微观摩擦磨损研究的新进展
摩擦磨损实验报告
摩擦磨损实验报告一、引言摩擦磨损实验是工程领域中常见的一种实验方法,通过模拟材料或器件表面的微观接触,研究摩擦过程中的磨损特性和机理。
本实验报告旨在对摩擦磨损实验的目的、原理、实验装置和结果进行全面、详细、完整且深入地探讨。
二、目的本实验的目的是通过设计和进行摩擦磨损实验,探究不同材料在不同工况下的磨损特性及其机理,为工程设计和材料选择提供理论依据。
三、原理摩擦磨损实验的原理基于摩擦学和材料科学的知识。
在实验中,通过施加一定的载荷和运动速度,使两个试样或试样与摩擦片之间发生摩擦接触。
在摩擦接触过程中,表面微观起伏、化学反应和热效应等因素共同作用,导致材料表面的磨损和形貌变化。
摩擦磨损实验可分为干摩擦和润滑摩擦两种情况。
在干摩擦实验中,试样之间没有润滑剂的存在,摩擦过程可能引起大量的磨粒生成和表面热量积累,导致试样表面的磨损。
而润滑摩擦实验则通过添加润滑剂,减少试样间的摩擦热和磨损程度。
四、实验装置进行摩擦磨损实验需要一套实验装置,包括:1.摩擦磨损试验机:用于施加载荷和控制运动速度,一般具有高精度和可控性能。
2.试样和摩擦片:选择不同材料的试样和摩擦片,根据实验需求确定形状、尺寸和表面处理方式。
3.测量仪器:包括摩擦力传感器、位移传感器、温度传感器等,用于实时监测试样的摩擦力、位移和温度等参数。
4.润滑剂:用于润滑摩擦接触表面,减少磨损程度和摩擦热。
五、实验过程本次实验的具体过程如下:1.准备试样和摩擦片:根据实验要求选择不同材料的试样和摩擦片,进行尺寸加工和表面处理。
2.调节实验参数:根据实验设计,设置载荷大小、运动速度和实验时间等参数。
3.安装试样和摩擦片:将试样和摩擦片固定在实验装置上,确保摩擦接触表面平整、清洁。
4.启动实验:运行实验装置,开始施加载荷和控制运动速度,记录实验过程中的数据和现象。
5.停止实验:根据实验时间或实验目标要求,停止实验运行,取下试样和摩擦片进行观察和分析。
6.数据处理:根据实验结果,进行数据处理和曲线拟合,得到摩擦力、位移和温度等参数的变化趋势。
摩擦学的现状与前沿
摩擦学的现状与前沿——机自09-8班姚安 03091131摩擦学作为一门实践性很强的技术基础科学,它的形成和发展与社会生产要求和科学技术的进步密切相关。
它作为一门独立的学科受到世界各国普遍重视,摩擦学理论与应用研究进入了一个新的时期。
1 研究现状与发展趋势现代摩擦学研究的主要特征可以归纳为:(1)在以往分学科研究的基础上,形成了一支掌握机械、材料和化学等相关知识的专业研究队伍,有利于对摩擦学现象进行多学科综合研究,推动了摩擦学机理研究的深入发展。
(2)由于摩擦学专业教育的发展和知识普及,以及摩擦学本身具有的实践性很强的特点,当今工业界有大量的工程科技人员结合工程实际开展研究,促使摩擦学应用研究取得巨大的经济效益。
(3)随着理论与应用的不断完善,摩擦学研究模式开始从以分析摩擦学现象为主逐步向着分析与控制相结合,甚至以控制性能为目标的研究模式发展。
此外,摩擦学研究工作从以往的主要面向设备维修和改造逐步进入机械产品的创新设计领域。
(4)交叉学科的发展。
摩擦学作为一门技术基础学科往往与其他学科相互交叉渗透从而形成新的研究领域,这是摩擦学发展的显著特点。
主要的交叉学科如下:摩擦化学、生物摩擦学、生态摩擦学及微机械学等。
当今,相关科学技术特别是计算机科学、材料科学和纳米科技的发展对摩擦学研究起着重要的推动作用,主要表现在以下方面。
1.1 流体润滑理论以数值解为基础的弹性流体动力润滑(简称弹流润滑)理论的建立是润滑理论的重大发展。
现代计算机科学和数值分析技术的迅猛发展,对于许多复杂的摩擦学现象都可能进行精确的定量计算目前薄膜润滑研究尚处于起步阶段,在理论和应用上都将成为今后润滑研究的新领域。
1.2 材料磨损与表面处理技术现代材料磨损研究的领域已从以金属材料为主体扩展到非金属材料包括陶瓷、聚合物及复合材料的研究。
表面处理技术或称表面改性是近20年来摩擦学研究中发展最为迅速的领域之一。
它利用各种物理、化学或机械的方法使材料表面层获得特殊的成分、组织结构和性能,以适应综合性能的要求。
微动摩擦磨损实验教学的探索与实践
[ 关键词 ] 实验教学
摩擦
ቤተ መጻሕፍቲ ባይዱ
磨损
在高校的机械设计 、车辆 工程和热能与动力工程等学科 的专业课 教学中 , 摩擦学的教学 内容 日 丰富。为促进学生对机械原理 、 有关 趋 机 械设计 、 机械设 计基 础等课程 中有关 材料的摩擦 、 磨损 以及螺栓联接等 相关知识 的掌握 , 从提 高教学成果 、 培养 学生的工程意识 、 创新能力和 动手能力来看 , 有必要 开设这 门较前 沿的教学实验 , 使学生在实验 中加 深对微动摩擦学机理的理解 , 提高学生对教学 内容的进一步认识 , 培养 科研意识 , 激发创新能力 。 本文结合教学 实践 和实验 室建设 ,对微动摩擦磨损实验教学进行 了探讨。 1 微动摩擦磨损实验教学的意义 、 微动摩擦磨损 是一 门包括物理 、 化学 、 力学 、 热力学 、 材料科学 和机 械学等多种学科交织在 一起的边缘学科 ,研究接触部件表面 的微摩擦 磨 损和润滑等问题 。微动摩擦磨 损通 常发生在一个振动环境下 的近似 紧配合的接触表面, 由两接触 表面的极小 振幅( 微米量级 ) 的运动引起 。 微 动造成 的接触表 面间的摩擦磨损 , 引起 构件咬合 、 会 松动或形成 污染 源; 同时 , 动也 可以加速裂纹 的萌生 、 微 扩展 , 使构件的疲劳寿命大大降 低。 在航空 系列产 品中, 拥有众 多的各种 压配合或收缩配合构件 , 如铆 接件 、 螺栓 、 电插 接件 、 榫槽 、 锥套 、 法兰连接 件 、 键或销 固定件 、 弹簧密 封 和支撑面等 , 在交变应力 或机械 、 环境 振动作用下 , 构件接触表 面之 间会产生相对微小 幅度 的滑动, 这种重复的滑动被称为微 动。 交变载荷 和微 动能促使构件 产生微 裂纹 ,加速受微动作用构件接触处表面及表 层 裂纹的萌生和扩展, 最后导致构件在 大大低 于材料疲 劳极 限时失效, 大大降低部件 的疲 劳寿命 。 以说 , 可 微动摩擦磨损广泛存 在于航 空航天 领域 , 微动损 伤失效 现象 十分普遍, 有时候甚至会造成灾难性后果 。因 此, 研究材料 、 结构件 以及不 同的制造加工 、 表面工艺处理 件在预应力 条件下的微动摩擦 磨损性 能 ,模 拟并开设预应力条件下 的微动摩擦磨
摩擦学的进展和未来
摩擦学的进展和未来一、本文概述摩擦学,作为一门研究物体间接触表面相互作用及其产生的摩擦、磨损和润滑现象的学科,自其诞生以来就在工业、交通、能源、生物医学等众多领域发挥了至关重要的作用。
随着科技的不断进步,摩擦学的研究也日益深入,新的理论、技术和应用不断涌现。
本文旨在全面概述摩擦学领域的最新进展,并展望其未来发展方向。
我们将回顾摩擦学的发展历程,从最初的经典摩擦理论到现代的纳米摩擦学、生物摩擦学等新兴分支。
接着,我们将重点介绍摩擦学在材料科学、机械工程、航空航天、生物医学等领域的最新应用,如高性能涂层材料、纳米摩擦调控技术、智能润滑系统等。
我们还将讨论摩擦学在能源转换与存储、环境保护、可持续发展等全球性问题中的重要作用。
在展望未来部分,我们将分析摩擦学领域的发展趋势和挑战,如跨学科融合、技术创新与产业升级等。
我们还将探讨摩擦学在智能制造、新能源、生物医疗等领域的发展前景,以及其在推动社会进步和可持续发展中的潜力。
本文旨在全面梳理摩擦学的进展和未来,以期为该领域的研究者、工程师和决策者提供有益的参考和启示。
二、摩擦学的基础理论摩擦学,作为一门研究物体表面间相互作用和摩擦现象的科学,其基础理论涉及多个学科领域,包括物理学、化学、材料科学和力学等。
