天线基本知识

合集下载

物理天线知识点总结

物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。

根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。

根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。

根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。

此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。

二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。

当电流通过天线时,会在天线上产生一个电磁场。

这个电磁场会向周围空间辐射出去,形成电磁波。

同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。

这样,天线在电磁波的发射和接收中发挥作用。

三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。

在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。

天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。

这些设计方法大大提高了天线的工作性能和可靠性。

四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。

通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。

常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。

五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。

在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。

在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。

在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。

在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。

总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。

NB天线的基础知识

NB天线的基础知识

NB天线的基础知识目录一、NB天线概述 (2)1.1 NB天线定义 (2)1.2 NB天线分类 (3)1.2.1 根据工作频段分类 (4)1.2.2 根据结构形式分类 (6)1.3 NB天线的应用场景 (7)二、NB天线的工作原理 (8)2.1 电磁波的传播 (9)2.2 天线的工作原理 (10)2.3 NB天线的辐射特性 (11)三、NB天线的性能参数 (13)四、NB天线的设计与发展趋势 (14)4.1 NB天线设计原则 (15)4.2 新型NB天线技术 (17)4.3 NB天线的发展趋势 (18)五、NB天线与整机的集成与优化 (19)5.1 整机天线集成方式 (20)5.2 天线与整机的兼容性 (22)5.3 天线优化方法 (23)六、NB天线仿真与测试 (24)6.1 仿真在NB天线设计中的应用 (26)6.2 测试设备与方法 (27)6.3 仿真与测试结果分析 (28)一、NB天线概述NB天线,即窄带天线,是一种在无线通信领域中广泛应用的电磁辐射与接收器件。

其主要作用是将高频电流转换为电磁波并辐射出去,或者接收特定频率的电磁波并将其转换为电流信号。

NB天线是无线通信系统中不可或缺的一部分,其性能直接影响到整个通信系统的质量和效率。

NB天线具有一些显著的特点,如结构简单、易于制造、成本低廉等。

其设计通常考虑到特定的应用需求,如天线的大小、形状、频带宽度等,都需要根据实际应用场景进行优化。

NB天线广泛应用于移动通信基站、卫星通信、无线局域网、物联网等领域。

随着无线通信技术的高速发展,NB天线在日常生活和工作中的应用越来越广泛。

从手机到平板电脑,从无线路由器到通信基站,甚至在很多智能设备和系统中,都可以看到NB天线的身影。

对NB天线的基础知识进行了解和掌握,对于从事无线通信领域的工作者来说,是非常必要的。

1.1 NB天线定义NB天线,即窄带物联网(Narrowband Internet of Things)天线,是一种专门用于窄带物联网通信的无线通信天线。

天线的基础知识

天线的基础知识

第一讲天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。

1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50Ω。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。

过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越小表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

天线基础知识大全

天线基础知识大全

天线基础知识大全1 天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2a 。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

天线基本知识

天线基本知识

不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而
广播系统通常采用水平极化,椭圆极化通常用于卫星通信。 国标 垂直极化、+/-45度交叉极化
影响因素
振元的摆放,目前天线单元主要由振子(偶极子)和微带缝隙天线两种类型组成,偶极子的
极化方向与振子轴线相同,缝隙天线的极化方向与缝隙长度方向轴线相同,因此极化方向比 较容易判断。
提纲
〔1〕基站天线的分类 〔2〕基站天线的内部结构
〔3〕基站天线的关键指标
〔4〕美化环境天线举例

