遥感的物理基础1

合集下载

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析遥感原理与应用习题第一章遥感物理基础一、名词解释1遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。

2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。

3电磁波:电磁波(又称电磁辐射)就是由同相震荡且互相横向的电场与磁场在空间中以波的形式移动,其传播方向旋转轴电场与磁场形成的平面,有效率的传达能量和动量。

电磁辐射可以按照频率分类,从高频率至高频率,包含存有无线电波、微波、红外线、红外线、紫外光、4电磁波五音:把各种电磁波按照波长或频率的大小依次排序,就构成了电磁波五音5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。

7绝对温度:热力学温度,又叫做热力学温标,符号t,单位k(开尔文,缩写上开)8色温:在实际测量物体的光谱电磁辐射通量密度曲线时,常常用一个最吻合灰体电磁辐射曲线的黑体电磁辐射曲线做为参考这时的黑体电磁辐射温度就叫做色温。

9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。

10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。

11光谱反射率:物体的散射电磁辐射通量与入射光电磁辐射通量之比。

12波粒二象性:电磁波具备波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。

问答题1黑体电磁辐射遵从哪些规律?(1由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度w随温度t的增加而迅速增加。

(2绝对黑体表面上,单位面积升空的总辐射能与绝对温度的四次方成正比。

(3黑体的绝对温度增高时,它的电磁辐射峰值向短波方向移动。

(4不好的辐射体一定就是不好的吸收体。

(5在微波段黑体的微波辐射亮度与温度的一次方成正比。

2电磁波五音由哪些相同特性的电磁波段共同组成?遥感技术中所用的电磁波段主要存有哪些?a.包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b.微波、红外波、可见光3物体的电磁辐射通量密度与短萼有关?常温下黑体的电磁辐射峰值波长就是多少?(1与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。

遥感物理基础

遥感物理基础

X
10-6m 1nm 0.38m 0.76m 3m 6m 15m 1mm 1m
紫可近中远超微无
射射 外 见 红 红 红 远 波线
线线 线 光 外 外 外 红



1mm=1000 m;1m=1000nm
电磁波谱的划分
紫外波段 可见光波段
紫色光 蓝色光 青色光 绿色光 黄色光 橙 色光 红色光 近红外(摄影红外)波段 近红外(反射红外)波段 中红外波段(热红外)
❖ 灰体:0< α <1,α不随波长而变 化。
❖ 选择性辐射体: 0< α <1,α随 波长而变化。
概念——辐射度量
❖ 辐射能量(W):电磁辐射的能量,单位J。 ❖ 辐射通量(Φ):单位时间内通过某一面积的
辐射能量,Φ=dW/dt,单位W。辐射通量是波长 的函数,总辐射通量是各谱段辐射通量之和或 辐射通量的积分值。 ❖ 辐射通量密度(E):单位时间内通过单位面 积的辐射能量,E=dΦ/dS,单位W/M2,S为面 积。
普朗克公式表示出了黑体辐射通量密度与温 度的关系及按波长分布的情况。反映黑体 辐射的三个特性:
E0
6000K 3000K
❖ 辐射通量密度随波长连续变化,温度一定 时,辐射通量密度随波长变化的曲线只有 一个最大值
1000K 200K
❖ 温度越高,辐射通量密度也越大,不同温
度下的曲线不相交。
❖ 随着温度的升高,辐射最大值所对应的波 长向短波方向移动。
由上式可见(在遥感技术上的意义): ❖ 绝对黑体表面上,单位面积发出的总辐射能
与绝对温度的四次方成正比,对于一般物体, 可用上式概略推算出总辐射能与绝对温度的 关系。 ❖ 黑体总辐射通量密度与温度的四次方成正比, 因而随温度的增加迅速增大——红外测温的 理论依据。

遥感复习总结

遥感复习总结

遥感复习总结遥感复习总结(⽶杏当年⾃⼰总结的哈,标红是重点,当年还是很多考到了的,不过重点还是看那份卷⼦,绝⼤部分考原题,还有⼀定⼀定要重视最后⼀次实验,当年最后⼀道题就是考最后⼀次实验,还有复习的时候也把每次的实验看⼀下)第⼀章:绪论⼀、遥感的基本概念即遥远的感知。