这些基础理论为摩擦学的发展提供了坚实的支撑,同时也为未来的探索提供了新的思路。
接触力学理论:接触力学是摩擦学的基础,主要研究物体表面的接触行为和接触应力分布。
该理论通过研究接触表面的形貌、材料属性和载荷等因素,揭示了接触界面上的应力分布规律,为摩擦学的研究提供了重要的理论基础。
弹塑性理论:弹塑性理论主要研究物体在受力作用下的变形行为,包括弹性变形和塑性变形。
该理论为摩擦学提供了关于材料表面在摩擦过程中变形和损伤机制的重要认识,有助于深入理解摩擦现象的本质。
摩擦热学:摩擦过程中,由于摩擦力的作用,物体表面会产生大量的热量。
摩擦热学主要研究摩擦过程中的热量产生、传递和消散等问题。
尼龙的摩擦磨损性能
尼龙的摩擦磨损性能尼龙的摩擦磨损性能研究摘要本文对尼龙的摩擦磨损性能进行了研究。
通过模拟实验测量了尼龙的摩擦系数和磨损率,发现在不同负载下尼龙的摩擦系数和磨损率呈现相似的变化趋势。
同时,对尼龙的摩擦磨损机理进行分析,得出尼龙摩擦磨损的主要因素为气态分子间的撞击和化学反应,磨损方式为微观结构的撕裂和脱离。
最后,提出了改善尼龙摩擦磨损性能的方法,如添加润滑剂,改变摩擦配件形状等。
关键词:尼龙;摩擦;磨损;机理;改善Introduction尼龙作为一种常用的塑料材料,广泛应用于汽车、机械、电器等领域。
然而,在使用过程中,由于摩擦磨损的作用,尼龙零件的寿命会受到影响。
因此,对尼龙的摩擦磨损性能进行研究,有助于提高其使用寿命和性能稳定性。
Experimental实验采用球盘式摩擦测试机,测量了尼龙的摩擦系数和磨损率。
在不同负载下进行测试,得到如表1所示的结果。
表1 尼龙的摩擦系数和磨损率负载(N)摩擦系数磨损率10 0.25 1.2 × 10^-320 0.33 2.4 × 10^-330 0.42 3.6 × 10^-3结果表明,随着负载的增加,尼龙的摩擦系数和磨损率均呈现增加的趋势。
这是因为在大负载下,尼龙表面会受到更强的力量作用,容易出现微观结构的撕裂和脱离,从而导致摩擦磨损加剧。
Discussion尼龙的摩擦磨损机理主要为气态分子间的撞击和化学反应。
在摩擦接触面上,气态分子会与材料表面发生碰撞,从而产生撞击力和热量。
同时,气态分子本身也具有化学反应性,容易与尼龙表面的物质发生化学反应,形成附着层,导致表面磨损加剧。
为了改善尼龙的摩擦磨损性能,可以考虑添加润滑剂来减轻气态分子的撞击和化学反应。
另外,也可以通过改变摩擦配件的形状和材质,使其在接触面上产生更加均匀的分布力,从而减轻磨损。
Conclusion本文对尼龙的摩擦磨损性能进行了研究,在模拟实验中测量了尼龙的摩擦系数和磨损率。
摩擦学的进展与展望
摩擦学的进展与展望摩擦学是一门关于摩擦现象及其控制的学科,是材料领域中最重要的基础科学之一。
随着科学技术的不断发展,摩擦学研究也逐渐取得了新的进展和突破,本文将简述摩擦学的进展以及未来的展望。
一、摩擦学的进展1. 材料性能的改进随着材料科学的发展,工程界不断提出新的材料,任何材料都不能发展的独立于摩擦学的限制。
新型材料的发展为减小摩擦提供了一种途径,包括纳米材料,硅基材料等等。
2. 润滑技术的发展传统的润滑技术包括机械润滑、油润滑、气体润滑等。
而近年来润滑技术的应用也越来越广泛,从传统的机械润滑开始转向静电场润滑等新型技术,这些技术的应用有效地减小了摩擦现象,增加了机械设备的寿命。
3. 摩擦学理论的深化随着计算机技术和数值模拟技术的发展,摩擦学理论得到了很大的改进。
现代摩擦学理论已经逐渐从传统的摩擦现象说明向着深入探讨摩擦机制的方向发展。
同时新型摩擦学理论的提出可为材料科学提供新的支撑。
二、摩擦学的展望随着材料科学、计算机科学的快速发展,摩擦学在未来还有非常广阔的发展空间。
未来摩擦学的发展重点包括以下几个方面:1. 摩擦与磨损控制的理论和技术的发展随着工业的快速发展,摩擦机制和材料耐用性是极其关键的。
未来研究需着重探索摩擦与磨损强度之间的关系、摩擦机制的本质、新型润滑剂的研究等等。
2. 智能润滑技术的推广智能润滑技术将润滑技术与计算机技术相结合,开发出一种更加高效、自适应性更强的新型润滑系统。
未来摩擦学的应用将更加普及和广泛,发展出与工业现状高度契合的新型智能润滑技术。
3. 摩擦学与新材料的研究在现代工程技术和材料科学的高度发展下,新型材料的研究变得越来越重要。
未来的摩擦学还需要关注新型材料的摩擦特性、摩擦不稳定性等方面的应用研究。
尽管摩擦学已取得了长足的发展,但是未来摩擦学的发展研究充满了无限的可能性。
相信有天人们可以突破摩擦机制的局限,创造出更多的奇迹。
4. 微观结构与摩擦特性的研究随着纳米技术的不断发展,微观结构与摩擦特性之间的关系逐渐成为了一个热门领域。
摩擦学与表面工程技术的研究进展
摩擦学与表面工程技术的研究进展摩擦学是一门独立的学科,以摩擦、磨损、润滑和表面工程等为核心,涉及工程、材料、化学、物理等多个领域。
随着科技的发展,摩擦学与表面工程技术的研究也越来越受到重视,成为一门前沿性、实用性和交叉性的学科。
本文将结合近年来的研究成果,探讨摩擦学和表面工程技术的发展现状及未来发展趋势。
一、摩擦学的发展及应用摩擦学被定义为研究摩擦、磨损和润滑等三个方面的科学。
摩擦是指两个物体相对运动时发生的阻力,磨损是指夹在两个物体之间的杂质或异物引起的表面磨损,润滑是指通过介质在两个物体表面上形成的润滑膜,降低摩擦和磨损。
现代工业的发展,摩擦学的研究与应用已经不仅仅是单纯定量化和测量摩擦系数,而是涉及各种传动和运动系统的设计、磨损的控制和润滑的改进,对于保障工业生产和科学发展具有重要意义。
摩擦磨损是机械加工和设备运转中普遍存在的问题,影响着机械设备的使用寿命和性能。
如何减少摩擦、抗磨损和提高润滑是摩擦学研究的重要课题。
这些问题也成为了近年来摩擦学研究的热点和难点。
目前,在摩擦学方面,研究成果的应用范围极广,例如汽车行业中的摩擦材料、气体透平的润滑与密封、高速列车的降噪与减振等。
同时,很多领域的发展和研究,也得益于起源于摩擦学研究的专业技术。
比如飞机工程中的超短起飞和垂直起降技术,机器人设计中的优化系统运动控制和精度改进,以及医疗器械的精细化设计等都需要靠摩擦学。
二、表面工程技术的研究与发展表面工程技术可以被定义为对于材料表面的物理和化学性能进行改变或增强的处理过程。
表面工程技术通过对于材料表面的处理,可以改善材料的机械性能、耐腐蚀性、和分子交互的物理化学性质等,提高其整体性能,实现对于材料结构和性质等的调控。
表面工程技术应用非常广泛,可应用于航空、工业、建筑等多个领域。
传统的表面工程技术主要包括表面喷涂、气相沉积、表面改性、表面镀膜和激光表面处理等。
近年来,随着纳米技术和电子显微镜技术的发展,表面工程技术也呈现出了新的发展趋势。
摩擦学中的磨损和润滑研究
摩擦学中的磨损和润滑研究一、引言摩擦学是研究摩擦、磨损和润滑等问题的一门重要学科,其涉及到材料学、力学、化学、电子学等多个学科领域。
磨损和润滑是摩擦学研究的关键问题,其研究对于提高机械设备的使用寿命、降低能源消耗、提高生产效率等方面具有重要意义。
本文将重点阐述摩擦学中磨损和润滑的研究现状及未来发展方向。
二、磨损与磨损机理磨损是指摩擦双体之间的材料表面损伤和材料的松散、脱落等现象,它会对机械设备的寿命和性能产生严重影响。
磨损机理包括磨粒磨损、微动磨损、疲劳磨损等。
其中磨粒磨损主要是由于磨粒在摩擦过程中撞击表面而造成的局部磨损。
微动磨损是由微观结构上的相对位移和相互接触引起的。
疲劳磨损是由于表面应力加载和循环变化引起的。
三、润滑与润滑机理润滑是指在两个表面之间形成液体或膜层,降低摩擦系数和磨损的现象。
润滑机理主要分为液体润滑、固体润滑和气体润滑。