Page 1
〔1〕基站天线的分类-
全向天线
按照极化 特性划分
指标特性
单极化天线 水平极化
基站天线
按照水平方向 图的特性划分
单极化天线
按照极化 方向划分
垂直极化
定向天线
按照极化特 性划分
垂直/水平 极化
Page 6
〔3〕基站天线关键指标
项目名称 频率范围(MHz) 极化方式(°) 天线增益(dBi) 水平波瓣宽(°) 垂直波瓣宽(°) 前后比(dB) 隔离度(dB) 输入阻抗(Ω) 电压驻波比 接口 最大功率(w) 闪电保护 尺寸(mm) 支撑杆(mm) 16.5 65±6 7.5 ≥25 ≥30 50 ≤1.5 N-型阴头×2 200 直流接地 875×176×63 2300~2500 ±45° 17dBi 60±6 7 指标 2500~2700
影响因素
基站天线的垂直面波瓣宽度与天线的长度尺寸有关,垂直面波瓣宽度越宽,天线 的长度越小,比如WCDMA天线若垂直面波瓣宽度为6.5度,天线的高度约为1.4m, 而垂直面波瓣宽度为13度的天线其高度约为0.66m。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

天线的基础知识

天线的基础知识

天线的基础知识(2009-05-17 22:14:38)1 天线工作原理及作用是什么?天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。

发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。

2 天线有多少种类?天线品种繁多,主要有下列几种分类方式:按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。