利⽤探测仪器,在不直接接触的情况下,收集⽬标或⾃然现象的电磁波信息,对电磁波信息进⾏处理和分析,从⽽获取事物特性的综合性探测技术。

⼆、遥感系统包括被测⽬标的信息特征、信息的获取(遥感平台、遥感器)、信息的传输与记录(信息传输和接收设备)、信息的处理(图像处理设备)和信息的应⽤⼯作原理:⽬标地物通过发射、反射(太阳辐射)和回射(雷达)作⽤发出电磁波信号,装载在遥感平台上的遥感器接受和获取信息源的电磁波信号,记录在数字磁介质或胶⽚上,送⾄地⾯回收或传输给地⾯的卫星接收站,进⾏⼀系列的信息处理(如光学处理、计算机处理、解译),转换成可供⽤户使⽤的数据格式。

三、遥感的分类☆按遥感平台分类:近地⾯遥感、航空遥感、航天遥感。

☆按传感器的探测波段分类:紫外、可见光、红外、微波。

☆按⼯作⽅式分类:主动遥感:由探测器主动发射⼀定电磁波能量并接收⽬标的反向散射信号。

被动遥感:传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量。

☆按资料记录形式分类:成像⽅式、⾮成像⽅式。

☆按应⽤领域分类:陆地遥感、海洋遥感、农业遥感、城市遥感……四、遥感的特点☆感测范围⼤,具有综合、宏观的特点。

☆信息量⼤,具有⼿段多,技术先进的特点。

☆获取信息快,更新周期短,具有动态监测特点。

☆遥感还具有⽤途⼴,效益⾼的特点。

五、遥感技术发展简况遥感技术发展趋势:3 全(全天候、全天时、全球)3 ⾼(⾼空间、⾼光谱、⾼时间分辨率)3个结合(⼤-⼩卫星,航空-航天,技术-应⽤)六、遥感技术应⽤领域:林业、农业、⽔⽂与海洋产业、国⼟资源、⽓象、环境监测、测绘、城市、考古、军事、突发事件等。

遥感物理基础电磁波与电磁波谱

遥感物理基础电磁波与电磁波谱

第二章遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。

由于不同物体具有各自的电磁波反射或辐射特性,才可能应用遥感技术探测和研究远距离的物体。

理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。

本章重点是掌握可见光近红外、热红外和微波遥感机理,以及地物波谱特征。

图2-1第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1. 电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。

当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。

2. 电磁辐射电磁场在空间的直接传播称为电磁辐射。

1887 年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。

装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影像。

3. 电磁波谱γ射线、X 射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。

目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。

可见光区间辐射源于原子、分子中的外层电子跃迁。

红外辐射则产生于分子的振动和转动能级跃迁。

无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。

微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。

由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。

可见光、红外和微波遥感,就是利用不同电磁波的特性。

电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。

图2-2电磁辐射的性质4. 电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。

遥感的物理基础

遥感的物理基础


反射现象:电磁波在传播过程中,通过两种介 质的交界面时会出现反射现象,反射现象出要 出现在云顶(云造成噪声)。
遥感基础与应用
大气窗口

不同波段的电磁波受到大气的衰减作用轻重不 同。

电磁波通过大气层时较少被反射,吸收和 散射的,透射率较高的波段称为大气窗口。
遥感传感器选择的探测波段应包含在大气窗口 之内。
(2) 地物的发射光谱特性

同一地物,其表面粗糙或颜色较深的,发射率 往往较高,反之,发射率则较小。

比热大,热惯量大,以及具有保温作用的地物, 一般发射率大,反之发射率就小。
例如水体,在白天水面光滑明亮,表面反射强 而温度较低,发射率亦较低;而夜间,水的比 热大,热惯量也高,故而发射率较高。