液体润滑是指在两个表面之间形成液体膜层,减少表面间的接触和摩擦;固体润滑是指添加固体润滑剂,形成在表面上的保护膜层,减少表面间的接触及摩擦;气体润滑是指利用高压气体形成气体薄层,以减少表面间接触,减轻摩擦力和磨损。
四、研究现状1. 磨损研究在磨损方面,目前的研究主要集中在材料的选择和改性上,包括表面改性、材料合成和涂层技术。
表面改性的方法包括化学改性、物理改性和机械改性等。
化学改性主要是通过表面处理等方法,改变材料表面化学性质以提高耐磨性和耐腐蚀性能。
物理改性是利用离子注入、电子束强化等方法改变材料的物理性能;机械改性主要是通过表面处理、高温等方式增强材料的硬度和韧性。
2. 润滑研究在润滑方面,目前的研究主要集中在润滑剂的开发和润滑机理的研究上。
润滑剂的研究主要包括传统的润滑油和润滑脂的改进,以及新型的润滑剂的研究和应用。
润滑机理的研究主要是将摩擦、粘度、黏度、液态密度等多个参数综合考虑,构建一个更为科学合理的润滑理论体系。
五、未来发展方向未来的磨损和润滑研究将更加注重材料的基础性能和提高材料防磨损和润滑性能。
我国摩擦学研究的现状与发展
第40卷第11期机械工程学报v0140No.112004年11月CHINESEJOURNAL0FMECHANICALENGINEERINGNov20O4我国摩擦学研究的现状与发展+温诗铸(清华大学摩擦学国家重点实验室北京100084)摘要:总结了自中国机械工程学会摩擦学分会成立25年来我国摩擦学研究的发展,论述了在流体润滑理论与设计、微观摩擦学、材料磨损机理与控制、表面工程与耐磨材料、润滑材料以及磨损状态监测等方面的主要成就。
在此基础上提出了今后值得关注的研究方向,如减摩抗磨技术、制造过程摩擦学、生态摩擦学、仿生技术与生物摩擦学等。
关键词:摩擦学研究进展展望中图分类号:THll710前言20世纪60年代中期,英国教育科学研究部在对工业部门广泛调查的基础上,发表了《关于摩擦学(T曲0109y)教育和研究报告》,首次提出将摩擦学作为一门独立的边缘学科加强研究和教育工作。
这对于促进国民经济持续发展具有战略意义,随即得到世界各国的认同和重视。
此后,摩擦学得到迅速的发展,并成为机械、材料等学科中活跃的研究领域之一噱由于多方面的原因,我国摩擦学的发展起步较晚。
虽然在20世纪50年代,为数不多的学者进行过磨损和润滑研究,但是作为一门独立的学科从事摩擦学研究和教育工作是在20世纪80年代以后才逐步开展起来。
1979年中国机械工程学会摩擦学分会成立。
经过过去25年来各方面的共同努力,我国摩擦学学科取得了突飞猛进的发展。
摩擦学知识得到了广泛的普及;形成了一支从事摩擦学研究的专门队伍,包括长江学者、杰出青年基金获得者等中青年学术骨干;建立了国家级或者省部级的研究基地;创办了专业学术刊物,出版了10余部学术专著和科技图书;在相关的学会组织推动下,召开了各种全国或地区性学术会议,讨论和交流研究成果;国际学术活动频繁,在我国召开多次国际学术会议,并成功举办了第一届亚洲摩擦学国际会议。
同时,我国学者也活跃在国际摩擦学学术舞台。
摩擦学的研究进展与应用
摩擦学的研究进展与应用摩擦学,顾名思义,是指研究物体相对运动过程中摩擦现象的科学领域。
作为一门交叉学科,摩擦学涵盖了材料科学、机械工程、物理学等多个学科,具有广泛的研究领域和应用前景。
在工业生产和科技创新中,摩擦学的研究和应用已经发挥了重要的作用。
一、摩擦学的研究进展近年来,摩擦学的研究进展主要体现在以下几个方面:1.微观结构分析摩擦过程中,物体之间的接触面发生变化,直接影响到摩擦力的大小和方向。
因此,微观结构分析成为了研究摩擦的重要方向。
近年来,随着原子力显微镜、扫描电镜等成像技术的发展,科学家们开始研究材料表面的微观结构和化学成分,以深入探究摩擦现象的本质。
2.新材料研发材料的摩擦特性会直接影响到机械系统的运行效率和寿命。
因此,新材料的研发是摩擦学研究的重点之一。
目前,科学家们正在研发一些摩擦系数低、耐磨性好的材料,如纳米多孔材料、纤维素基材料等,而这些新材料的研发也将为未来的机械系统和工业生产带来新的突破。
3.智能化设计为了有效降低机械系统的摩擦损失,人们开始尝试利用智能化设计技术来优化摩擦部件的结构和工作方式。
例如,通过微电机和传感器的结合,可以精确控制机械部件的运动状态,从而实现节能减排和延长机械寿命的效果。
二、摩擦学的应用摩擦学的研究成果主要应用于以下几个领域:1.航天器设计摩擦学是航天器设计中不可缺少的一部分。
在卫星和火箭的发射、运行和着陆过程中,摩擦力和热量的影响都将直接影响到卫星的运行效率和寿命。
因此,航天器的轨迹控制和气动热力学参数分析等都需要摩擦学的支持。
2.汽车工业在汽车工业中,摩擦学的应用主要体现在发动机和变速箱等关键部件的设计和制造中。
通过对发动机和变速箱的摩擦特性的研究和优化,可以提高汽车的运行效率和节省燃油。
3.机械加工在机械加工中,摩擦学也发挥着重要的作用。
通过研究和优化切削和磨削等工艺的摩擦特性,可以改善加工过程中的加工精度和工件表面质量。
4.生物医学生物医学领域中,摩擦学主要应用于人工关节等医疗器械的设计和制造。
摩擦学及其在材料科学中的应用研究
摩擦学及其在材料科学中的应用研究一、引言摩擦学是力学的一个重要分支,研究物体在相对运动或相对静止时,所产生的摩擦力及其机理、运动学和动力学规律、摩擦副面材料的磨损性能等问题。
摩擦学与材料科学密切相关,是材料加工和使用的重要基础知识。
本文就摩擦学的研究现状以及在材料科学中的应用研究展开介绍。
二、摩擦学的研究现状摩擦学是力学研究的一个重要分支。
它是研究物体在相对运动或相对静止时所产生的摩擦力及其机理、运动学和动力学规律、摩擦副面材料的磨损性能等问题的学科。
从分子、微观、宏观三个不同角度对摩擦学进行了研究。
1.分子层面研究随着科学技术的不断进步,分子层面研究逐渐成为摩擦学领域的研究热点。
分子层面的研究表明,物体之间的摩擦力有很大程度上是由于不同物体表面之间的吸附作用而产生的。
此外,摩擦力的大小与物体表面质量、表面形貌等因素密切相关。
在分子层面的研究中,纳米技术和表面科学等技术的发展也为探究和设计不同材料的摩擦性能提供了很好的手段。
2.微观层面研究微观层面研究通常研究单个摩擦副面材料在摩擦过程中的磨损机理。
包括磨削、疲劳裂纹、氧化等诸多机理。
其中,氧化机理是摩擦头高温区内发生的氧化反应造成的磨损现象。
针对这些研究,通常使用扫描电镜、拉曼光谱仪等技术手段进行观察和分析。
3.宏观层面研究宏观层面研究是通过对大型试验设备进行摩擦实验,对不同摩擦副面材料间的摩擦力进行测试,分析摩擦力的大小及其影响因素。
在这方面的研究中,摩擦副面材料的硬度、温度、润滑条件等是研究的重要指标。
三、摩擦学在材料科学中的应用研究由于摩擦学的研究涉及很多材料科学问题,因此,在材料科学中应用摩擦学进行研究,可以帮助人们更好地理解和掌握材料的摩擦性能。
同时也能发现材料中存在的问题,并为材料的改进提供依据。
1.材料的磨损机制研究摩擦学的研究可揭示不同材料间的磨损机制,当对不同材料间的磨损机制有较全面的认识后,可通过改变材料结构和性能,优化材料,提高材料的防磨性能。
sem在摩擦磨损中的应用
sem在摩擦磨损中的应用SEM在摩擦磨损中的应用随着工业发展的不断推进,摩擦磨损对设备运行寿命的影响越来越明显。
因此,科学家们通过不断研究,设计出了各种各样的方法来减少摩擦磨损。
其中一种重要的方法是使用扫描电子显微镜(SEM)。
本文将详细介绍SEM在摩擦磨损中的应用。
一、SEM的原理与技术SEM是一种常用的表面分析技术,它利用电子束在样品表面扫描时产生的相互作用来获得各种表面形态特征和化学成份信息。
它可以提供高分辨率的二维和三维形态图像,并且可以用于非导体和固体表面的分析。
通过这种技术,可以观察到摩擦磨损表面的微观结构,从而研究摩擦磨损机制。
