发电流。

实际触发电流可整定为3~5倍的额定触发电流。

(2)触发脉冲宽度--触发脉冲的宽度应能保证使晶闸管的阳极电流上升到大于擎住电流。

由于晶闸管的开通过程只有几微秒,但并不意味着几微秒后它已能维持导通。

若在触发脉冲消失时,阳极电流仍小于擎住电流,晶闸管将不能维持导通而关断。

因此对脉冲宽度有一定要求,它和变流装置的负载性质及主电路的形式有关。

(3)强触发脉冲-—触发脉冲前沿越陡,越有利于并联或串联晶闸管的同时触发导通。

因此在有并联或串联晶闸管时,要求触发脉冲前沿陡度大于或等于10V/uS,通常采取强触发脉冲的形式。

另外,强触发脉冲还可以提高晶闸管承受di/dt的能力。

(4)触发功率——触发脉冲要有足够的输出功率,并能方便地获得多个输出脉冲,每相中多个脉冲的前沿陡度不要相差太大。

晶闸管触发电路设计

晶闸管触发电路设计

摘要为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电流),完成此任务的就是触发电路。

本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。

有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成UAA4002、KJ004触发电路。

包括电路的工作原理和电路工作过程以及针对相关参数的计算。

关键词:晶闸管;触发电路;脉冲;KJ004目录第1章绪论 (1)第2章课程设计的方案 (1)2.1 概述 (1)2.2 系统组成整体结构 (2)2.3 设计方案 (2)第3章电路设计 (4)3.1 UAA4002集成芯片构成的触发器 (4)3.2 阻容移相桥触发电路 (5)3.3正弦波同步触发电路 (6)3.4单结晶体管触发电路 (8)3.5集成KJ004触发电路 (9)第4章课程设计总结 (12)参考文献 (14)绪论晶闸管是晶体闸流管的简称,又称为可控硅整流器,以前被简称为可控硅。

在电力二极管开始得到应用后不久,1956年美国贝尔实验室发明了晶闸管,到1957年美国通用电气公司开发出世界上第一只晶闸管产品,并在1958年达到商业化。

由于其开通时刻可以控制,而且各方面性能均明显胜过以前的汞弧整流器,因而立即受到普遍欢迎,从此开辟了电力电子技术迅速发展和广泛应用的崭新时代,其标志就是以晶闸管为代表的电力半导体器件的广泛应用,有人称之为继晶体管发明和应用之后的又一次电子技术革命。

自20世纪80年代以来,晶闸管的地位开始被各种性能更好的全控型器件取代,但是由于其所能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。

20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入一个崭新时代。

电路电子——晶闸管的触发电路设计

电路电子——晶闸管的触发电路设计
图8 同步电压为锯齿波的触发电路
脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间 常数R11C3有关。 电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接 在V8集电极电路中。
二、同步电压为锯齿波的触发电路
4) 双窄脉冲形成环节 内双脉冲电路
V5、V6构成“或”门
当V5、V6都导通时,V7、V8都截止,没有脉冲输出。 只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。
二、同步电压为锯齿波的触发电路
2) 锯齿波的形成和脉冲移相环节
锯齿波电压形成的方案较多,如采用自举式电路、恒流 源电路等;本电路采用恒流源电路。
图8 同步电压为锯齿波的触发电路
恒流源电路方案,由V1、V2、V3和C2等元件组成
V1、VS、RP2和R3为一恒流源电路
二、同步电压为锯齿波的触发电路
锯齿波是由开关V2管来控制的。
1. 电源接通:E通过Re对C充电, 时间常数为ReC
2. Uc增大,达到 UP ,单结晶体管 导通,C通过R1放电
3. Uc减少,达到Uv,单结晶体管截
止,uR1 下降,接近于零
4. 重复充放电过程
图5 单结晶体管自激振荡电路
Re的值不能太大或太小,满足电路振荡的Re的取值范围
一、 单结晶体管触发电路
图6 晶体管同步触发电路
一、 单结晶管由第一个脉 冲触发导通,后面的脉冲不 起作用。
改充电变速Re度的,大达小到,调可节改α变角电的容目
的。 削波的目的:增大移相范围,
使输出的触发脉冲的幅度基本 一样。
一、 单结晶体管触发电路
实际应用中,常用晶体管V2代替电位器Re,以便实现
第一个脉冲由本相触发单元的uco对应的控制角 产生。