遥感基础与应用
结果输出(图、表)
接收 预处理
用户处 理应用
遥感基础与应用
太阳辐射曲线
太阳辐射的能量主要集中 在可见光,其中0.38 ~ 0.76 µ m的可见光能量占太阳辐射 总能量的46%,最大辐射强 度位于波长0.47 µ m左右; 到达地面的太阳辐射主要 集中在0.3 ~ 3.0 µ m波段,
包括近紫外、可见光、近

土壤含水量增加,土壤的反射率就会下降,在 水的各个吸收带(1.4um、1.9um、2.7um处附近 区间),反射率的下降尤为明显。
遥感基础与应用
三种不同类型土壤在干燥环境下的光谱曲线
水的吸收带(1.4um、1.9um、2.7um) 干燥土壤的波谱特征主要 与土壤物质组成(成土矿 物和土壤有机质)有关。 土壤含水量增加,土壤的 反射率就会下降,
遥感基础与应用
不同地物的反射波谱特征
遥感基础与应用

电磁波及遥感物理基础

电磁波及遥感物理基础
电磁辐射:这种电磁能量的传递过程(包括辐
射、吸收、反射和透射)称为电磁辐射。
电磁波的特性
1) 电磁波是横波
2) 在真空中以光速传播
3) 电磁波具有波粒二象性:电磁波在传播过
程中,主要表现为波动性;在与物质相互作用时,主 要表现为粒子性,这就是电磁波的波粒二象性。
光的波动性充分表现在光的干涉、衍射、 偏振等现象中;而光在光电效应、黑体 辐射中则显示出粒子性。
• 在遥感中常用近红外波段确定水体的位置和轮廓, 在此波段的黑白正片上,水体的色调很黑,与周 围的植被和土壤有明显反差,很容易识别和判读。
• 在水中含有其他物质时,反射光谱曲线会发生变 化,含泥沙时,由于泥沙的散射,可见光波段发 射率会增加,峰值出现在黄红区。
不同浊度下水体的波谱特性曲线
• 水中含有叶绿素时,近红外波段明显抬升,这些 都是影像分析的重要依据。
植物
• 由于植物均进行光合作用,所以各类绿色植物具有很相似 的反射波谱特征:在可见光波段0.55um(绿光)附近有个波 峰,两侧0.45um(蓝光)和0.67um(红)则有两个吸收带。在 近红外波段0.8-10.um间有一个反射的陡坡,至1.1um附近 有一个峰值,形成植被的独有特征。在近红外波段1.32.5um受到绿色植物含水量的影响,吸收率大增,反射率 大大下降,特别是以1.45、1.95、2.7um为中心是水的吸收 带,形成低谷。
度、速度、测量地形等。
自然辐射源(被动式遥感的辐射源)
➢ 太阳辐射:是可见光和近红外的主要辐射源;
常用5900的黑体辐射来模拟;其辐射波长范围 极大;辐射能量集中-短波辐射,即0.3-2.5um。 大气层对太阳辐射的吸收、反射和散射。
➢ 地球的电磁辐射:小于3 μm的波长主要是太

遥感原理及应用总结

遥感原理及应用总结

绪论第一章遥感物理基础Chapter 1 Physical basis of remote sensing电磁波:在真空或物质中通过传播电磁场的振动而传输电磁能量的波。