基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。

按工作频段可划分为超长波、长波、中波、短波、超短波和微波。

按其方向可划分为全向和定向天线。

3 如何选择天线?天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。

具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。

选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。

因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。

4 什么是天线的增益?增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。

增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。

5 什么是电压驻波比?天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

天线设计该如何入门

天线设计该如何入门

引言概述:天线设计是无线通信领域中非常重要的一部分。

随着无线通信技术的不断发展和应用需求的增加,天线设计也变得越来越重要。

本文将介绍如何入门天线设计,并提供一些实用的技巧和建议。

正文内容:一、了解天线基础知识1. 学习天线的基本原理和工作原理,包括辐射机制、功率传输和接收信号。

深入了解天线参数,如增益、方向性和频率响应等。

2. 研究不同类型的天线,包括单极天线、双极天线和多极天线等。

了解它们的优缺点和适用场景,以及不同频率的选择。

3. 学习天线设计中常见的工具和软件,如天线模拟软件和测试设备。

掌握使用这些工具进行天线设计和测试的方法。

4. 了解天线设计中的一些基本概念和标准,如驻波比、频带宽度和效率等。

掌握如何计算和优化这些参数以满足设计要求。

5. 通过阅读相关的学术论文和专业书籍,了解天线设计领域的最新进展和研究方向。

参加相关的学术会议和研讨会,与领域专家交流和学习。

二、掌握天线设计流程1. 定义设计目标和需求,包括频率范围、增益要求和方向性要求等。

根据实际应用场景,确定天线的物理尺寸和材料选择。

2. 使用天线模拟软件进行初始设计,根据设计目标和需求,选择合适的天线结构和参数。

进行电磁仿真和优化,以满足设计要求。

3. 制作和测试原型天线,包括选取适当的材料和制作工艺。

使用天线测试设备进行性能测试,如增益、工作频率和方向图等。

4. 根据测试结果,对原型天线进行调整和优化。

通过修改天线结构或参数,进一步改善性能和满足设计要求。

5. 进行天线的性能评估和验证,包括频率响应、辐射效率和阻抗匹配等。

与实际应用场景进行对比和测试,确保天线的性能和可靠性。

三、了解常见的天线设计技巧和优化方法1. 使用多个发射和接收元素,以增加天线的增益和方向性。

选择合适的阵列结构和波束控制方法,优化天线的辐射特性。

2. 针对特定应用场景,使用宽带天线设计方法,以实现更宽的工作频带。

采用匹配网路和调频器件,以确保天线在整个频率范围内的性能稳定。

天线设计中的基础知识

天线设计中的基础知识

天线设计中的基础知识无线通信在现代社会中已经成为了不可或缺的一部分,而天线则是无线通信的核心技术。

天线设计的好坏直接影响着无线通信的质量和稳定性。

本文将介绍天线设计中的基础知识。

一、天线的类型天线的类型很多,不同的天线适用于不同的场合和需求。

根据天线的结构和原理,可以将天线分为以下几类。

1.偶极子天线:偶极子天线是最常见的一种天线,它主要用于无线电通信中,广泛应用于电视天线、拉杆天线等。

2.单极天线:单极天线和偶极子天线极为相似,也称为垂直天线,通常用于低频通信。

3.反射天线:反射天线是一种折射天线,在无线电通信网络中广泛应用,最常见的形式是发射塔、电视塔等类型。

4.全向天线:全向天线适用于需要进行全方位通信的场合,比如无线通信基站。

5.定向天线:定向天线是一种方向性天线,能够集中把无线信号发射到某一方向上,适用于需要进行定向通信的场合。

二、天线的性能指标在天线设计中,要考虑的因素较多,其主要性能指标包括以下几点。

1.增益:天线增益是指天线在某个方向上的信号强度与无指向性原点的同一方向上的信号强度之比。

增益值越大,这个方向上的信号捕捉效果就越好。

2.方向性:天线的方向性指天线在某一个方向上集中发射或接收信号的能力。

3.波束宽度:波束宽度是指天线集中发射或接收信号的范围大小,一般用立体角表示。

波束宽度越小,天线方向性越强。

4.驻波比:当天线在工作频段内的传输中遇到其它阻抗时,会引起信号的反射和干扰,这个指标就是反射能量和传输能量之间的比值,通常用于评价天线性能的优劣。

三、天线设计流程天线的设计流程一般包括如下几个步骤。

1. 定义问题:明确天线设计的应用需求及要达成的目标,进行参数筛选和定义。

2. 选取天线类型:根据实际情况选取合适的天线类型。

3. 设计实现:根据天线类型的特点及要求,进行天线设计。

根据需求制定天线的结构参数以及驱动功率、频率范围和增益等指标,以及阻抗、匹配网络等。

4. 仿真模拟:使用仿真软件模拟天线性能,优化天线设计。

天线知识点总结

天线知识点总结

天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。

本文将简要介绍一些天线的相关知识点。

1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。

天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。

2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。

主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。

此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。

3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。

增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。

4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。

λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。

5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。

不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。

6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。

测试方法则通常包括VSWR测试、增益测试、方向性测试等。

7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。

天线基础知识

天线基础知识

。这种同一天线收发参数相同的性质被称为天线的收发互易性
,它可以用电磁场理论中的互易定理予以证明。
• 1.2.2 有效接收面积 ;

有效接收面积(Effective Aperture)是衡量接收天线接收
无线电波能力的重要指标。接收天线的有效接收面积的定义为
:当天线以最大接收方向对准来波方向进行接收时,并且天线
化,若符合左手螺旋,则为左旋圆极化。

图6显示了某一时刻,以+z轴为传播方向的x方向线极化
的场强矢量线在空间的分布图。图7和图8显示了某一时刻,以
+z轴为传播方向的右、左旋圆极化的场强矢量线在空间的分布
图。要注意到,固定时间的场强矢量线在空间的分布旋向与固
定位置的场强矢量线随时间的旋向相反。椭圆极化的旋向定义
20
20. 5
主轴
图5 天线方向图的一般形状

(2)半功率点波瓣宽度(HalfPower Beam Width, HPBW
)2θ0.5E或2θ0.5H:指主瓣最大值两边场强等于最大值的0.707倍 (或等于最大功率密度的一半)的两辐射方向之间的夹角,又
叫3分贝波束宽度。如果天线的方向图只有一个强的主瓣,其它
第1章 天线基础知识
• 1.1 天线的电参数 • 1.2 天线辐射基础 • 1.3 常见天线分类 • 1.4 阵列天线 • 1.5 智能天线
1.1 发射天线的电参数

描述天线工作特性的参数称为天线电参数(Basic Antenna
Parameters),又称电指标。它们是定量衡量天线性能的尺度。我
,与传输线之间存在阻抗匹配问题。天线与传输线的连接处称
为天线的输入端,天线输入端呈现的阻抗值定义为天线的输入 阻抗(Input Resistance),即天线的输入阻抗Zin为天线的输入端 电压与电流之比:

