射频基础知识培训
射频工程师培训计划内容
![射频工程师培训计划内容](https://img.taocdn.com/s3/m/521fd820a55177232f60ddccda38376baf1fe02f.png)
射频工程师培训计划内容一、基础知识培训1. 电磁场理论电磁场理论是射频工程师必须掌握的基础知识,包括电磁波的传播、电磁波与物质的相互作用、电磁场的参数测量等内容。
2. 射频电路基础射频电路基础培训包括射频元器件的特性、射频放大器设计、混频器和频率合成器设计、射频功率放大器设计等内容。
3. 天线原理与设计天线原理与设计是射频工程师必备的技能,包括天线的基本原理、各种类型的天线设计、天线参数测量等内容。
4. 射频系统仿真射频系统仿真是射频工程师的重要工具,需要掌握基于仿真软件进行射频系统设计和性能分析的技能。
二、专业技能培训1. 射频系统设计射频系统设计包括无线通信系统、雷达系统、卫星通信系统等多个领域,需要掌握射频系统的整体设计方法和技巧。
2. 射频测试与调试射频测试与调试是射频工程师的日常工作之一,需要掌握各种射频测试仪器的使用方法和测试技术。
3. 射频设备维护与故障排除射频设备的维护与故障排除是射频工程师的重要工作之一,需要掌握射频设备的维护方法和故障排除技术。
4. 射频系统集成与优化射频系统的集成与优化是射频工程师的核心工作之一,需要掌握射频系统的集成方法和优化技术。
5. 射频工程项目管理射频工程项目管理是射频工程师的职业发展方向之一,需要掌握项目管理的基本知识和技能。
三、实践能力培养1. 射频系统设计与调试实训通过实际的射频系统设计与调试实训,培养学员的实际能力。
2. 射频设备维护与故障排除实训通过实际的射频设备维护与故障排除实训,培养学员的实际能力。
3. 射频系统集成与优化实训通过实际的射频系统集成与优化实训,培养学员的实际能力。
四、综合能力培养1. 专业知识综合应用能力培养通过综合案例分析和工程项目实践,培养学员综合应用专业知识的能力。
2. 团队协作能力培养通过团队项目合作和活动训练,培养学员的团队协作能力。
3. 沟通表达能力培养通过论文写作和演讲训练,培养学员的沟通表达能力。
以上是射频工程师培训计划的内容,通过全面系统的培训,可以培养具备丰富知识和实践能力的射频工程师,满足射频领域企业对高素质射频工程师的需求。
射频基础知识培训课件知识
![射频基础知识培训课件知识](https://img.taocdn.com/s3/m/1d78ba357ed5360cba1aa8114431b90d6d85894c.png)
信号的峰值功率、平均功率和峰均比PAR 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示.峰值功率即是指以某种概率出现的肩峰的瞬态功率.通常概率取为0.01%.
功率相关概念
功率相关概念
信号的峰值功率、平均功率和峰均比PAR 解释:平均功率是系统输出的实际功率.在某个概率下峰值功率跟平均功率的比就称为在某个概率下的峰均比,如PAR=9.10.1%,各种概率下的峰均比就形成了CCDF曲线(互补累积分布函数). 在概率为0.01%处的PAR,一般称为CREST因子.
噪声相关概念
相位噪声 相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动.理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下面所示.一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声.相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比.
1dB压缩点 例如一个射频放大器,当输入信号较小时,其输出与输入可以保证线关系,输入电平增加1dB,输出相应增加1dB,增益保持不变,随着输入信号电平的增加,输入电平增加1dB,输出将增加不到1dB,增益开始压缩,增益压缩1dB时的输入信号电平称为输入1dB压缩点,这时输出信号电平称为输出1dB压缩点.如下图:
无线通信的电磁波传输
长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波.其可沿地表面传播(地波)和靠电离层反射传播(天波). 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波.中波可沿地表面传播(地波)和靠电离层反射传播(天波).中波沿地表面传播时,受地表面的吸收较长波严重.中波的天波传播与昼夜变化有关.