晶闸管触发电路的要求

晶闸管触发电路的要求

晶闸管触发电路的要求
晶闸管触发电路是通过晶闸管的特性来控制受波形的变化。

它的特点是由晶闸管的两
极的施加电压和电流的变化而实现波形的变化,它的优点是可以稳定地控制触发信号的改变,特别适用于高频应用,精度和稳定性都比较高。

第一,晶闸管触发电路要求有足够大的触发电压,并且保持足够平稳,最好能保持高
于1V以上,这样能确保正常的工作,用以满足较高的质量要求。

第二,晶闸管触发电路的反应速度也是非常重要的,需要确保其能在最短的时间内作
出正确的反应,否则会影响通信设备的正常工作,在实际应用过程中,其反应速度要小于
5微秒。

第三,晶闸管触发电路的触发电流也有要求,通常情况下,它的触发电流应该保持在
1mA以上,这样可以确保其能够得到足够强劲的触发信号,其中涉及到晶闸管的触发电压
和电流,通常都要求稳定可靠。

第四,晶闸管触发电路的波形要求也是非常重要的,其中的正脉冲应该要能达到一定
的高度,而且波形的曲线稳定性也要能够达到规定的一定的标准,晶闸管的波形要求可以
保持0.2V ≤ U ≤ 30V,如此才能确保晶闸管的正常工作。

最后,也最重要的是晶闸管触发电路的安全性,开关电源从PCB板中,气体绝缘作用,防止元器件被潮湿环境所损坏,以确保元器件能正常运转,保证电路的稳定性。

总之,晶闸管触发电路作为精密控制电路,具有良好的性能,但是在使用时还是要控
制好它的参数,确保其能满足要求,以保证系统的正常工作。

电力电子技术第3章 晶闸管的触发驱动电路

电力电子技术第3章  晶闸管的触发驱动电路
15
3.3.1 锯齿波形成和脉冲移相控制环节 锯齿波同步触发电路的移相原理,是将锯齿波 电压与直流控制电压 UC叠加,使锯齿波可以垂直 上下移动,锯齿波形斜面对应的电压值能控制形成 脉冲的晶体管开通时刻,即改变对应控制角 α的大 小。
16
3.3.2 脉冲形成、整形和放大输出环节 当锯齿波电压ue3与控制电压Uc、偏置电压Ub 叠加在V4管基极进行并联叠加的电压ub4<0.7V时, V4管截止,电源分别经及R13与R14向V6管与V5管供 给足够大的基极电流,使V6,V5管饱和导通。
8
3.2 单结晶体管触发电路 单结晶体管(Unijuncting Transistor)的结构 及图形符号、等效电路如图3.3所示。单结晶体管 是在一块高电阻率的N型硅片两端,用欧姆接触方 式引出第一基极b1和第二基极b2,b1和b2之间的 电阻为N硅片的体电阻,约为3~12kΩ,在硅片靠 近b2极渗入P型杂质,形成PN结,由P区引出发射 极 e。
6
3.1.3 移相触发器的主要技术指标 (1)同步信号波形 同步信号有正弦波,方波和锯齿波,三者各有 特点,但集成模拟触发器多用锯齿波;数字式触发 器同步信号多用方波。 (2)同步信号幅值 同步信号的幅值随所应用触发器外接元件的不 同而有差别,一般为 6 ~ 30 V。 (3)移相范围 移相范围指当移相控制电压 UC,从零至最大 变化时,输出触发脉冲对于同步信号相位的变化量 。
7
(4)脉冲幅值 脉冲幅值一般指电压幅值与电流幅值。当脉 冲触发器输出的脉冲电压幅值在不接晶闸管时可以 为 12 ~25 V。而电流幅值随被触发晶闸管容量的 不同有差异。 (5)脉冲宽度 为了保证触发的可靠性,触发脉冲常采用宽 脉冲、双窄脉冲,或宽脉冲列、双窄脉列。宽脉冲 宽度应大于 60°小于 120°,双窄脉冲每个脉冲 的宽度应大于 18°小于 30°。