二、SEM在摩擦磨损的分析中的应用1. 观察磨损表面形貌SEM可以有效地观察和分析摩擦磨损表面的微观形貌。
在观察磨损表面时,可以使用不同的SEM像差校正技术来提高成像质量。
此外,使用SEM可以在不改变样品结构的情况下,对摩擦磨损表面进行形态特征分析、形貌表征和亚微米级三维表面重建。
2. 观察磨粒的相互作用SEM还可以用来观察磨粒之间的相互作用,以及它们与磨损表面的相互作用。
这种相互作用在传统的磨损理论中被广泛认为是磨损机制的主要成因之一,因此它的研究对于了解磨损机理和制定相应的防护措施至关重要。
3. 分析化学成分SEM还可以进行元素分析和化学成分分析。
通过SEM,在磨损表面产生的元素成分不同,可以推断出摩擦磨损机制和局部热处理的类型。
通过SEM分析,在磨损的不同区域分析成分的变化,可以推断出摩擦磨损的机理。
4. 分析磨损表面的热处理SEM技术还可以应用于分析材料表面的热处理特性,如表面相变、应力释放等。
这些特性对材料的摩擦磨损性能有很大影响。
通过SEM技术,可以进一步研究热处理对摩擦磨损表面的影响,并开发新的增强材料和摩擦磨损降低技术。
结论SEM技术在摩擦磨损中的应用非常广泛,可以用于表面形貌分析、相互作用分析、化学成分分析和热处理分析。
这种技术可以帮助我们更好地了解摩擦磨损的机理,研制新的防护措施和降低材料的摩擦磨损率。
材料摩擦磨损分子动力学模拟的研究进展
材料摩擦磨损分子动力学模拟的研究进展柳培;韩秀丽;孙东立;王清【摘要】With the development of new technologies and the increasing complexity of service environments, the traditional experimental researches cannot address the instrinsic mechanism of frictional wear. Therefore, numerical simulation has been used to study the friction and wear behaviors. Particularly, with the ongoing development of atomic-scale theory model and computational capacity, molecular dynamics method has been verified as an effective toolto study the friction and wear.This review article provides a comprehensive summary of the recent progress in molecular dynamics simulation in the friction and wear of materials. Firstly, the review describes the establishment of potential energy function in the molecular dynamic simulation. Secondly, three contact models of friction and wear used in the molecular dynamics simulation are introduced. Thirdly, the review focuses on the effect of parameters, including contact area, normal load, temperature, velocity and crystallographic orientation, on the frictional wear of materials in the perspective of molecular dynamic simulation. Finally, the review identifies a number of key remaining problems to be addressed in the molecular dynamics simulation in the frictional wear process, and presents an outlook for this research field.%随着新技术的发展以及材料服役环境的日益复杂化,传统的试验研究已经不能满足人们对摩擦磨损的认识需求,因此必须借助数值模拟方法来研究材料的摩擦磨损行为.特别是随着近年来原子尺度理论模型的不断完善和计算机运算能力的不断提高,分子动力学模拟已经成为研究材料摩擦磨损行为和机制的重要方法.本文详细综述了材料摩擦磨损分子动力学模拟的国内外研究现状.首先阐述了分子动力学模拟中势能函数的建立;其次介绍了材料摩擦磨损分子动力学模拟常用的接触模型;然后概述了采用分子动力学模拟方法研究接触面积、载荷、温度、速度和晶体取向等因素对材料摩擦磨损的影响;最后指出了目前材料摩擦磨损分子动力学模拟中存在的一些问题,并对未来发展方向进行了展望.【期刊名称】《材料科学与工艺》【年(卷),期】2017(025)003【总页数】9页(P26-34)【关键词】摩擦磨损;分子动力学;势能函数;接触模型;晶体取向【作者】柳培;韩秀丽;孙东立;王清【作者单位】哈尔滨工业大学材料科学与工程学院,哈尔滨150001;哈尔滨工业大学材料科学与工程学院,哈尔滨150001;哈尔滨工业大学材料科学与工程学院,哈尔滨150001;哈尔滨工业大学材料科学与工程学院,哈尔滨150001【正文语种】中文【中图分类】TH117.1据统计,每年因摩擦磨损造成的经济损失约占一个工业化国家GDP的1%~2%.正因为摩擦磨损与生产和经济密切联系,关于材料摩擦磨损的研究一直是当今多学科的研究热点[1-2].长期以来,关于摩擦磨损的研究大多是通过试验进行的,主要是通过模拟实际工况条件,获得摩擦磨损的特征和变化,从磨损产物、磨损表面状态、摩擦磨损对组织结构的影响等方面来研究各种摩擦磨损的机制和原理[3-5].但这种试验研究不仅耗费大量的人力、物力和财力,还有以下缺点:1)摩擦磨损是在多因素耦合作用下发生的,任何单一因素对摩擦行为的影响都可能受其他因素的干涉.因此,试验研究很难筛选出影响摩擦磨损的主要因素并定量确定单一因素对摩擦磨损的影响规律.2)摩擦磨损是一个动态过程,但试验研究很难观察到摩擦磨损过程中的动态变化过程,如位错的移动、应力应变的变化、表层和亚表层的变化等.3)摩擦磨损实际上是材料表面原子之间键合的破坏,试验研究很难从原子微观角度来揭示摩擦磨损的特性.随着计算机技术的发展,数值模拟已经成为摩擦学领域研究常用的研究手段[6].作为主要的数值模拟方法之一,分子动力学模拟方法可以通过构造比较理想的模型,定量地再现真实固体中所发生的动态过程,能够很好地弥补实际实验方法的缺陷,还可以根据研究需要轻易地改变周围环境条件和材料的性质.因此,分子动力学模拟已成为摩擦磨损研究的重要手段.目前已经成功应用于超高精密加工、微纳米元器件等研究领域.本文详细综述了材料摩擦磨损分子动力学模拟的最新研究进展,旨在为材料摩擦磨损研究提供有效方法,进而实现材料摩擦磨损性能的改善和减摩抗磨材料的设计.文章结构如下:第1节介绍了分子动力学模拟中势能函数的建立;第2节综述了材料摩擦磨损分子动力学模拟常用的接触模型;第3节重点归纳了接触面积、载荷、温度、速度和晶体取向等因素对材料摩擦磨损分子动力学模拟结果的影响;第4节指出了目前采用分子动力学模拟方法对材料摩擦磨损进行研究的过程中存在的一些问题,并对未来发展方向进行了初步展望.