射频方案培训
![射频方案培训](https://img.taocdn.com/s3/m/bafd4ad6162ded630b1c59eef8c75fbfc77d9429.png)
射频方案培训射频(Radio Frequency,简称RF)技术是近年来迅速发展的一项关键技术,被广泛应用于通信、无线传输、雷达、卫星通信等领域。
为了培养更多具备射频方案设计和调试能力的人才,射频方案培训应运而生。
一、射频基础知识培训射频方案培训的第一步是系统学习射频基础知识。
培训内容包括电磁波传播特性、天线原理、调制解调原理、扩频技术等。
参与培训的学员将会了解射频领域的基础概念和理论知识,为后续的实际应用打下坚实的基础。
二、射频系统设计培训在射频方案培训的第二阶段,学员将学习射频系统设计的方法和技巧。
这些技能包括设计射频前端电路、射频滤波、功放器、混频器等关键模块。
通过培训,学员将能够熟练使用各种射频设计工具,并能够根据具体应用需求进行系统设计。
三、射频系统调试与测试培训射频系统的调试与测试是确保系统性能和质量的重要环节。
在培训的第三阶段,学员将学习如何使用射频测试仪器进行系统调试与测试。
此外,还将学习射频信号的参数测量方法、信号质量分析,以及故障排除等技能。
通过培训,学员将具备独立调试射频系统的能力。
四、射频模块集成培训射频模块集成是将不同射频功能模块整合到一个射频模块的过程。
在射频方案培训的最后阶段,学员将学习如何进行射频模块的设计与集成。
此外,还将学习射频模块的优化和改进方法,以提高射频系统的性能和可靠性。
五、实际项目实训在以上培训环节结束后,为了让学员能够更好地应用所学知识,射频方案培训将组织实际项目实训。
学员将参与具体的射频项目,亲手设计、调试射频方案,从而更好地掌握和应用所学技能。
总结:射频方案培训通过系统地学习射频基础知识、射频系统设计、射频系统调试与测试以及射频模块集成等内容,能够培养出具备射频方案设计和调试能力的人才。
通过实际项目实训,学员能够将所学知识应用到实际工程中,提高射频系统设计和调试的能力,满足市场对射频技术人才的需求。
射频方案培训为射频技术的发展提供了强有力的支持,也为培训学员的职业发展和就业提供了重要的机会。
射频培训资料1
![射频培训资料1](https://img.taocdn.com/s3/m/c246a6faf705cc1755270999.png)
天线的方向角
如下图所示,当天线正确安装时,水平与地面的 波瓣角度称为水平波束角,垂直于地面的波瓣角 度称为垂直波束角
天线的场图
如有图所示为某天线 的水平场图: (增益单位为:dBi) (增益单位为:dBi) 同相线
天线的场图
如有图所视为同一天线 的垂直场图 (增益单位为:dBi) (增益单位为:dBi)
射频基础知识培训资料( 射频基础知识培训资料(一) (内部讨论稿)
dBm,dBi,dBd,dB,dBc的概念辨析 dBm,dBi,dBd,dB,dBc的概念辨析
dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率 值/1mw ) dBi和dBd是考征增益的值(功率增益),两者都是一个相对 值,但参考基准不一样。dBi的参考基准为全方向性天线, dBd的参考基准为偶极子,所以两者略有不同。一般认为, 表示同一个增益,用dBi表示出来比用dBd表示出来要大2.15。 例:GSM900天线增益可以为13dBd(15dBi) dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大 或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率); 但 如果甲的功率为46dBm,乙的功率为40dBm,则可以说, 甲比乙大6 dB
阻抗的概念
阻抗是指信号电压与信号电流之比,阻抗具有电阻 信号电压与信号电流之比, 信号电压与信号电流之比 分量 R和电抗分量 X,即 Z = R+ j X 。 和电抗分量 , 总可通过阻抗调试, 在要求的工作频率范围内, 使 总可通过阻抗调试 , 在要求的工作频率范围内 , 输入或传输阻抗的虚部很小且实部相当接近 50 欧, 从而使得传输或输入阻抗为Z 从而使得传输或输入阻抗为 = R = 50 欧------目前 目前 工程中所涉及的射频传输线路处于良好的阻抗匹配 所必须的。 所必须的。
射频入门培训共36页
![射频入门培训共36页](https://img.taocdn.com/s3/m/a3871afe6c175f0e7cd137fc.png)
一个电容器的阻抗绝对值与频率的关系
高频电感-射频特性
• 线圈通常时用导线在圆柱体上绕制而成,相邻位 置线段间有分离的移动电荷,寄生电容的影响上 升。如右图
• 一个电感器的高频等效电路如图所示,图中,电 容Cs为等效分布电容,Rs为等效电感线圈电阻, Cs和Rs分别代表分布电容Cd和电阻Rd的综合效应。
放大器 滤波器 下变频器
LNA
5357C0射频系统关键供电管脚
内置PA供电
频率合成供电
DAC、ADC: IQ调制供电
PLL供电
4360射频系统关键供电管脚
内置接收混频器 供电
内置接TX混频器 供电
VCO、PLL供电
2.4G内置PA 供电
5G内置PA 供电
VCO、PLL供电
天线
• 关键指标:
– VSWR(电压驻波比); – ReturnLoss; – Gain; – 方向图; – 带宽; – 阻抗; – 波瓣宽度;
射频电路系统入门培训教程
刘李云
培训目的
• 了解射频相关的一些概念; • 了解整个射频系统组成; • 了解组成射频系统的各个模块单元; • 了解实际射频电路; • 初步了解射频电路分析方法和工作内容;
Band No.