晶闸管对触发电路的要求

晶闸管对触发电路的要求
第三章 晶闸管对触发电路的要 求与简单的触发电路
扬州工业职业技术学院 电子系 范丛山
晶闸管是单向可控器件,晶闸管承受正 向阳极电压的同时,门极还要加上适当的触 发电压才能由阻断转入导通状态。改变触发 脉冲的输出的时间,即可以改变控制角的大 小,从而达到改变输出直流平均电压的目的。
一、晶闸管对触发电路的要求 触发信号可以使交流、直流或脉冲,脉冲信号 只能在门极为正、阴极为负时起作用。触发信号的 电压波形有多种形式。 1、触发信号应有足够的功率(电压与电流) 触发电路输出的触发电压和触发电流,应大于 晶闸管的门极触发电压和门极触发电流。在触发信 号为脉冲形式时,只要触发功率不超过规定值,触 发电压、电流的幅值在短时间内可大大超过额定值。
(四)双脉冲形成环节 对于三相全控桥整流电路要求触发脉冲必须采 用宽脉冲或双脉冲,此电路可实现双脉冲输出,相 邻两个脉冲的间隔为60。
(五)强触发及脉冲封锁环节 晶闸管采用强触发可缩短开通时间,提高晶闸 管承受电流上升率的能力,有利于改善串并联元件 的动态均压与均流,增加触发可靠性。
五、触发脉冲与主电路电压的同步
(一)同步环节 同步环节由同步变压器Ts、晶体管VT2、VD1、VD2、 R1以及C1等组成。在锯齿波触发电路中,同步就是要求锯 齿波的频率与主回路电源频率相同。锯齿波是由开关管VT2 控制的,VT2有截止变为导通期间产生锯齿波,VT2截止持 续时间就是锯齿波的宽度,VT2开关的频率就是锯齿波的频 率。要使触发脉冲与主回路电源同步,必须使VT2开关频率 与主回路电源频率达到同步。
2、触发脉冲要具有一定的宽度,前沿要陡 触发脉冲的宽度一般应保证晶闸管阳极电流在 触发脉冲消失前达到擎住电流,使晶闸管能保持通 态,这是最小的允许宽度。 3、触发脉冲的移相范围应能满足变流装置的要求 触发脉冲的移相范围与主电路形式、负载性质 及变流装置的用途有关。如三相半波电阻性负载时, 要求移相范围为150,而三相桥式全控电阻性负载 要求移相范围为120。 4、触发脉冲与主回路电源电压必须同步 为了使晶闸管在每一周期都能重复在相同的相位 上触发,保证变流装置的品质和可靠性,触发电路 的同步电压与主回路电源电压必须保持某种固定的 相位关系。

晶闸管触发电路

晶闸管触发电路
晶闸管触发电路
•1.1 单结晶体管
单结晶体管又叫双基极二极管,是具有一个PN结的三 端负阻器件。 单结晶体管触发电路结构简单,输出脉 冲前沿陡峭,抗干扰能力强,运行可靠,调试方便,广 泛应用与小容量晶闸管触发控制。
1.单结晶体管的结构ຫໍສະໝຸດ 等效电路在一个低掺杂的N型硅棒上利 用扩散工艺形成一个高掺杂P 区,在P区与N区接触面形成 PN 结 , 就 构 成 单 结 晶 体 管 (UJT)。其结构如图 (a)所示,
当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从 发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A— b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关, 注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电 压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大 到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而 减小,表现出负阻特性。
P型半导体引出的电极为发射极E; N型半导体的两端引出两个电极, 分别为基极B1和基极B2,B1和B2 之间的N型区域可以等效为一个纯 电阻,即基区电阻RBB。该电阻的 阻值随着发射极电流的变化而改 变。单结晶体管因有两个基极, 故也称为双基极晶体管。其符号 如图(b)所示。
单结晶体管的等效电路如图(c)所 示,发射极所接P区与N型硅棒 形成的PN结等效为二极管D;N
型硅棒因掺杂浓度很低而呈现高 电阻,二极管阴极与基极B2之间 的 等 效 电 阻 为 RB2 , 二 极 管 阴 极 与基极B1之间的等效电阻为RB1; RB1的阻值受E-B1间电压的控制, 所以等效为可变电阻。
2、工作原理和特性曲线
当e-b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电 流Ie为二极管的反向电流,记作IEO。