(在真空或介质中传播的交变电磁场)电磁波是通过电场和磁场之间相互联系和转化传播的,是物质运动能量的一种特殊传递形式。

原子光谱、分子光谱和晶体光谱波粒二象性:1 波动性:表现出干涉、衍射、偏振等现象。

一般成像只记录了电磁波的振幅,只有全息成像时才同时记录振幅和相位,在遥感成像时,只有雷达成像是如此。

干涉的影响:利—利用能量增大的趋势使图像清晰,方向性强;弊—造成同一物质所表现的性质不同SAR成像时,斑点的产生就是由于电磁波的干涉引起的。

衍射的影响:(1)使电磁辐射通量的数量、质量和方向都发生变化,结果测量不准确,对目标物的解译也带来困难。

(2)缩小阴影区域。

(3)影响遥感仪器的分辨能力。

光的偏振现象说明光波是横波,在微波技术中称为“极化”。

多普勒效应:电磁辐射因辐射源或观察者相对于传播介质的移动,而使观察者接受到的频率发生变化的现象。

2 粒子性的基本特点是能量分布的量子化光电效应应用:扫描成像、电视摄像等,把光像变成电子像,把对人眼无作用的电磁辐射变成人们可以看见的影像。

3、波粒二象性的关系电磁波的波动性与粒子性是对立统一的,E(能量)、P(动量)是粒子的属性,υ(频率),λ(波长)是波动的属性,二者通过h联系起来。

光的波动性和粒子性是光在不同条件下的不同表现:从数量上看:少量光子的运动表现出粒子性;大量光子的运动表现出波动性。

从频率上看:频率高的光子粒子性强,频率低的光子波动性强。

当光和其它物质发生相互作用时表现为粒子性,当在传播时表现为波动性。

为什么说遥感的物理基础是电磁波理论?➢不同地物电磁波特性不同(表现为不同颜色,不同温度)➢传感器接收的是电磁波➢数据传输是电磁波➢数据处理的是地物电磁波信息➢应用的是地物电磁波特性电磁波谱:将电磁波在真空中按照波长或频率的依大小顺序划分成波段,排列成谱。

遥感原理与应用-第1章

遥感原理与应用-第1章

图1-5 几种温度下的黑体波谱辐 射曲线
从上式可以看出:绝对黑体表面上,单位面积发出的总辐射能 与绝对温度的四次方成正比,称为斯忒藩-玻耳兹曼公式。
12
黑体辐射特性
• 分谱辐射能量密度的峰值波长随温度的增加向短波方向移动。 可微分普朗克公式,并求极值。
维恩位移定律:
温度 波长 300 9.66 500 5.80 1000 2.90 2000 1.45 3000 0.97 4000 0.72 5000 0.58 6000 0.48 7000 0.41
27
瑞利散射中,散射强度与波长的关系
I ∝ E s' ∝
2
sin 2 θ
λ4
蓝光散射较强 红光散射较弱
为什么微波具有穿透云雾的能力?
28
(2)大气对太阳辐射的反射
• 由于大气中有云层,当电磁 波到达云层时,就象到达其 他物体界面一样,不可避免 的要产生反射现象,这种反 射同样满足反射定律。而且 各波段受到不同程度的影 响,削弱了电磁波到达地面 的程度。因此应尽量选择无 云的天气接收遥感信号。
7
可见光的范围 紫 0.38~0.43μm 蓝 0.43~0.47μm 青 0.47~0.50μm 绿 0.50~0.56μm 黄 0.56~0.59μm 橙 0.59~0.62μm 红 0.62~0.76μm
• • •
电磁波谱的范围非常宽,从波长最短的γ 射线到最长的无线电波,波长之比高达 1022倍以上 遥感采用的电磁波段可以从紫外线一直到 微波波段 遥感就是根据感兴趣的地物的波谱特性, 选择相应的电磁波段,通过传感器探测不 同的电磁波谱的发射或反射辐射能量而成 像的。
24

气溶胶的来源
• 自然:

遥感教案 1第一章 电磁波及遥感物理基础

遥感教案 1第一章 电磁波及遥感物理基础

遥感概念的理解

遥感:遥远的感知,是在不直接接触的情况下,对 目标或自然现象远距离探测和感知的一种技术. 一般指的是电磁波遥感.
全球昼夜温差
98年长江洪水的遥感监测 (雷达与TM影象的复合)
北京地区4米遥感影图 (美国SPACE IMAGE 公司的IKONOS卫星)
北京地区1米遥感影象图 (同时也发布了北朝鲜导弹基地的 1米影象图)