2 3 4 5 6 7 8 9 10 11 12
常用无线电波频段分布
名称
ELF VF VLF LF MF HF VHF UHF SHF EHF Decimillimeter P band L band S band C band X band Ku band K band Ka band mm wve submm wave
应用
Navigation, sonar Radio beacons, navigation AM broadcast, Coast Guard
射频基础知识
![射频基础知识](https://img.taocdn.com/s3/m/03024075a8114431b90dd87b.png)
36dBμv=-71dBm
如: 0dBμv=0-107= -107dBm
15dBμv=15-107= -92dBm
0dBm=0+107= 107dBμv
15dBm=15+107=122dBμv
射频基础知识培训
先把0dBμv化成(反对数)1μv=0.000001V, 并在50Ω负载上求出功率P=V*V/R 10log(0.000001)*(0.000001)/50=107dBm
射频基础知识培训
光端机中激光器输出光功率一般在0-5dBm,低于-5dBm告 警。接收光功率可达+5dBm,最小接收光功率一般在
-10dBm左右,低于此值便告警,但不等于不工作,低于此 值后输出噪声会大一些,这个门槛的设置是人为的,可 以按照不同的要求去设置,我们要求厂家设置在
-12dBm左右。
射频基础知识培训
G1——直放站施主天线增益(dBi)
G2——基站上行收天线增益(dBi)
LR——空间传输衰减(dB)
LR=32.4+20 log+(MHz)+20 logR(Km)
LS------衰落中值23d
射频基础知识培训
引入噪声= PNo-有效路径损耗
=10logKBT+NF+G-有效路径损耗
=10logKBT+NF+基站和直放站的输出功率差 式中:10logKBT---系统底噪声
射频基础知识培训
4、互调(交调)
由于器件的非线性,当两个或两个以上信号通过时, 信号间相互作用会产生其它信号,这些信号统称为互调 信号。
f= (M*f1 ±Nf2) 或 (Nf2 ± M*f1)
(M、N为整数)
射频基础知识讲座培训材料
![射频基础知识讲座培训材料](https://img.taocdn.com/s3/m/a72a96e9fc0a79563c1ec5da50e2524de418d06a.png)
收发信机(TRX):
有TX、RX、FS三个子模块
TX:
发射链路
RX:
接收链路
FS:
提供本振 专业课
8
基站射频系统的基本组成与架构 TX前向功能框图
TX_IN TX-LO1
SAW Filter TX-LO2
双 工滤 波器
发射 功 率检 测
功 率监 测单 元
(可 选)
RFC M
L NA
4分 路器
TE ST TR X
H PA
TRX
(可 选)
RFC M
95 RFE功专能业课 框图
17
基站射频系统的基本组成与架构
BTM
RPT
DIV
LNA1
ANT
RSM
LNA0
DUP
LPA
PVD
TSM
RMM
3G RFE功专业能课 示意框图 18
• 混频 RF
IF LO
• 滤波
• 频综
• 耦合
• 检测(功率)
专业课
60
射频电路的基本功能部件
• 耦合 ▽微带耦合 ▽同轴耦合 ▽电阻耦合
专业课
61
射频电路的基本功能部件
• 耦合器的主要参数 ▽耦合度 ▽工作频率 ▽阻抗 ▽插损
专业课
TX Freq.(MHz)
869~894
1930~1990
917~960
832~834
838~846
860~870
1840-1870
460~467.5
421.7~430.0
461.3~470.0
489~493.5
射频基础知识培训
![射频基础知识培训](https://img.taocdn.com/s3/m/00d544bb82d049649b6648d7c1c708a1294a0a52.png)