晶闸管简易触发电路教材

晶闸管简易触发电路教材
自动化系
自控教研室
主讲:孙慧峰
第七章 晶闸管的触发电路
主要内容: 重 点 一、晶闸管对触发电路的要求
二、晶闸管的简易触发电路 1、引入本相电压作为触发信号的电路 2、阻容移相触发电路
三、单结晶体管同步触发电路 四、实用电路分析
第一节 对触发电路的要求 及简易触发电路
一、晶闸管对触发电路的要求
1、触发电路输出的脉冲必须具有足够的功率 2、触发脉冲要具有一定的宽度,前沿要陡 3、触发脉冲能满足主电路移相范围的要求 4、触发脉冲必须与晶闸管的主电压保持同步
VD2
VD1
B
图三、多路抢答器电路
K
1KA 2KA 3KA 4KA
H1
H2
H3
H4
R2
VT1 VT2 VT3
VT4
VT6
E
A
R3 C
VT5
R1
B
VD2
3KA
3KA
3KA
4KA
VD1
B
SB1
SB2
SB3
SB4
图三、多路抢答器电路
第二节单结晶体管触发电路
三、单结晶体管触发电路
b2
b2 发射极
e
PN结
充电,此时VT正偏;当ug=UG时,VT导通,负载Rd两端电 压ud= u2 。 结论:R调小,α小; R调大,α大。
3、实用电路分析
+
Q ~220V
RP
R1 R2
C3
VT TP
C1 C2 图一、晶闸管点火电路
电极间隙
Q ~220V
RP
R1
VT
R2
C1
C2
图二、简易调光台灯电路
u2

电力电子技术_复习题答案()

电力电子技术_复习题答案()

第二章:1.晶闸管的动态参数有断态电压临界上升率du/dt和通态电流临界上升率等,若du/dt过大,就会使晶闸管出现_ 误导通_,若di/dt过大,会导致晶闸管_损坏__。

2.目前常用的具有自关断能力的电力电子元件有电力晶体管、可关断晶闸管、功率场效应晶体管、绝缘栅双极型晶体管几种。

简述晶闸管的正向伏安特性?答: 晶闸管的伏安特性正向特性当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。

如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。

随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。

如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。

3.使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。

或:uAK>0且uGK>0。

4.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于半控型器件的是 SCR 。

5.晶闸管的擎住电流IL答:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。

6.晶闸管通态平均电流I T(AV)答:晶闸管在环境温度为40 C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。

标称其额定电流的参数。

7.晶闸管的控制角α(移相角)答:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

8.常用电力电子器件有哪些?答:不可控器件:电力二极管。

半控型器件:晶闸管。

全控型器件:绝缘栅双极晶体管IGBT,电力场效应晶体管(电力MOSFET),门极可关断晶闸管(GTO),电力晶体管。

晶闸管的门极驱动电路和缓冲电路

晶闸管的门极驱动电路和缓冲电路

晶闸管的门极驱动电路和缓冲电路1、晶闸管对触发电路的基本要求①触发信号可以是沟通、直流或脉冲,为了减小门极的损耗,触发信号常采纳脉冲形式。

②触发脉冲应有足够的功率。

触发电压和触发电流应大于晶闸管的门极触发电压和门极触发电流。

③触发脉冲应有足够的宽度和陡度。

触发脉冲的宽度一般应保证晶闸管阳极电流在脉冲消逝前能达到擎住电流,使晶闸管导通,这是最小的允许宽度。

一般触发脉冲前沿陡度大于10V/μs或800mA/μs。

④触发脉冲的移相范围应能满意变换器的要求。

例如,三相半波整流电路,在电阻性负载时,要求移相范围为150°;而三相桥式全控整流电路,电阻负载时移相范围为120°。

2、触发电路的型式触发电路可分为模拟式和数字式两种,阻容移相桥、单结晶体管触发电路、锯齿波移相电路和正弦波移相电路均属于模拟式触发电路;而用数字规律电路乃至于微处理器掌握的移相电路则属于数字式触发电路。