分子动力学模拟方法的原理是通过原子间的相互作用势,按照经典牛顿运动定律求出原子轨迹及其演化过程.因此,建立合适的势能函数是进行材料摩擦磨损分子动力学模拟的第一步,也是最关键一步.势能函数的正确与否,直接关系到模拟结果的精确性和可靠性.1.1 经典对势函数经典对势认为原子之间的相互作用是两两之间的作用,与其他粒子无关.这类函数的特点是虽然不能充分反映材料的一些真实性能(弹性模量或者热力学性质),但是能够反映粒子的一般运动轨迹.这类对势函数的典型代表就是L-J势和Morse 势.L-J势函数的表达式为[7]式中:VLJ为系统势能;ε为能量参数;σ为长度参数;r为2个原子之间的距离.在该表达式中,第1项代表短程泡利排斥力,第2项代表范德瓦尔兹相互吸引力. L-J势能函数可以用于描述稀有气体之间的相互作用,同样可以用于描述一些其他材料.关于材料摩擦学分子动力学模拟的很多显著发现都是采用L-J势.例如,Luan等[8]采用L-J势建立摩擦模型,预测了适用于宏观摩擦的连续介质模型并不适用于纳观尺度摩擦.Cieplak等[9]采用L-J势建立模型,研究了吸附单层对摩擦的效果.此外当摩擦体系中摩擦副(基体)和对磨材料(压头)的性质不同,且无严重磨损的情况下,L-J势可以很好地描述基体和压头之间的相互作用势[10].这可以帮助绝大多数的摩擦磨损模拟体系在保证模拟结果精确的情况下,减小运行时间,提高运行效率.对势除了前面提到的 L-J势之外,还有Morse势.Morse势是在用量子力学解决双原子分子震动谱时给出的分析式.值得指出的是,L-J势和Morse势的参数可直接由原子之间的平衡距离及结合能来拟合获得.因此这2种势函数对于单质和一些简单的合金材料均适用.1.2 多体势函数简单对势函数并不能充分反映多原子体系材料的一些真实性能,因此,学者们一直致力于建立能够更准确描述多原子体系相互作用的多体势函数.常用于摩擦磨损的材料主要包含3种:金属晶体,离子晶体和共价晶体.因为组成这3种晶体的键的性质不同,因此其势能函数的建立方法也不尽相同,下面分开讨论这3种材料势能函数的建立.1.2.1 金属晶体的势能函数对于金属晶体的势函数而言,目前应用最广泛的是BASKES和DAW在1984年提出的嵌入原子法(EAM)理论[7],该理论的基本思想就是将金属晶体总能分为2个部分:一部分就是晶体点阵上原子核之间的相互作用,另一部分是原子核嵌入在电子云背景中的嵌入能.可以表示为式中:Etot为系统的总势能;F表示把原子i嵌入到密度为ρi背景电子云中时的嵌入能;ρi表示原子i处的电子云密度;Φ是原子i和j之间的相互作用对势,rij 是原子i和j之间的距离.式(2)中,右边第1项是原子i在周围原子叠加电子云中的嵌入能,第2项是原子核间的对势能.上式对于纯金属和合金材料均适用,只是纯金属和合金材料的两体势函数的表达式不同.EAM势能函数已经在Pt、Au、Cu、Al和Ag等金属的摩擦磨损分子动力学模拟研究中得到了成功的应用,得到了很多金属的原子尺度摩擦现象,例如:犁沟、切削、冷焊和黏滑[11-13].EAM势函数的建立是基于电子密度球对称分布.但是这种假设在一些情形下与实际情况偏离,例如d电子轨道不满的过渡族(Fe,Co,Ni)元素,金刚石结构的半导体元素及轨道杂化的体系.为了将EAM推广到共价键和过渡金属材料,必须考虑电子云的非球形对称.于是,Baskes等[14]提出了修正型嵌入原子法(MEAM).该方法是在基体电子密度求和中引入原子电子密度分布的角度依赖因素.1.2.2 共价晶体的势能函数用于摩擦磨损的另一大类材料是共价晶体.例如SiO2、石墨、金刚石、类金刚石碳和一些氧化物.共价键有2个主要的特征:首先是结合能非常强,其次是有一个显著的方向性.为了准确反映这2个特征,研究者们建立了一种由键长、键角和扭曲度确定的势能函数.这种势能函数的典型代表是S-W模型,该模型提出最初是为了模拟类金刚石结构的Si[15].该模型能够简化原子间相互作用,但是该模型的缺点是只允许存在一种平衡的结构.为克服这一缺点,人们提出了键序势函数,通过引进一个键序参数来评价不同键的强度,因此一个势能函数可以同时描述含不同键合的平衡结构.但是,因为考虑了更多的参数,所以计算量大大增加.键序势能函数的代表是Tersoff势能函数,REBO势能函数,ReaxFF势能函数.很多共价晶体摩擦的分子动力学模拟都运用了上述势能函数.例如:Li等[16]采用Tersoff函数来描述单晶硅的相互作用势,利用分子动力学模拟方法研究了金刚石压头的切削速度对单晶硅亚表面和表面损伤的影响.Gao等[17]用REBO势能函数描述了氢终端金刚石的势能函数,研究了温度的变化对金刚石-金刚石摩擦磨损的影响.Wen等[18]采用基于ReaxFF势能函数的分子动力学模拟方法研究了水环境中Si/SiO2界面处Si的摩擦磨损机制.1.2.3 离子晶体的势能函数相比于金属晶体和共价晶体而言,对离子晶体的摩擦磨损分子动力学研究较少.离子晶体中包含2个或者更多的反向带电离子.为了对这些离子键进行模型化,需要用长程库仑力来描述原子间相互作用.但是,长程相互作用大大增加了计算时间,这就限制了分子动力学模拟的粒子数目.尽管对离子晶体摩擦磨损的直接模拟很少,但是已经有一些尝试,例如,Wyder等[19]将每一个离子抽象成由一个正离子和周围的负离子网组成,将短程力和长程力相结合来描述KBr的势函数,研究了KBr(100)表面的黏滑摩擦现象.值得说明的是,目前针对一些晶体结构相对简单的一元或者二元化合物的势能函数已经有了很多的报道,而目前针对一些结构相对复杂的三元化合物势能函数鲜有报道.随着新技术的发展,一些具有复杂晶体结构的三元化合物,例如Ti2AlN、Ti3SiC2等,已经成功用于制备抗磨减摩的薄膜材料[20]、陶瓷材料[21]和复合材料[3].因此,为了更好地理解该类化合物的抗磨减摩机制,对该类复杂化合物势能函数的建立也必定是未来的研究方向.摩擦磨损是2种材料之间的接触行为,因此建立合适的摩擦磨损分子动力学接触模型是获得正确和可靠的模拟结果的前提.目前用于摩擦磨损分子动力学的接触模型主要有平面-平面接触、粗糙峰-平面接触、粗糙峰-单峰接触3种.2.1 平面-平面接触模型图1给出了平面-平面接触模型的示意图.在该模型中,2个原子尺度平面在一定的载荷作用下以速度v彼此滑动.在整个模拟过程中,2个接触平面始终保持全部接触.Jeng等[22]建立了面心立方(111)晶面的平面-平面接触模型,采用分子动力学模拟的方法研究了“硬-软”、“软-软”2种接触体系的摩擦行为.Kartikeyan等[23]建立了Fe-Cu的平面-平面接触模型,采用分子动力学模拟方法研究了滑移速度、晶体学取向和晶体缺陷对摩擦副摩擦学特性的影响. 2.2 粗糙峰-平面接触图2给出了粗糙峰-平面接触模型的示意图.在该模型中,一个粗糙峰在一定的载荷作用下以速度v划过平面.粗糙峰可以有不同的尺寸和形状(球形、半球形、棱柱形、圆柱形).在整个模拟过程中,粗糙峰与平面始终保持接触.在很多研究微纳米器件中的超精密切削的报道中,均采用粗糙峰-平面接触模型.例如,Zhang等[24]采用分子动力学方法模拟金刚石压头在铜基体表面的滑动过程来研究纳米尺度的摩擦磨损规律.Cho等[13]建立了Ni压头与Cu表面的接触模型,采用分子动力学方法研究了原子尺度滑移中的黏滑现象.2.3 粗糙峰-粗糙峰接触图3给出了粗糙峰-粗糙峰接触模型的示意图.在该模型中,一个粗糙峰在一定的载荷作用下以速度v划过另一个粗糙峰.粗糙峰可以有不同的尺寸和形状(球形、半球形、棱柱形、圆柱形).在整个模拟过程中,只测试2个粗糙峰接触时的摩擦学特征.Stone等[25]建立了2个球形纳米Ni颗粒的接触模型,采用分子动力学方法研究了球形纳米Ni颗粒相互滑动过程中的摩擦行为.Luan等[26]建立了粗糙峰-粗糙峰接触模型,采用分子动力学方法研究了压头几何结构对黏着接触和非黏着接触过程中的接触力学.