射频基础知识培训一、射频概述射频(Radio Frequency,简称RF)是指无线电频率范围内的电磁波信号。
射频技术在现代通信、无线电、雷达等领域起着重要作用。
本次培训将介绍射频的基础知识,包括射频信号的特性、射频电路设计及射频测量。
二、射频信号的特性1. 频率范围:射频信号的频率范围通常指300kHz至300GHz之间的频段。
这一频率范围被广泛应用于无线通信和雷达系统中。
2. 带宽:射频信号的带宽是指在频率上的范围,用于传输信息。
带宽越宽,信号传输的速率越高。
3. 衰减:射频信号在传输过程中会发生衰减,衰减的程度与信号传播距离、传输介质等因素有关。
为了保持信号的质量,需要采取衰减补偿措施。
三、射频电路设计1. 射频放大器设计:射频放大器用于增强射频信号的强度。
设计射频放大器需要考虑电源电压、功率放大系数、频率响应等因素。
2. 射频滤波器设计:射频滤波器用于去除非期望频率范围内的干扰信号。
设计射频滤波器需要考虑信号带宽、截止频率、滤波器类型等因素。
3. 射频混频器设计:射频混频器用于将不同频率的信号进行混合,产生新的频率信号。
设计射频混频器需要考虑输入信号频率、混频器类型、频率转换效率等因素。
四、射频测量1. 射频功率测量:射频功率测量用于确定射频信号的功率水平。
常用的测量仪器包括射频功率计和射频功率传感器。
2. 射频频谱分析:射频频谱分析用于分析射频信号在频率上的变化情况。
常用的仪器包括射频频谱分析仪和扫频仪。
3. 射频网络分析:射频网络分析用于测量射频电路的传输特性(如反射系数、传输系数等)。
常用的仪器包括网络分析仪和隔离器。
五、总结通过本次射频基础知识培训,我们了解了射频信号的特性、射频电路设计和射频测量等内容。
掌握这些基础知识对于从事射频相关工作或研究具有重要意义。
我们将进一步深入学习射频技术并应用于实际项目中,提升我们的专业能力和水平。
(以上文字仅供参考,具体内容可根据实际情况进行添加或修改)。
射频基本知识及参数培训资料
![射频基本知识及参数培训资料](https://img.taocdn.com/s3/m/b00af20b0a4c2e3f5727a5e9856a561252d32103.png)
射频基本知识及参数1.信号、载频与信道1)信号(signal)•也就是信息,如声、光、电、图象等,移动通信中主要是电信号•按频率可分基带信号和频带信号•移动通信中主要分模拟信号和数字信号常见的模拟系统——TACS›E-TACS、AMPS数字系统——GSM、、DCS›CDMA2)载频/载波(carrier)由于基带信号频率低,不能进行远距离传输,所以需要将其调制到高频信号上,形成高频调制波,这种高频信号即载频(或载波);3)信道(channel)①在模拟系统中,载频与信道是相同的,一个载频即一个信道;②而数字系统中,载频与信道不同,GSM的一个载频有8个信道,而IS-95系统的CDMA的一个载频有64个信道。
2.电磁波的分类3.射频参数介绍3. 1.dBm、dBw、dBv/dB、dBc>dBi、dBd以上前的单位表示绝对值,后面的为相对值1)dBm是相对于ImW基准的绝对电平dBm=101g(Pmw∕lmW)OdBm——ImW2)dBw是相对于IW基准的绝对电平dBw=101g(Pw∕lW)OdBw——IW3)dBv是相对于IV基准的绝对电平dBv=201g(Pv∕lV)OdBv——IV4)dB是表示两个绝对值之间的差值IOdBm-5dBm=5dB5)dBc是特指某个绝对值与载频(Carrier)之间的差值6)dBi用于天线增益,表示某种天线相对点源天线的增益7)dBd也是用于天线增益,表示某种天线相对偶极振子天线的增益3.2.工作频带BW及带内波动(ripple)1)通常对于设备来说,工作频带一般是指-3dB带宽(BW∙3dB),如下图,即比最大增益小3dB的两点之间的频率宽度,也常见BW-6odB等;而对于器件,可能会是BWidB;2)带内波动是指规定频带内最大增益与最小增益之间的差值3.3.IdB压缩点(Ri)IdB压缩点是指增益下降IdB时,设备的输出功率,表示设备的线性范3.4.