3、爱护电路(1)晶闸管的缓冲电路常采纳在晶闸管的阴阳极并联RC缓冲器,用来防止晶闸管两端过大的du/dt造成晶闸管的误触发,其中电阻R也能减小晶闸管开通时电容C的放电电流。

(2)晶闸管的爱护晶闸管在使用时,因电路中电感的存在而导致换相过程产生Ldi/dt,又因容性的存在或设备自身运行中消失短路、过载等故障,所以其过电压、过电流爱护显得尤为重要。

晶闸管的派生器件双向晶闸管(Triode AC Switch——TRIAC或Bidirectional triode thyristor)是一对反并联联接的一般晶闸管的集成。

有两个主电极T1和T2,一个门极G。

在第I和第III象限有对称的伏安特性。

不用平均值而用有效值来表示其额定电流值。

逆导晶闸管:是将晶闸管和整流管制作在同一管芯上的集成元件。

具有正向压降小、关断时间短、高温特性好、额定结温高等优点。

光控晶闸管:利用肯定波长的光照信号掌握的开关器件。

其结构也是由P1N1P2N2四层构成。

晶闸管触发电路..

晶闸管触发电路..
(4)、电容C的选择
电容C的大小与脉冲宽窄和的大小有关,通常取值范围为:0.1~ 1。
实验电路
实验电路
实验记录
2.6.3同步信号为锯齿波的触发电路
总结
由此可见,若锯齿波的频率与主电路电源频率同步即能使触发脉冲与主电路 电源同步,锯齿波是由V2管来控制的,V2管由导通变截止期间产生锯齿波, V2管截止的持续时间就是锯齿波的脉宽, V2管的开关频率就是锯齿波的频 率。在这里,同步变压器TS和主电路整流变压器接在同一电源上,用TS次 级电压来控制V2的导通和截止,从而保证了触发电路发出的脉冲与主电路电 源同步。 所以只要V2管周期性导通关断,电容C2两端就能得到线性很好的锯齿波电 压。 脉冲产生的时刻是由V4导通时刻决定(锯齿波和Ub、Uc之和达到0.7V时), 工作时,把负偏移电压Ub调整到某值固定后,改变控制电压Uc,就能改变 ub4波形与时间横轴的交点,就改变了V4转为导通的时刻,即改变了触发脉 冲产生的时刻,达到移相的目的。 电路中增加负偏移电压Ub的目的是为了调整Uc=0时触发脉冲的初始位置。 由此可见,脉冲产生时刻由V4导通瞬间确定,脉冲宽度由V5、V6持续截止 的时间确定。所以脉宽由C3反充电时间常数(τ=C3R11)来决定。
2.6.2 单结晶体管也称为双基极二极管,它有一个发射极和两个
基极, 外形和普通三极管相似。 单结晶体管的结构是在一块高
电阻率的N型半导体基片上引出两个欧姆接触的电极:第一基 极B1和第二基极B2;在两个基极间靠近B2处,用合金法或扩散 法渗入P型杂质,引出发射极E。单结晶体管共有上述三个电极, 其结构示
(a) 电路; (b) 波形
1. 同步电源
同步电压由变压器TB获得, 而同步变压器与主电路接至

《电气工程概论》第二章 电力电子技术(第1节)课堂笔记及练习题2

《电气工程概论》第二章 电力电子技术(第1节)课堂笔记及练习题2

《电气工程概论》第二章电力电子技术(第1节)课堂笔记及练习题主题:第二章电力电子技术(第1节)学习时间: 2015年11月23日--11月29日内容:我们这周主要学习电力电子技术第1节中的晶闸管的驱动、功率场效应管、绝缘栅型双极性晶体管、功率半导体器件的保护,通过学习我们要了解掌握晶闸管的驱动,掌握功率场效应管的结构、工作原理、特性、主要参数、安全工作区,掌握绝缘栅型双极性晶体管的结构、工作原理、特性、擎住效应和安全工作区,掌握功率半导体器件的过压、过流保护。