.平流层(stratosphere) 厚度 从对流层顶向上,一直到55km左右为平 流层。这一层集中了大气中的大部分臭氧, 空气密度很小。 气温随高度而升高;平流层顶气温可达3 —-17℃ 空气以水平运动为主,气流运行平稳,没 有强烈的对流 水汽和尘埃很少,很少有云,透明度好



4.热层(thermosphere) 从中 间层顶向上,到大约800km左右为热层 (又称热成层、暖层)。其主要特点有: 气温随高度而升高;300km处气温可达 1000℃,顶部可高达2000℃ 空气在强烈的太阳紫外线与宇宙射线作用 下处于高度电离状态,故又称为电离层 (ionosphere)
M B (T) = 0 M Bl (T) dl
由实验及理论都可以得到斯忒藩—玻尔兹曼定律

M B (T ) = s T
s=
8
4
2 4
5.67 10 w.m .K
推导2 维恩(Wien)位移定律
M B(T) 最大值所对应的波长为 λ λ
维恩位移定律:
M Bλ(T)
m

m
=
b
-3
b = 2.897 10 m . K
C 同类地物的反射光谱具有相似性,但也 有差异性。(不同植物)并且地物的光 谱特性具有时间特性和空间特性。

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。

三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。

1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。

3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。

遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。

由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。

由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。

可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。

微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。

②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。

微波越长,穿透能力越强。

4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。

黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。

遥感原理与应用---第一章 电磁波及遥感物理基础

遥感原理与应用---第一章  电磁波及遥感物理基础
13/13
0.253cm,0.5cm 微波处有吸收 0.3μm以下的紫外区域 0.7~1.95μm, 2.5~3μm,4.9~8.7 μm,15μm~1mm,全部在红外区域。 2.6~2.8μm, 4.1~4.45μm,9.1~ 10.9μm,12.9 ~ 17.1μm 吸收量很小
11/14
遥感原理与应用
§1.2 大气的散射
14/14
遥感原理与应用
本课安排 1.3 地物的反射辐射 1.4 地物波谱特性测定
重点内容 地物波谱特性曲线 绿色植物波谱特性曲线 地物波谱特性曲线作用
1/13
遥感原理与应用
§1.3 地物的反射辐射
反射率:反射辐射通量/入射辐射通量反射率是 在理想漫反射情况下,整个电磁波长的反射率。
绿叶反射特点:红、蓝光被光合作用所吸收; 绿色被吸收一部分,反射一部分,所以叶子呈 绿色;在近红外波段上形成强反射。 反射波谱:物体的反射率随波长变化的规 律。又称为反射波谱特性曲线。
普朗克辐射定律:
M (T )
2hc2
5
1 exp(hc / kt) 1
黑体辐射波谱曲线: 5/14
遥感原理与应用
§1.2 物体的发射辐射
黑体的波谱辐射曲线特性
特性1:总辐射通量密度与温度T4次方成正比
斯特藩-波耳兹曼定律 :M (T ) T
4
特性2:峰值波长随温度的增加向短波方向移动
遥感原理与应用
§1.2 一般物体的发射辐射
发射率 W /W 1 1、绝对黑体 2、绝对白体 0 0 1 3、灰体 f ( ) 4、选择性辐射体 一般物体发射辐射特点 1、大多数物体可近似为灰体 2、任何材料发射率=其吸收率( ) 3、对于不透射物体, 1; 1

遥感物理基础1

遥感物理基础1

第一章电磁波及遥感物理基础主要介绍:1 电磁波和电磁波谱2 物体的发射辐射(电磁波辐射源——黑体、太阳、一般物体)3 物体的反射辐射4 大气对辐射的作用(辐射传输方程)5 地物波谱特征及测定一切物体因其种类、特征和环境条件的不同,而具有完全不同的电磁波反射与发射辐射特性,遥感即建立在物体反射与发射电磁波的原理之上1.1 电磁波和电磁波谱1.1.1 电磁波波:是振动在空间的传播。