噪声系数(Nf)噪声系数是指噪声的恶化程度,定义为输出信噪比与输入信噪比的差值,可以以以下方法计算:Nt-Pno-Pni-GPno输出噪声电平Pni输入噪声电平G设备增益3.5.阻抗匹配、回波损耗(returnloss)和驻波比(VSWR)D信号通过介质传输时有三种状态:①无反射状态一一称为行波,完全匹配②全反射状态一一称为驻波,完全不匹配③行驻波状态一一不完全匹配2)通常的信号传输都是行驻波状态,具有以下参数:①反射系数P=反射波Vr/入射波Vi②驻波比VSWR=(1+P)/(I-P)③回波损耗returnloss=201gP3.6.三阶互调(ImPC)和三阶截获点(Ip3)多个载波进入设备后,由于放大器的非线性,将产生互调干扰,一般我们用两载波状况进行分析:假定两载波的频率为fl和f2,Ai为互调产物总和(工程上一般取所有互调产物的最强点),Ai=∑mfl+nf2(式中m、n为正数),则互调产物定义为ImPC=Ai-AfI (或Af2,取较小者);在各类互调中三阶互调对系统的影响最大,其次是五阶互调,三阶互调图示如下:从图中可以看出,两个载波会产生两个三阶互调产物,而且这四个频率是等距的;而三阶截获点Ip3是用于表示设备的线性能力,三阶截获点越大,设备的线性范围越大;根据上图,三阶截获点的计算公式为:Ip3=Po+∣Impc ∣∕23.7.隔离度(isolation)隔离度是指设备的信号泄漏到其它不希望到达的端口的信号强度与原信号强度的差值;隔离度不好,将对设备或系统产生恶劣影响,如对于空间直放站,收发天线隔离度不够,直放站会产生自激;对于多频室内分布系统(尤其是有CDMA 与GSM 合路的),系统隔离度不够,会影响网络质量,更严重的会阻塞基站,无法通话。
射频基本知识
![射频基本知识](https://img.taocdn.com/s3/m/404d538bb9f67c1cfad6195f312b3169a551ea5b.png)
射频基本知识目录1. 射频概述 (2)1.1 射频定义与特点 (3)1.2 射频应用领域 (4)1.3 射频技术发展历史 (5)2. 射频信号及其特性 (6)2.1 电磁波与射频波 (7)2.2 频率范围与波长 (8)2.3 电磁波的时域和频域特性 (9)2.4 功率测量与单位 (10)2.5 幅度调制与相位调制 (12)3. 射频电路 (13)3.1 阻抗与反射系数 (14)3.2 匹配电路 (15)3.3 功率放大器 (16)3.4 滤波器与调谐电路 (17)3.5 衰减器与分频器 (19)4. 射频设备与系统 (20)4.1 信号源与检测器 (22)4.2 无线传输系统 (23)4.3 通信系统 (24)4.4 雷达系统 (25)4.5 测试与测量设备 (26)5. 射频技术应用案例 (28)5.1 5G 通信技术 (29)5.2 物联网应用 (30)6. 射频技术未来发展趋势 (31)1. 射频概述射频(Radio Frequency,简称RF)通信技术是现代通信的重要组成部分,它涉及无线电波的传输。
射频技术是通过发射机和接收机之间的无线电波来传输信号的,这些信号用于各种通信应用,如无线广播、移动通信系统、卫星通信和无线网络等。
在射频领域中,电磁波被用来承载信息,从简单的调幅(AM)广播到复杂的数字广播以及移动电话网络的高速数据传输,射频技术无处不在。
射频信号的特征可以从它们的波长和频率来描述,通常情况下,射频波的波长介于几厘米到几米之间,对应的频率范围从大约30 kHz 到300 GHz。
这个宽度频段使得射频技术可以涵盖从低频的无线电广播到高频的微波和无线宽带通信等多个应用领域。
射频系统通常包括调制和解调两个关键步骤,调制是将低频基带信号转换成高频的射频信号,使得信号可以通过无线电波传播。
这个过程涉及将基带信号的特性(如幅度和频率)嵌入到一个更高的射频载波上。
解调则在接收端进行,是将射频信号转换回可识别的低频信号,以便于进一步处理。