天线基础知识

天线基础知识

目录天线 (1)一、天线理论知识 (1)二、天线的选择原则 (18)三、常用天线的分类 (23)天线一、天线理论知识天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。

所以我们必须全面了解天线。

1、天线的方位图:天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。

反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。

天线方向图的定义:天线辐射的电磁场在一定距离上随空间角坐标分布的图形。

由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。

而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。

除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。

根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。

通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面;水平面方向图(Horizontal):是指与地面平行的平面内的方向图;垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。

E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。

为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。

2、波瓣:零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。

半功率点波瓣宽度:在E面或H面的等距线上,主瓣最大值两边场强等于最大场强的0.707倍(或一半功率密度)的两辐射方向之间的夹角。

副瓣电平:在E面或H面的等距线上,副瓣最大值与主瓣最大值之比,通常用dB表示。

天线基本知识点总结

天线基本知识点总结

天线基本知识点总结引言天线作为无线通信系统中的重要组成部分,起着收发电磁波信号的重要作用。

它的性能直接影响到无线通信系统的传输质量和覆盖范围,因此对天线的基本知识进行深入了解对于理解和设计无线通信系统至关重要。

一、天线的基本概念1. 天线的定义天线是指用于传输和接收无线电波的设备,通常由一个或多个导体制成。

它可以将射频信号转换成电磁波,或者将电磁波转换成射频信号,是无线通信系统中不可或缺的组成部分。

2. 天线的主要功能天线主要功能是将射频信号转化为电磁波并进行辐射,或者将接收到的电磁波转化为射频信号。

其次,天线还具有指向性和增益调节的功能。

3. 天线的分类根据使用场景和结构特点,天线可以分为室内天线和室外天线;根据辐射方式,天线可以分为定向天线和非定向天线;根据频段,天线可以分为宽频天线和窄带天线。