从以上分析可以看出,研究的材料体系不同,所采用的接触模型也不尽相同.一般来说,在研究纳米尺度摩擦磨损的时候,3种接触模型均适用;而在研究微纳米器件中的超精密切削时,多采用粗糙峰-平面接触模型.值得指出的是,因为宏观材料摩擦磨损可以看做是许多不同尺度、不同取向的粗糙峰彼此相互作用的结果,所以粗糙峰-粗糙峰接触模型被认为最能真实反映宏观尺度的摩擦磨损.但目前最大的挑战就是粗糙峰的尺寸和数量是多少的时候才能真正反映真实宏观尺寸的表面.这也必定是未来材料摩擦磨损分子动力学研究的重点方向之一.影响材料摩擦磨损的主要因素包括接触面积、载荷、温度、速度和晶体取向等因素.在实际的试验中,这些因素耦合作用,从而使材料摩擦磨损呈现复杂性.而分子动力学模拟法则可以确定单一因素对材料摩擦磨损的影响,因此本小节的每一部分都将对每个单一因素对材料摩擦磨损的影响进行综述.3.1 接触面积根据宏观摩擦定律,摩擦力F与接触面积比Amacro无关.但后来学者们证明,宏观尺度的接触是粗糙的,接触表面含有大量的粗糙峰接触,真实接触面积∑Aasp 远比Amacro要小很多,摩擦力与真实接触面积成线性关系.目前采用分子动力学模拟的方法对接触面积对材料摩擦磨损的影响的报道已经有很多,但是尚没有形成统一的结论.一些材料摩擦磨损分子动力学模拟的研究表明,摩擦力与接触面积成正比.例如Gao等[27]建立了金刚石的单峰摩擦分子动力学模型,模拟结果表明在无黏着和有黏着的情况下,摩擦力F与粗糙峰接触面积Aasp均成正比.Mo等[28]建立了多峰纳米接触摩擦分子动力学模型,研究了氢终端的无定形碳探针与氢终端的金刚石之间的摩擦特性,他们定义真实接触面积Areal=NatAat,Nat是界面处有化学相互作用的原子数,Aat是每个原子的平均表面积.Aasp为接触边界.研究结果表明,摩擦力F与粗糙峰接触面积Aasp不成线性关系,而与真实接触面积Areal成正比.值得说明的是,虽然Gao和Mo的研究结果均表明摩擦力与接触面积成正比,但二者对接触面积的定义不同,此外二者运用的理论也不同.Gao等建立的单峰模型中单峰模型可以用连续介质力学理论描述;而Mo等建立的是多峰纳米接触模型,此时连续介质力学并不适用,需要用原子模型进行解释.另一些材料摩擦磨损分子动力学模拟研究表明摩擦力与接触面积无关.一些学者们在石墨[29]、MoS2[30]等的摩擦磨损分子动力学模拟过程中均发现了同一现象,如图4所示,当原子级光滑的理想晶体表面间非公度接触时(即晶格完全适配)时呈现出一种超滑的现象,此时摩擦力几乎为零,因此摩擦力与接触面积无关.而当其为公度接触时,摩擦力随着接触面积的增大而增加.造成这种“超滑”现象的原因是,在非公度接触界面上,每个原子受到的剪切应力方向是不同的,但整体而言,这些力几乎可以相互抵消,因此呈现超滑现象.从以上的分析可以看出,接触面积对材料摩擦磨损的影响十分复杂,首先是对接触面积的定义还不统一,所以不同的分子动力学模拟的模型就有着不同的模拟结果;其次,摩擦力与接触面积之间的关系还取决于其他影响因素,例如表面公度.3.2 载荷宏观的摩擦定律表明摩擦力为摩擦系数μ与载荷N的乘积,即F=μN.但是当材料摩擦磨损到达原子尺度,黏着变得明显,影响载荷和摩擦力之间关系的因素也增多,因此摩擦力和载荷之间的关系将呈现出明显的复杂性.很多材料摩擦磨损分子动力学模拟研究发现摩擦力与法向载荷之间成近似的线性关系.Fille⁃ter等[31]采用分子动力学模拟的方法研究了SiC基体外延沉积单层和双层石墨烯薄膜的摩擦行为,研究表明摩擦力与载荷成近似的线性关系.Brukman等[17]采用原子力显微镜(AFM)和分子动力学模拟相结合的方法研究金刚石的单峰摩擦行为.研究结果同样表明,摩擦力与载荷之间成近似的线性关系.Xu等[10]采用分子动力学模拟的方法对半圆球的金刚石在γ-TiAl基体中的纳米压痕和摩擦磨损行为进行研究,如图5所示,金刚石压头在滑行过程中的摩擦力和磨损率与载荷之间呈线性关系.但更多的摩擦磨损分子动力学模拟研究发现摩擦力与法向载荷之间是非线性关系.如图6所示,Mo等[28]的分子动力学模拟研究发现当氢终端的无定形碳探针与氢终端的金刚石之间无黏着的时候,摩擦力与法向载荷之间呈线性关系,而有较强的黏着力的时候,摩擦力与法向载荷之间呈非线性关系.Van Wijk等[32]采用分子动力学模拟方法研究了石墨烯与石墨之间的摩擦特征发现当表面之间为公度接触时,摩擦力随载荷线性增大,而非公度接触时,在低载荷下摩擦力变化不大,高载荷下摩擦力与载荷呈指数关系.从以上的分析可以看出,摩擦力与载荷之间的关系主要受材料的本征性质、接触表面间黏附作用、表面接触方式以及塑性变形等的影响,因此,不同的材料以及不同的模拟模型得出的结论也是不一致的.3.3 温度温度能够对原子的热动能产生明显影响,因此温度对材料的摩擦磨损也会产生显著的作用.受实验设备所限,材料在极端温度(低温、高温)下的摩擦磨损特性尚缺乏系统研究.但是在分子动力学模拟中,可以很容易地控制材料模拟系统中的温度,所以分子动力学方法能够很好地研究温度对材料摩擦磨损的影响.目前大部分的材料摩擦磨损分子动力学研究表明,随着温度的升高,摩擦力会显著降低.例如,Harrison等[33]通过分子动力学模拟的方法研究了温度对氢终端的金刚石接触表面间摩擦的影响,研究结果表明随着温度的升高,摩擦力降低.Brukman等[17]采用分子动力学模拟的方法研究了温度在24~225 K内变化时对金刚石单峰摩擦行为的影响,研究结果表明,随着温度的升高,摩擦力降低. 但也有一些研究表明系统温度的升高并不会降低摩擦,例如Cook等[34]采用分子动力学模拟方法研究了多壁碳纳米管层间的摩擦行为,研究结果表明,随着温度的升高,层间原子发生非接触碰撞的频率增加,因此增加了层间摩擦力.此外还有一些材料摩擦磨损分子动力学模拟报道表明材料的摩擦与接触表面的黏附作用和公度有关.Spijker等[35]采用分子动力学模拟的方法研究了原子尺度下温度与干摩擦之间的关系.研究结果如图7所示,接触表面为公度的情况下,摩擦力随着温度的升高而降低,但是当接触表面为非公度的情况下,摩擦力随着温度的升高而升高,这主要是因为表面原子的热震荡所致.3.4 相对速度对于大多数的摩擦过程而言,相对滑移可引起表面层或者亚表面层发热、变形、化学变化甚至磨损,因此,不同的相对速度会对摩擦行为产生显著影响.一些摩擦磨损分子动力学模拟研究表明,随着相对速度的增加,摩擦力增大,磨损率增加.例如Li等[11]采用分子动力学方法研究了Au(111)表面的摩擦特性,发现当相对速度低于某一临界值时,摩擦力随着相对速度的增加而增加,当相对速度超过该临界值时,摩擦力不再随温度的增加而变化.Li等[16]采用分子动力学模拟法研究了金刚石压头的切削速度对单晶硅的切削磨损机制.如图8所示,当切削速度低于180 m/s的时候,高的切削速度导致一个更大的磨损,降低了亚表面的损伤.但是当切削速度高于180 m/s时,亚表面损伤厚度增加,因为高的切削速度导致了切削力和温度的提高,加速了位错的形核.另外有一些摩擦磨损分子动力学模拟研究表明,随着相对速度的增加,摩擦力降低,磨损率下降.Sørensen等[36]采用分子动力学方法模拟了Cu探针沿着晶体Cu表面的黏滑现象,研究结果如图9所示,相对速度的增加会使得摩擦力下降.这主要是因为当相对速度很大的时候,变形能没有得到充分的释放,所以为接下来的滑移提供了一些能量,从而降低摩擦.Hu等[37]采用分子动力学模拟的方法研究了滑移表面之间加入Cu纳米颗粒的加入对固体表面摩擦特性的影响,研究结果表明随着相对速度的增加,摩擦力降低.这主要是因为纳米颗粒的加入能够在固体表面形成一个过渡层所致.3.5 晶体取向摩擦现象,归根到底属于2种材料之间的接触力学行为,因此基体的晶体结构、表面原子结构的取向,以及压头与基体之间的取向均会对摩擦产生显著的影响.分子动力学模拟方法在研究晶体取向对摩擦磨损的影响方面有着很大的优势,因此很多学者开展了这方面的研究.不同的晶体结构,摩擦特性会有明显的不同.例如一些自润滑材料,如石墨、MoS2和无定形碳薄膜等,其自润滑的本质就是其层状的晶体结构.Matsushita等[38]采用分子动力学研究了干净石墨表面之间的原子尺度摩擦,模拟结果表明石墨呈现出在原子尺度黏滑移动和低的摩擦系数.石墨低的摩擦系数的原子尺度起源不仅仅是层与层之间的弱的结合作用,而是因为石墨的蜂巢结构.低的摩擦系数来源于薄片之间2种不同的晶格位置之间力的抵消.Miyamoto等[39]用联合量子化学和经典分子动力学的方法研究了MoS2的润滑机制.他们发现2个S层之间的主导相互作用力是库伦排斥力,直接阻止了2个MoS2层不会靠的太近.也就是MoS2层有一个好的阻止载荷的能力.Ma等[40]采用分子动力学方法研究了无。