射频(rf)器件基础知识培训
![射频(rf)器件基础知识培训](https://img.taocdn.com/s3/m/c1a38f7676c66137ee0619cc.png)
2020/1/25
射频器件基础知识
16
2端口网络的S参数
• S11为放大器的输入 反射系数
• S21为放大器的增益 • S22为放大器的输出
反射系数 • S12为放大器的反向
隔离度
2020/1/25
射频器件基础知识
17
射频电路基础 ——非线性失真
• 什么是线性失真? • 什么是非线性失真? • 非线性失真的主要指标
2020/1/25
射频器件基础知识
31
射频小信号放大器 ——工作原理
B
Channel Stop
E
B
C
Metal 2
Metal1
Field Oxide Subcollector
C deep
P-Substrate 20 cm
2020/1/25
Only Difference
Base - SiGe replaces Silicon
2020/1/25
射频器件基础知识
22
射频电路基础 ——功率
• 射频信号的功率常用dBm、dBW表示, 它与mW、W的换算关系如下:
• 例如信号功率为x W,利用dBm表示时其大
小为:
p( dBm)
10log x1000
1
• 例如:1W等于30dBm,等于0dBW。
2020/1/25
射频器件基础知识
• IP3
• 任一微波单元电路,输入信 号增加1dB,输出三阶交调 产物将增加3dB,这样输入 信号电平增加到一定值时, 输出三阶交调产物与主输出 信号相等,这一点称为三阶 截止点
• PndB
• ndB压缩点用来衡量电路输 出功率的能力
RF射频技术培训教材课件
![RF射频技术培训教材课件](https://img.taocdn.com/s3/m/490d9390b8f3f90f76c66137ee06eff9aef84903.png)
• 实物图
电容、电感
放大管
• 放大管主要用来放大射频信号,它与电压、 电流、频率、放大倍数、输入输出功率等 有关。
射频开关
• 射频开关 用来控制转换射频信号的传输方 式,通常是由电压的高低来控制的。
滤波器
• 滤波器主要用来过滤频率,只允许有用的 频率通过,滤除或衰减其他没用的频率。
隔离器
• 主要用对信号输出进行隔离,它具有方向 性,只允许信号通过,不许信号返回。
• 我们都听说过静电,那到底什么是静电呢? • 静电(Electrostatic)就是物体表面过剩或不足的
静止电荷。静电是一种电能,它留存于物体表面: 静电是正电荷和负电荷在局部范围内失去平衡的 结果:静电是通过电子或离子的转移而形成的。
• 静电是无处不在的,它会随着环境、空间和时间 的转移而改变。
• 其实很多静电问题都是由于人们没有ESD(静电放电)意 识而造成的,即使现在也有很多人怀疑ESD会对电子产品
静电损害
• 静电的基本物理特性为:吸引或排斥,与大地有电位差, 会产生放电电流。
• 静电的基本物理特性对器件的影响: 1.静电吸附灰尘,降低元件绝缘电阻(缩短寿命)。 2.静电放电破坏,使元件受损不能工作(完全破坏)。 3.静电放电电场或电流产生的热,使元件受伤(潜在损 伤)。 4.静电放电产生的电磁场幅度很大(达几百伏/米)频谱 极宽(从几十兆到几千兆),对电子产器造成干扰甚至损 坏(电磁干扰)
们用收音机收听的广播、电视节目、手机打电话等。 • 无线电波传输速度是非常快的,达到30万公里/秒。 • 无线电波的传输方式:
1)地波,这是沿地球表面传播的无线电波。 2)天波,也即电离层波 ,无线电波进入电离层时其方向会发生改变, 出现“折射” 。 3)空间波,由发射天线直接到达接收点的电波,被称为直射波。 4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被 12/23/2023这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是 2