二、天线的基本参数1. 天线的增益天线的增益是指天线在特定方向上辐射功率与参考天线(一般为同种条件下的理想点源天线)辐射功率之比。

增益值越大,天线的辐射方向性越强,传输距离越远。

2. 天线的方向特性天线的方向特性是指天线在空间中辐射电磁波的方向分布规律。

根据辐射特性,天线可以分为全向天线和定向天线。

全向天线在水平方向上的辐射方向性最小,而定向天线在特定方向上的辐射方向性最大。

3. 天线的频率特性天线的频率特性是指天线在不同频率下的辐射特性和阻抗匹配情况。

由于不同频率下的波长不同,因此同一天线在不同频段下的辐射特性和阻抗情况会有所不同,需要进行频率特性的设计和匹配。

4. 天线的阻抗天线的阻抗是指天线在工作频率下的输入阻抗。

天线的阻抗匹配对于信号的传输和接收至关重要,需要根据工作频率进行设计和调整。

阻抗匹配不佳会导致信号的反射和损耗,影响通信质量。

5. 天线的带宽天线的带宽是指天线在一定范围内能够正常工作的频率范围。

天线的带宽需要根据具体应用场景来选择,以保证在不同频率下的正常工作和性能表现。

三、天线的设计原理1. 天线的辐射原理天线的辐射原理是天线将射频信号转换成电磁波并进行辐射的物理过程。

第1章--天线基础知识

第1章--天线基础知识
f ( , ) f ( ) l sin
第1章 天线基础知识
为了便于比较不同天线的方向性,常采用归一化 方向函数,用F(θ,φ)表示,即
F( , )
f ( , )
E( , )
fmax ( , )
Emax
第1章 天线基础知识
式中,fmax(θ,φ)为方向函数的最大值;Emax为最大辐射方 向上的电场强度;E(θ,φ)为同一距离(θ,φ)方向上的电场强 度。
归一化方向函数F(θ,φ)的最大值为1。因此,电基本 振子的归一化方向函数可写为
F(θ,φ)=|sinθ| 为了分析和对比方便,今后我们定义理想点源是无 方向性天线,它在各个方向上、相同距离处产生的辐射 场的大小是相等的,因此,它的归一化方向函数为
F(θ,φ)=1
第1章 天线基础知识
1.2.2 方向图 天线的方向函数,它与r及I无关。将方向函数用
y
图1―2―3 电基本振子E平面方向图
第1章 天线基础知识
z
x
y |sin 90°|= 1
图1―2―4 电基本振子H平面方向图
第1章 天线基础知识
但是要注意的是,尽管球坐标系中的磁基本振子方 向性和电基本振子一样,但E面和H面的位置恰好互换。
有时还需要讨论辐射的功率密度(坡印廷矢量模值) 与方向之间的关系,因此引进功率方向图(Power Pattern)Φ(θ,φ)。容易得出,它与场强方向图之间的关 系为
第1章 天线基础知识 z
Er
H
Ir
E
lO y
x
图1―1 电基本振子的坐标
第1章 天线基础知识
E Erer E e
H He
式中,E为电场强度,单位为V/m;
H为磁场强度,单位为A/m;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Emax S max G S0 Pin Pin 0 E0
理想无方向天线本身的 增益系数为 1.
2
Hale Waihona Puke Pin Pin 0式中Pin、Pin0分别为实际和理想无方 向天线的输入功率。
天线的极化
天线的极化是指该天线在给定方向上远区 辐射电场的空间取向。一般而言,特指为该天 线在最大辐射方向上的电场的空间取向。实际 上,天线的极化随着偏离最大辐射方向而改变, 天线不同辐射方向可以有不同的极化。