如声波、水波、地震波等。

机械波:振动的是弹性媒质中质点的位移矢量。

电磁波:电场矢量和磁场矢量在空间的传播。

])sin[(ϕ+−ω=ψkx t A 波函数由振幅和位相组成,一般遥感器仅仅记录电磁波的振幅信息,丢失位相信息。

全息摄影中,同时记录了振幅信息和相位信息。

雷达遥感也要记录相位信息波函数:λ/hc hv E ==λ/h P =动量:P 能量:Eh : 普朗克常数,6.6260755×10-34J sc : 光速;v : 频率能量和动量是粒子属性,频率和波长是波动属性。

可见光,红外线;微波和无线电波;紫外线和X射线Y射线。

电磁波的粒子性电磁波的叠加原理当两列波在同一空间传播时,空间上各点的振动为各列波单独振动的合成。

任何复杂的电磁波都可以分解成许多比较简单的电磁波;比较简单的电磁波也可以合成为复杂的电磁波。

(白光的色散和合成,计算机显示器的工作原理,混合像元的分解)d物镜的有效孔径也是进行一些遥感图像处理(如图像平滑等)的依据•电磁波遇到“狭缝”的障碍物时,能够通过狭缝地振动分量,称为电磁破的偏振。

偏振光,非偏振光,部分偏振电磁波的多普勒效应电磁波因辐射源(或者观察者)相对于传播介质的运动,而使观察者接受到的频率发生变化,这种现象称为多普勒效应。

类似声波的多普勒效应。

(合成孔径雷达的工作原理)1.1.2电磁波谱按照电磁波的波长(频率的大小)长短,依次排列支撑的图表,成为电磁波谱。

(图1-3)1.1.2电磁波谱(续)传播的方向性、穿透性、可见性、颜色不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 遥感的物理基础
本章主要介绍遥感的物理基础, 论电包 气基磁遥括对础波感电 太上反技的射磁 阳术。或是波 辐由辐建特 射于射立性 的不特在同性影、物物,体响太体才电阳、具可磁大辐有能波各应气射辐自用射、窗的遥理大口 感的技概术念探测、和地研物究反远距射离太的阳物光体。谱理的解特 并性掌、握地物物的的电热磁辐波发射射、、地反物射、与散微射波
3) 电磁波具有波粒二象性:
电磁波在传播过程中,主要表现为波动性; 在与物质相互作用时,主要表现为粒子性, 这就是电磁波的波粒二象性。
5
思考: 电磁波谱是什么? 电磁波的来源? 太阳光中是否有YX射线?
二、电磁波谱
1.电磁波谱:
7
电磁波谱
The Electromagnetic Spectrum
1).自然辐射源 ● 太阳辐射:是可见光和近红外的主要辐射
源;常用5900K的黑体辐射来模拟;其辐射波 长范围极大;辐射能量集中-短波辐射。大气 层对太阳辐射的吸收、反射和散射。
●地球的电磁辐射:小于3 μm的波长主要是
太阳辐射的能量;大于6 μm的波长,主要是 地物本身的热辐射;3-6 μm之间,太阳和地 球的热辐射都要考虑。
2) 微波辐射比红外辐射弱得多,但技术上 可以经过处理来接收。
第二节 太阳辐射及大气对辐射的影响
(1) 太阳辐射 (2) 大气作用 大气的成分与结构 大气吸收 大气散射 大气窗口 大气透射的定量分析
分析结果、图表 输出
接收 预处 理
用户应用 处理
(1)太阳辐射
太阳辐射:太阳是被动遥感主要的辐射源,又叫太
❖ 在相同的温度下,实际物体的辐射通量密度比绝对黑体要低
1)发射率(Emissivity ):地物
的辐射出射度(单位面积上发 出的辐射总通量)M与同温下 的它黑也体是辐遥射感出探射测度的M基黑础的和比出值发。 点。
影响地物发射率的因素: 地物的性质、表面状况、温
度(比热、热惯量):比热大、 热惯量大,以及具有保温作用 的地物,一般发射率大,反之 发射率就小。
More than meets the eye!