第一节功率半导体器件2.1.6 晶闸管的驱动1.晶闸管触发电路的基本要求:1)触发脉冲信号应有一定的功率和宽度。

2)为使并联晶闸管元件能同时导通,触发电路应能产生强触发脉冲。

3)触发脉冲的同步及移相范围。

4)隔离输出方式及抗干扰能力。

2.常见的触发电路图3-12为常见的触发电路。

它由2个晶体管构成放大环节、脉冲变压器以及附属电路构成脉冲输出环节组成。

当2个晶体管导通时,脉冲变压器副边向晶闸管的门极和阴极之间输出脉冲。

脉冲变压器实现了触发电路和主电路之间的电气隔离。

脉冲变压器原边并接的电阻和二极管是为了脉冲变压器释放能量而设的。

2.1.7 功率场效应晶体管功率场效应晶体管是一种单极型电压控制半导体元件,其特点是控制极静态内阻极高、驱动功率小、开关速度快、无二次击穿、安全工作区宽,开关频率可高达500kHZ,特别适合高频化的电力电子装置。

但由于电流容量小、耐压低,一般只适用小功率的电力电子装置。

1.结构与工作原理(1)结构功率场效应晶体管按导电沟道可分为P沟道和N沟道;根据栅源极电压与导电沟道出现的关系可分为耗尽型和增强型。

功率场效应晶体管一般为N沟道增强型。

从结构上看,功率场效应晶体管与小功率的MOS管有比较大的差别。

图3-13给出了具有垂直导电双扩散MOS结构的VD-MOSFET单元的结构图及电路符号。

(2)工作原理如图3-13 所示,功率场效应晶体管的三个极分别为栅极G、漏极D和源极S。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶闸管触发电路的基本要求
晶闸管触发电路的基本要求要使晶闸管由关断转为导通,必须具备一定的外界条件,即晶闸管阳极加正向电压的同时门极也施加正的控制信号。

当晶闸管导通后控制信号就不起作用了,直到电源过零时,其阳极电流小于维持电流,晶闸管便自行关断。

由于晶闸管导通后,门极就失去控制作用,因此对晶闸管的控制实际上就是提供一个有一定宽度的门极控制咏冲去触发晶闸管,使之导通。

门极控制电路常常称为触发电路。

对晶闸管触发电路的基本要求是: 1.触发信号可以是交流、直流或脉冲t触发信号只能在门极为正、阴极为负时起作用。

为了减小门极的损耗,触发信号常采用脉冲形式.常见的触发信号波形如图3-15所示, 2.触发脉冲应有足够的功率。

触发电压和触发电流应大于晶闸管的门极触发电压和门极触发电流。

因为晶闸管的特性有较大的分散性,且特性随温度而变化,故在设计触发电路时,触发信号的功率应留有裕量,保证晶閜管可靠触发,当然被发信号也不能超过门极的极限参数值(一般VCm&lt;10V,IGM&lt;10A). 3.触发脉冲的移相范围应能满足变流装置的要求。

触发脉冲的移相范围与主电路型式、负载性质及变流装置的用途有关,例如,三相半波整流电路,在电咀性负载时,要求移相范围为150?; 而三相桥式全控整流电路,电阻负载时要求移相范围为120?.若三相全控桥工作于整流或逆变状态并对电感负栽供电,则要求移相范围为
0&#12316;180?.在实际应用中,为了装置的正常工作,有时还要有αmin和βmin 的限制,故实际范围小于180?. 4.触发脉冲的宽度和陡度.触发脉冲的宽度一般应保证晶闸管阳极电流在脉冲消失前能达到擎住电流,使晶闸管能保持通态,这是最小的允许宽度。

脉冲宽度还与负载性质与主电路型式有关.例如,对于单相整流电路,电阻性负载时要求脉宽大于10us.电感性负载时要求脉宽大于100us。

对干三相全控桥式电路.采用单脉冲触发时脉宽应为60?&#12316;120?采用双脉冲触发时
脉宽10?左右即可。

触发脉冲前沿陡度越陡,越有利于并联或串联晶闸管的同时触发。

一般要求触发脉冲前沿陡度大于lOV/us或800mA/us. 5.触发脉冲与主回路电源电压必须同步。

为了使晶闸管在每一周波都能重复在相同的相位上触发,保证变流装置的品质和可靠性,触发脉冲与主回路电源电压必须保持某种固定相位关系。

这神触发脉冲与主回路电源保持固定相位关系的方法称为同步.。

相关文档
最新文档