频带宽度
天线的所有电参数都和工作频率有关。任何天线的 工作频率都有一定的范围,当工作频率偏离中心工作频 率时,天线的电参数将变差,其变差的容许程度取决于 天线设备系统的工作特性要求。当工作频率变化时,天 线的有关电参数变化的程度在所允许的范围内,此时对 应的频率范围成为频带宽度。
按照频带宽度的不同,可以把天线分为窄频带天线、宽频带天线和 超宽频带天线
基本振子的辐射
尽管各类天线的结构、特性各不 相同,但是分析它们的基础却建立在电、 磁基本阵子的辐射机理上。电、磁基本 阵子作为最基本的辐射源。
电基本振子的辐射
电基本阵子又称电流元,它是 指一段理想的高频电流直导线,其长 度l远小于波长,其半径a远小于l,同 时振子沿线的电流I处处等幅同相。 用这样的电流元可以构成实际的更复 杂的天线,因而电基本振子的辐射特 性是研究更复杂天线辐射特性的基础
天线的作用
将传输线中的高频电磁能量转成为自由空间的电磁波,
或反之将自由空间中的电磁波转化为传输线中的高频电磁
能。因此,要了解天线的特性就必然需要了解自由空间中
的电磁波及高频传输线的一些相关的知识。
天线的辐射
平行双线载有交变电流时,就可以形成电磁波的辐射, 辐射的能力与导线的长短和形状有关。 如果导线位置如下图所示,由于两导线的距离很近, 电流方向相反,两导线所产生的感应电动势几乎可以抵消, 因而辐射很微弱。
Pr A Pin
增益系数 方向系数只是衡量天线定向辐射特性的参数, 它只决定于方向图;天线效率则表示了天线在 能量上的转换效能;而增益系数则表示了天线 的定向收益程度。
增益系数的定义是:在同一距离及相同输入 功率的条件下,某天线在最大辐射方向上的 辐射功率密度(或场强的平方)和理想无方 向性天线的辐射功率密度(或场强的平方) 之比,记为G。
方向系数 在同一距离及相同辐射功率的条件下,某天线在最大 辐射方向上的辐射功率密度(场强的平方)和无方向 性天线的辐射功率密度(场强的平方)之比,记为D。
Emax S max D 2 S0 Pr Pr 0 E0
2
Pr Pr 0
Pr、Pr 0分别为实际天线和无方 向天线的辐射功率
方向系数
天线方向图通常是一个三维空间的曲面图形。
为了表示方便起见,在工程中常用归一化方向图。
天线的方向图
主平面方向图
在工程上为了方便表示起见,常用两个相互正交主 平面上的剖面图来表示天线的方向图。 E面方向图(电场矢量与传播方向构成的平面)
垂直面方向图
H面方向图(磁场矢量与传播方向构成的平面) 水平面方向图
磁基本振子的辐射
磁基本振子又称磁流元、磁偶极子。尽管 他是虚拟的,迄今为止还不能肯定自然界中是 否有孤立的磁荷和磁源存在,但是它可以与一 些实际波源相对应。
发射天线的电参数
电指标:描述天线工作特性的参数。它们是定 量衡量天线性能的尺度。 有方向函数、方向图、方向图参数、方向系数、 天线效率、增益系数、天线的极化、有效长度 输入阻抗与辐射阻抗、频带宽度。
简单的线天线
在LF~UHF频段广泛应用线天线, 在UHF高端及微波波段主要应用面天线。 线天线的形式有很多,如双极天线、 鞭状天线、引向天线等
在通信中,常使用水平天线。水平架设的天线的优点有: 1.假设和馈电方便 2.地面电导率对水平天线方向性的影响较垂直天线小
3.可减小干扰对接收的影响。因为水平对称辐射水平极化波,而工 业干扰大多为垂直极化波,故可减少干扰对接收的影响。
波长×频率=真空中的光速(常数)
二、常用天线性能指标介绍
天线的主要电参数
1对单极化天线