《射频基础知识培训》课件
![《射频基础知识培训》课件](https://img.taocdn.com/s3/m/389a8b64182e453610661ed9ad51f01dc3815752.png)
射频功率放大器: 用于放大射频信 号的功率
射频天线:用于 发射和接收射频
信号
射频开关:用于 控制射频信号的
传输路径
直射传输:信号直接传播到接收端,适用于近距离通信 反射传输:信号通过反射物体传播到接收端,适用于远距离通信 散射传输:信号通过散射物体传播到接收端,适用于复杂环境通信 绕射传输:信号绕过障碍物传播到接收端,适用于障碍物较多的环境通信
GPS:全球定位系统,利用 卫星信号进行定位和导航
北斗:中国自主研发的全球 卫星导航系统,提供定位、 导航和授时服务
伽利略:欧洲研发的全球卫 星导航系统,提供定位和导 航服务
格洛纳斯:俄罗斯研发的全 球卫星导航系统,提供定位 和导航服务
区域导航系统:如美国的 WAAS、日本的MSAS等, 提供区域范围内的定位和 导航服务
调制方式:射频信号可以通过幅度、 频率、相位等多种方式进行调制
添加标题
添加标题
添加标题
添加标题
传播方式:射频信号可以通过空气、 电缆、光纤等多种介质进行传播
应用领域:射频信号广泛应用于无 线通信、广播电视、雷达、卫星通 信等领域
射频放大器:用 于放大射频信号
射频滤波器:用 于滤除不需要的
频率成分
射频混频器:用 于将射频信号转
射频振荡器是产生射频信号的电子设备 工作原理:通过振荡电路产生高频信号,然后通过放大器放大信号 振荡电路:由电容、电感、电阻等元件组成,通过调整元件参数可以改变信号频率 放大器:将振荡电路产生的信号放大,以满足传输或接收的要求 射频信号:高频电磁波,用于无线通信、雷达、广播电视等领域
射频放大器是射频电路中的关键部件,用于放大射频信号 射频放大器的工作原理主要是通过改变射频信号的频率和相位来实现信号的放大 射频放大器通常采用晶体管、场效应管等半导体器件作为放大元件 射频放大器的性能指标包括增益、噪声系数、线性度等
射频基础知识培训
![射频基础知识培训](https://img.taocdn.com/s3/m/96a82d836c175f0e7cd137b2.png)
第一章 无线通讯的基本概念
3、甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)
的电磁波。无线通信中使用的甚长波的频率为10~30kHz, 该波段的电磁波可在大地与低层的电离层间形成的波导中 进行传播,距离可达数千公里乃至覆盖全球。 4、长波(低频LF)传播
长波是指波长1公里~10公里(频率为30~300kHz)的 电磁波。其可沿地表面传播(地波)和靠电离层反射传播 (天波)。 5、中波(中频MF)传播
第一章 无线通讯的基本概念
四、短距离无线通讯 (SDR) 常用频段 无线微功率短距离产品基于国际上通用的ISM
波段进行频率的划分,其工作的输出功率一般以 10mW 为限,目前国际上通用的U/V 段的ISM 波段 大致划分如下: 1、北美地区: 315MHZ 和 915MHZ, 902~928MHZ (某些产品也可使用433MHz频段)。 2、欧盟地区: 433MHZ 和 868MHZ其他还有日 本和澳大利亚的一些频段。 目前我国的频率使用状况大致如下:
第一章 无线通讯的基本概念
800M 和900M 频段目前已经被GSM 的蜂窝 移动网所占用,绝大部分的产品都工作在 433MHZ(433.05-434.79 MHz)左右, 315M频段 是早期的无线遥控的产品的主要频段,因此在该 段的无线电磁环境是相当的复杂的,进行无线的 数据传输是不太可靠的,433M频段目前由于很多 新的汽车的遥控器目前也逐步使用该频段,因此 也正在变得越来越复杂, 针对这种情况,并且随 着水、电、气等公用事业的计量数据采集的需求 的急剧发展,国家无线电管理部门释放了两个免 申请的无线计量频段(470-510M)。专门用于民 用计量设备的无线数据传输。