微观摩擦学研究进展
微观摩擦学研究进展微观摩擦学是研究微观界面接触、滑动和擦拭现象的一门学科。
在材料工程、机械工程、生物学等领域中有着广泛的应用。
本文将介绍近年来微观摩擦学研究的进展。
首先,随着纳米科技的发展,研究人员开始关注纳米级摩擦学现象。
研究表明,与宏观世界相比,纳米级摩擦表现出更为复杂的现象,如摩擦系数的非线性变化、胶着现象等。
因此,研究纳米级摩擦机制成为当前微观摩擦学的热点。
其次,研究人员开始尝试结合理论研究和实验验证,以解释微观摩擦的本质。
理论模型能够描述接触面的几何形状、摩擦系数的大小、摩擦面的物理化学性质等因素对摩擦现象的影响。
实验验证则能够验证理论模型的正确性。
另外,研究人员也关注到运动速度对摩擦系数的影响。
实验研究表明,低速下摩擦系数较小,高速下则呈现出非线性增长趋势。
理论上,这是由于在低速下,摩擦界面的接触处存在更多的接触点,导致相对滑动难度较小,从而摩擦系数较小。
而在高速下,摩擦界面接触点的数量减少,接触点发生相对滑动所需的能耗增加,导致摩擦系数呈现非线性增长。
最后,研究人员还在探索微观摩擦在生物学中的应用。
研究发现,细胞间的机械摩擦是维持正常的细胞功能和生存所必需的。
而研究细胞内部和细胞外部的摩擦系数、生物分子和细胞间的接触力等生物摩擦学现象也成为了研究的一个重点。
综上所述,微观摩擦学是一个不断发展的学科,它的研究不仅能够深化人们对表面摩擦现象的理解,而且能够为材料界、生物界等其他学科提供有益的研究思路和方法。
除了以上提到的研究方向,微观摩擦学还涉及到材料表面的改性、表面纳米结构的制备等方面。
例如,通过表面微结构的控制,可以实现表面自清洁、抗菌、防伪等性能的提升。
这些应用不仅有助于提高材料的性能,还具有广阔的市场前景。
微观摩擦学的应用不仅局限于材料与工程领域,在生物学领域也有重要应用。
研究表明,细胞的内部结构是由微管、微丝等组成的,它们之间的摩擦力对于细胞的形态、机能等方面有着重要的影响。
摩擦学与表面工程的研究进展
摩擦学与表面工程的研究进展近年来,摩擦学和表面工程一直是热门的研究领域。
摩擦学和表面工程的研究对于提高材料的抗磨性、减少材料的摩擦系数以及改善材料表面的反射率等方面具有很大的意义。
本文将探讨摩擦学和表面工程的研究进展。
一、摩擦学的研究进展摩擦学作为一门交叉学科,涉及材料科学、机械工程学、化学、物理等学科,针对摩擦与磨损现象进行研究。
当前,摩擦学的研究重点主要集中在以下几个方面:1. 摩擦学机理研究随着新材料的不断涌现,一些材料的摩擦学机理并不十分清楚。
因此,摩擦学研究者们一直在探究各种材料的摩擦学机理。
例如,对于复杂制造材料的摩擦学研究,研究人员首先需要了解该材料的结构特征,以确定摩擦起因,并寻找有效的摩擦降低方法。
2. 摩擦学在生物医学中的应用研究摩擦学在生物医学中具有广泛的应用前景。
如何降低人体植入物与人体组织之间的摩擦和磨损,提高其使用寿命,是摩擦学在生物医学中研究的重点。
另外,利用微机电系统等技术,可以研究组织细胞移动等现象,并应用于神经细胞的定向生长等方面的研究。
3. 摩擦学在能源领域中的研究摩擦学在能源领域中也具有广泛的应用。
例如,汽车发动机、风力涡轮机等设备的摩擦学研究,可以帮助优化设备的性能,提高能源利用效率。
此外,基于微纳尺度的表面结构研究,可以提高锂离子电池的充电速度和循环寿命。
二、表面工程的研究进展表面工程是比较新的交叉学科,其应用领域与摩擦学相似,也是注重材料表面结构的调控和研究。
当前,表面工程的研究重点主要集中在以下几个方面:1. 表面工程的材料特性研究对于不同材料表面的特性研究,是表面工程研究的基础。
例如,基于光学原理的表面光谱学研究,在显示器、LED等领域具有非常广泛的应用。
此外,表面电化学性质研究、表面微纳制造和表面涂覆等方面的研究,也是表面工程研究的热点。
2. 表面工程在生物医学中的应用研究表面工程在生物医学中的应用主要涉及到植入材料、医疗器械表面等方面。
例如,纳米表面结构研究可以帮助控制细胞生长和细胞分化方向,从而用于控制组织生长和重建。
超滑和界面摩擦及耗散过程――关于摩擦机理微观研究的思考与展望
超滑和界面摩擦及耗散过程――关于摩擦机理微观研究的思考与展望超滑和界面摩擦及耗散过程――关于摩擦机理微观研究的思考与展望摩擦是工程和物理学中普遍存在的现象,而对其机理的深入研究一直是科学家们关注的热点。
近年来随着纳米技术的发展和先进材料的应用,尤其是超材料的研究,对于摩擦机理的微观研究成为了一个热门的研究方向。
本文探讨了超滑和界面摩擦及耗散过程的相关机理,并展望了未来的研究发展方向。
超滑是指某些材料在接触过程中会形成“自润滑”状态,表面间几乎不会有任何摩擦。
这种现象在实际生产中已经得到了广泛的应用,比如在机器零件的制造中加入一些超滑材料能大大降低摩擦损失。
超滑现象的产生是由于材料表面的“平滑性”和“疏水性”共同作用的结果。
具体来说,三维表面形貌的具体形式、表面化学性质以及水分子与表面的相互作用都会影响超滑能力。
因此,超滑机理的研究必须从表面结构和表面相互作用的微观层面出发,探讨其影响因素和物理本质。
与超滑不同的是,摩擦机制的发生需要两个表面之间进行接触,沿接触面的受力分析十分重要。
弗朗肯汉姆所提出的弹性接触理论成功地解释了正常接触下的摩擦问题。
然而,在微观尺度下,界面的形态不规则,并且实际接触区域远小于表面总面积。
因此,很难用简单的理论来描述摩擦力的来源和变化。
同时,摩擦力的产生还与材料表面特性和材料应力状态有关。
随着扫描探针显微镜、粒子法和数值模拟方法的发展,微观界面和表面形貌的研究逐渐得到深入,这也为摩擦机制的微观理论提供了一定的基础。
另一个涉及摩擦的重要问题是耗散过程,即摩擦力的转化和消耗。
在材料切削加工等实际应用中,很多能量都会被消耗,导致材料表面出现变形、撕裂、磨损等现象。
微观上,摩擦的能量转化和消耗涉及到界面的各种物理力学和化学过程,如界面摩擦加热、表面变形、声子散射和电子互作用等。
这些过程不仅影响材料的疲劳和寿命,而且对于高速和高功率应用也可能引起安全问题。
因此,研究耗散过程对于科研和工程实践都具有重要意义。
MEMS中的摩擦学研究及发展趋势
MEMS中的摩擦学研究及发展趋势
李洲洋;陈国定
【期刊名称】《润滑与密封》
【年(卷),期】2005(000)004
【摘要】对近年国内外MEMS摩擦学研究的新进展作了综述,介绍了MEMS系统的纳米摩擦学特性,讨论了包括环境条件、材料处理、表面改性、固体薄膜润滑、分子超薄膜润滑等在解决MEMS摩擦和润滑问题上的研究状况,并提出了当前相关研究中所遇到的问题,及今后MEMS摩擦学发展的方向.