2 对双极化天线



方向图 增益 输入阻抗(电压驻波比) 极化 带宽 功率容量 3阶无源互调(PIM)
除具有单极化天线的电参数 外还具有 隔离度 交叉极化比
天线的方向图
把天线在空间辐射强度随方位、俯仰角度分布 的曲线图形叫天线方图。
式中,
Sav,max2和Sav,max分别为最大副瓣和主瓣 的功率密度最大值
Emax2和Emax分别为最大副瓣和主瓣 的场强最大值
4.前后比:指主瓣最大值与后瓣最大 值之比,通常也用分贝表示。
方向系数
上述方向角参数虽能从一定程度上描述方向图的状 态,但它们一般仅能反映方向图中特定方向的辐射强弱 程度,未能反映辐射在全空间的分布状态,因而不能单 独体现天线的定向辐射能力。为了更精确地比较不同天 线之间的方向性,需引入一个能定量地表示天线定向辐 射能力的电参数,这就是方向系数。
上述方向角参数虽能从一定程度上描述方向图的状 态,但它们一般仅能反映方向图中特定方向的辐射强弱 程度,未能反映辐射在全空间的分布状态,因而不能单 独体现天线的定向辐射能力。为了更精确地比较不同天 线之间的方向性,需引入一个能定量地表示天线定向辐 射能力的电参数,这就是方向系数。
方向系数 在同一距离及相同辐射功率的条件下,某天线在最大 辐射方向上的辐射功率密度(场强的平方)和无方向 性天线的辐射功率密度(场强的平方)之比,记为D。
Emax S max D 2 S0 Pr Pr 0 E0
2
Pr Pr 0
Pr、Pr 0分别为实际天线和无方 向天线的辐射功率
天线效率
一般说来,载有高频电流的天线导体及其 绝缘介质都会产生损耗,因此输入天线的实际 功率并不能全部地转换成电磁波能量。可以用 天线效率来表示这种能量转换的有效程度。天 线效率定义天线辐射功率与输入功率之比。
方向函数
方向性:就是在相同距离的条件下 天线辐射的相对值与空间方向的关 系。
E (r , , )
若天线辐射的电场强度为
把电场强度(绝对值)写成 60
E (r , , ) r f ( , )
为场强方向函数。 因此,方向函数可定义为
E (r , , ) f ( , ) 60I r
所谓辐射场极化,即在空间某一固定位置上电场矢 量端点随时间运动的轨迹,按其轨迹的形状可分为 线极化、圆极化和椭圆极化,其中圆极化还可以根 据其旋转方向分为右旋圆极化和左旋圆极化。
有效长度
一般而言,天线上的电流分布是不均匀的,也就是说 天线上各部分的辐射能力不一样。为了衡量天线的实际 辐射能力,常采用有效长度。 它的定义是:在保持实际天线最大辐射方向上的场强 值不变的条件下,假设天线上的电流分布为均匀分布时 天线的长度
智能天线分为两大类:自适应天线和多波束天线。自适 应天线是一种控制反馈系统,它根据一定的准则,采用 数字信号处理技术形成天线阵列的加权向量,通过对接 收到的信号进行加权合并,在有用信号方向上形成主波 束,而在干扰方向上形成零陷,从而提高信号的输出信 噪比。 多波束天线采用多个波束覆盖整个用户区,每个波束的 指向固定,波束宽度随天线阵元数目的确定而确定,系 统根据用户的空间位置选取相应的波束,使接收的信号 最佳。
与方向图有关的几个参数
◇ 主瓣(半功率波束宽度HPBW)
◇ 副瓣(上第一副瓣)
◇ 零深(下第一个零深)
◇ 前/后比(F/B比)
天线的方向图
上旁瓣
主瓣
后瓣
下部零陷
波瓣宽度
主瓣两半功率点间的夹角定义为天线方向图的波瓣 宽度。称为半功率(角)瓣宽。主瓣瓣宽越窄,则方向 性越好,抗干扰能力越强。
面天线
面天线用在无线电频谱的高频段,尤其是微波段。 面天线的种类很多,常见的有喇叭天线、抛物面 天线。这些天线所载的电流是分布在金属面上的, 而金属面的口径尺寸远大于工作波长。面天线在 雷达、导航、卫星通信以及气象等无线电技术设 备中获得广泛的应用。
智能天线
智能天线是在自适应滤波和阵列信号处理技术的基础上发展起来的。20世纪90年代 初,随着移动通信的发展,阵列信号处理技术被引入移动通信领域,形成了智能天 线这个新的研究领域。 智能天线的基本思想是利用各用户信号空间特征的差异,采用阵列天线技术,根据 某个接收准则自动调节各天线阵元的加权向量,达到最佳接收和发射,使得在同一 信道上接收和发射多个用户的信号而又不互相干扰。 智能天线技术以其独特的抗多址干扰和扩容能力,不仅成为目前解决个人通信多址 干扰、容量限制等问题的最有效的手段,而且也被公认为是未来移动通信的一种发 展趋势,成为第三代移动通信系统的核心技术。

雷达阵列天线走过的历程
雷达阵列天线走过的历程
雷达阵列天线走过的历程
军事、战争推动了天线的发展
二次大战>雷达>雷达天线(第一应用背景)>通 信天线(副产品) 雷达天线的发展、技术积累和沉淀>今天的移动 通信天线的技术基础 种类繁多的雷达天线…… >阵列天线>单、双极化基站天线 >相控阵天线>多波束基站天线 >自适应天线>智能天线

天线接收和发射信号的原理
1

常用天线性能指标介绍
2
一、天线信号接收和发射原理
什么是天线?

把从导线上传下来的电信号做为无线电波发射到空间…... 收集无线电波并产生电信号
B la h b la h b la h b la h
天线的作用
天线尤如人的耳目一样重要。无线设备的千里眼、顺
风耳。如果没有天线,再先进的雷达,也无法发现几千米 之外的目标;洲际导弹,如果没有天线,就会失去遥控, 乱飞乱炸。 对无线通信系统也同样是这样。再先进的基站通信设 备,没有好的天线,也无法发挥优良的性能。可见天线是 无线通信系统的重要组成部分。
相关文档
最新文档