将电信息源(模拟或数字的)用高频电流进 行调制(调幅或调频),形成射频信号,经过天 线发射到空中;远距离将射频信号接收后进行反 调制,还原成电信息源,这一过程称为无线传输。
射频培训资料
![射频培训资料](https://img.taocdn.com/s3/m/9d1155830408763231126edb6f1aff00bed570a2.png)
射频培训在当今快速发展的通信行业中,射频技术扮演着至关重要的角色。
射频技术涉及信号处理、天线设计、射频电路等多方面的知识,对于工程师和技术人员来说,掌握射频技术是必不可少的。
为了提升技术人员的射频技能水平,射频培训显得尤为重要。
为什么选择射频培训射频技术的复杂性需要专业的知识和实践经验来掌握,射频培训可以帮助学员建立扎实的技术基础,掌握射频设计和调试的技能。
通过系统的培训,学员可以更好地理解射频系统的原理和工作方式,熟练掌握射频电路的设计和优化方法。
射频培训内容射频培训通常包括以下内容:1.射频基础知识:介绍射频信号的特点、传输原理和频段等基础知识。
2.射频电路设计:讲解射频放大器、混频器、滤波器等电路的设计原理和方法。
3.射频天线设计:介绍不同类型的射频天线的设计原理和优化方法。
4.射频系统调试:教授射频系统的调试技巧和实践经验,帮助学员提高问题排查和解决能力。
射频培训的优势•系统性:射频培训内容系统全面,从基础知识到实践技能都有涵盖,有利于学员建立完整的射频技术体系。
•专业化:射频培训师资力量雄厚,授课老师均有丰富的实践经验和专业知识,能够为学员提供高质量的培训服务。
•实践性:射频培训通常会结合实际项目或案例进行教学,学员可以通过实际操作来巩固所学知识,更好地掌握技能。
结语射频技术作为通信领域的核心技术之一,对于通信行业的发展至关重要。
通过专业的射频培训,技术人员可以提升自己的射频技能水平,为公司在竞争激烈的市场中脱颖而出提供有力支持。
选择一家专业的射频培训机构,系统学习和实践射频技术,将会对个人职业发展产生积极影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调制
提高抗干扰能力 便于远距离传输 硬件设施 u=Asin(2πft+φ) 调频 FM 调幅 AM 调相 PM
GSMK调制方式 调制方式
GMSK(GPRS) 调制前高斯滤波的最小频移键控简称 GMSK,基本的工作原理是将基带信号先 经过高斯滤波器成形,再进行最小频移键 控(MSK)调制。由于成形后的高斯脉冲包 络无陡峭边沿,亦无拐点,因此频谱特性 优于MSK信号的频谱特性。
TD-SCDMA校准项目 校准项目
AGC AFC APC
结束!
GSM测试项目 测试项目
频率误差 相位误差 发射功率 功率/时间特性 调制频谱 灵敏度 其他:信道抑制、杂散辐射等
GSM校准项目 校准项目
频率误差 AGC 功率 检测功率 检测PVT
TD-SCDMA测试项目 测试项目
最大功率、最小输出功率、发射关功率表 频率误差 0.1ppm 上行开/闭环功率控制 占用带宽 1.6 MHz PVT 频谱辐射模板 EVM /PCDE峰值码域误差 BER\、DCS1800、PCS1900 波长、穿透率、传输距离、功率 通道: GSM900(880-890-915MHZ) 25M/200K=125(0-124) 10M/200K= 50 (975-1024) DCS1800(1710-1785MHZ) 75M/200K=375(512-885)
8PSK调制 调制
相对于GPRS技术的单一调制方式:GMSK (高斯最小频移键控),E-GPRS技术支 持两种调制方式:GMSK、8-PSK(8相 移键控)。GMSK在每一个符号(symbol )调制一个比特,而8-PSK在每一个符号 上调制了三个比特,提高了数据传输速 率。8-PSK符号速率和burst长度与GSM一 致,保证了空中接口的一致性。在8-PSK 调制中,输出功率随输入功率成线性比 例变化,