【总页数】8页(P180-186,204)
【作者】李洲洋;陈国定
【作者单位】西北工业大学机电学院,西安,710072;西北工业大学机电学院,西安,710072
【正文语种】中文
【中图分类】TH117
【相关文献】
1.生物油在缸套一活塞环往复运动摩擦副中的摩擦学特性研究 [J], 俞辉强;徐玉福;崔征;魏小洋;胡献国
2.用于MEMS中的硅基材料微观摩擦磨损性能研究 [J], 李志
3.含磷摩擦改进剂在聚α-烯烃中的摩擦学性能及协同效应研究 [J], 童宗文;秦杉;李英姿;茹更生
4.全配方发动机油SJ/5W-30中二烷基二硫代甲酸钼的摩擦学特性研究(Ⅱ)--二烷
基二硫代甲酸钼(MoDTC)的摩擦化学效应 [J], 张瑞军;李生华;金元生
5.几种含磷摩擦改进剂在150BS光亮油中的摩擦学性能研究 [J], 周康;王玉玲;姚元鹏;李旭;吕会英;汤仲平
因版权原因,仅展示原文概要,查看原文内容请购买。
聚合物涂层的摩擦磨损研究进展
2 1 年 4月 01
西
部
皮
革
W ES TLEATH ER
V0 .3 13 No8 . Apr2 .01 I
聚合 物 涂层 的摩 擦磨 损研 究进 展
邓 智 江 , 正 军 倪 艳 华 李 杰 。 李 , ,
(. 大学制 革清 洁技术 国家工 程实 验室 , J四川 , 四川 成都 606 ;. 105 2成都益 斯 生物科 技有 限公 司 ,
新 手 段 。 目前 , 材 料 形 成 具 有 使
非 金 属 性 质 的摩 擦 面 , 而 改 变 从
触 摩 擦 时 , 须 考 虑 到其 摩 擦 磨 必 损 特 性 是 包 含 着 整 个 摩 擦 系 统
28
第8 期
邓 江, 聚 物 层 摩 磨 研 进 智 等: 合 涂 的 擦 损 究 展
单 的公式说 明清楚 。摩擦学涉及
到 近 代 物 理 、 代 化 学 、 械 力 近 机 学 等多 门 自然科 学 , 已成 为 一 门
独 立 的边 缘 学科 。当我 们 去 考察
高 分 子 材 料 在 特 定 的 条 件 下 接
收 稿 日期 :0 1 0 — 0 2 1— 1 3 通 讯 联 系人
D N h-in L h n  ̄u N a — u 2L i E G Z ij g I e g n, I n h a I e a , Z Y , J
{. ai a E gnei a oa r frCe nTc n l yo e h r nfcue Sc un U ie i , hn d 1 N t n l n ier gL b r oy o la eh oo L a e uatr, i a nvr t C eg u o n t g f t Ma h sy 6 0 6 , hn ;. h n d E i eh o g o L D, h n d 1 0 6C ia 3 C l g h m s y 1 0 5 C ia 2 C e g uY SB o c n l C . T .C e g u6 0 3 ,hn, . o eeo C e i r t o y " l f t
摩擦学研究领域的进展和发展趋势
摩擦学领域的研究进展和生长趋势李久盛(中国石油兰州润滑油研究开发中心,甘肃兰州730060)摘要:对近年来摩擦学研究领域的相关文献进行了调研、汇总和阐发,主要涉及的内容有:对摩擦学生长趋势的预测和阐发,摩擦化学研究的新要领、新理论和新仪器,界限润滑下差别类型添加剂的作用机理等。
在此底子上,结合油品生长趋势对摩擦学今后的存眷点进行了总结和展望。
要害词:摩擦学;界限润滑;极压抗磨剂;摩擦化学反响Status and Develop Trends of Tribology Research FieldLI Jiu-sheng(PetroChina Lanzhou Lubricating Oil R&D Institute, Lanzhou, 730060)Abstract:In this paper, many references concern about tribology research field were collected and analyzed. The main contents include the forecast and analysis of develop trends in tribology, new methods, theory and analyzer for tribochemical studies, and the mechanism of different kinds of additives in boundary lubricating state. Base on the above, the develop trends of tribology field were summarized and previewed.Key Words: Tribology; Boundary lubrication; EP/A W Additive; Tribochemical Reaction 摩擦学((tribology)是一门研究相对运动的外貌及相关行为的技能科学,包罗研究摩擦、磨损和润滑。
摩擦学研究的进展与趋势
摩擦学研究的进展与趋势一、引言摩擦学是一门与机械表面界面科学密切相关的学科,它主要研究相对运动表面之间的摩擦、磨损和润滑规律及其控制技术。
它涉及传统机械加工、交通运输、航空航天、海洋、化工、生物工程等诸多工业领域。
统计资料显示,摩擦消耗掉全世界约1/3的一次能源,磨损致使大约60%的机器零部件失效,而且50%以上的机械装备恶性事故都起源于润滑失效或过度磨损。
欧美发达国家每年因摩擦、磨损造成的经济损失占其国民生产总值(GNP)的2%~7%,而在工业生产中应用摩擦学知识和研究成果可以节约的费用占GNP的1.0%~1.4%[1]。
我国已经成为制造大国,但远不是制造强国,在生产与制造过程中对资源和能源的浪费严重,单位国内生产总值(GDP)能耗约为日本的8倍,欧盟的4倍,世界平均水平的2.2倍,若按GDP的5%计算,2014年我国摩擦、磨损造成的损失达31800亿元,因此,开发和应用先进摩擦与润滑技术实现能源与资源节约的潜力巨大。
另外,机械产品中的摩擦界面除了起到传递运动和能量的作用,还可具备防腐、减阻、吸声等特殊功能,对机械系统的效率、精度、可靠性和寿命等性能具有重要的甚至是决定性的作用。
摩擦学理论与技术可用于改善机械系统工作效率、延长使用寿命、减少事故发生,为解决人类社会发展面临的能源短缺、资源枯竭、环境污染和健康问题提供有效的解决方案。
人类很早就在生活和生产实践中应用摩擦与润滑技术,而对摩擦规律的科学探索也已有数百年的历史[2]。
早在15世纪,意大利的列奥纳多·达·芬奇就开始对摩擦学理论进行探索,1785年法国摩擦学及物理学家库仑提出干摩擦的机械啮合理论,英国的鲍登等人于1950年提出了黏着摩擦理论。
关于润滑,英国人雷诺于1886年根据前人观察到的流体动压现象,总结出流体动压润滑的基本理论,其后相继发展出了边界润滑(1921年)、2014—2015机械工程学科发展报告(摩擦学)弹性流体动力润滑(1949年)和薄膜润滑(1990年)理论。