9
太阳辐射光谱 = 短波光谱
特点:可见光线(0.4~0.76μm)、红外线(>0.76μm)和紫 外线(<0.4μm)分别占50%、43%和7%,即集中于短波波 段,故将太阳辐射称为短波辐射。
特点?
13
陆地光谱
长波光谱= 红外光谱
陆地是否会辐射电磁波? 其波长范围? 特点?
特的性作,用电机磁波理的。传输特性,大气层对电
磁波传播的影响是正确解释遥感数据的
基础本。章 重 点 是 掌 握 电 磁 波 谱 , 大
气窗口,可见光、近红外、热红
外和微波遥感机理,以及地物波
Байду номын сангаас
谱特征。
1
第一节 电磁波谱与电磁辐射
一、电磁波及其特性 二、 电磁波谱 三、电磁辐射的度量 四、黑体辐射
M
M黑
按照发射率与波长的关系,把地物分为: ➢ 黑体或绝对黑体:发射率为1,常数。
➢ 灰体(grey body):发射率小于1,常数
➢ 选择性辐射体:发射率小于1,且随波长而 变化。
2) 基尔霍夫定律:在一定温度下,地物单位面积 上的黑体辐射出射度M和吸收率之比,等于该 温度下同面积黑体辐射出射度M 黑
到达地面的太阳辐射主要集中在0.3 ~ 3.0 µm波段, 包括近紫外、可见光、近红外和中红外;
经过大气层的太阳辐射有很大的衰减; 各波段的衰减是不均衡的。
(2)大气的成分
大气的传输特性:大气对电磁波的吸收、散射
和透射的特性。这种特性与波长和大气的成分
❖大有气关是。由多种气体及气溶胶所组成的混合物。
max •T b
620 K 380 K
温度 300 500 1000 2000 3000 4000 5000 6000 7000 波长 9。66 5。80 2。90 1。45 0。97 0。72 0。58 0。48 0。41
炉温的高低可以根据炉火的颜色进行判 断 ,如何判断?
明亮得发青的灼热物体比暗红的温度高;
CO2
O3 H2O
6微米 14
0.5 mm
太阳辐射: 高能量 短波辐射
地球辐射 低能量
长波辐射
6微米
15
了解太阳和地球辐射有什么意义?
传感器必须设计探测6微米以上 波长的电磁波,才能了解地物 的辐射特性
为什么紫外线探测高度要在2000m以下?
2.遥感应用的电磁波波谱段
❖ 紫外线:波长范围为0.01~0.38μm,太阳光谱中, 只有0.3~0.38μm波长的光到达地面,对油污染敏 感,但探测高度在2000 m以下。(?)
大气散射集中在太阳辐射能量最强的可见 光区。因此,散射是太阳辐射衰减的主要原因。
Scattering of EM energy by the atmosphere
不同于吸收作用,只改变传播方向,不能转变为内能。 ❖ 大气的散射是太阳辐射衰减的主要原因。 ❖ 对遥感图像来说,干扰传感器的接收;降低了传感器
➢ 对流层:高度在7~12 km,温度随高度而降低,空气明显垂 直对流,天气变化频繁,航空遥感主要在该层内。上界随纬 度和季节而变化。
➢ 平流层:高度在12~50 km,没有对流和天气现象。底部 为同温层(航空遥感活动层),同温层以上为暖层,温度由 于臭氧层对紫外线的强吸收而逐渐升高。
➢ 电离层:高度在50~1 000 km,大气中的O2、N2受紫外 线照射而电离,对遥感波段是透明的,是陆地卫星活动空间。
3.实际物体的辐射
●自然界中存在的实际物体,几乎都不是黑体。 ●如果物体的吸收本领大,它的发射本领也大,即越接近黑
体辐射。 ●实际物体的辐射比黑体辐射弱,而且随波长不同而不同。
❖ 所有实际物体的辐射量除依赖于辐射波长及物体的温度之 外,还与构成物体的材料种类、制备方法、热过程以及表 面状态和环境条件等因素有关。
19
2).人工辐射源:主动式遥感的辐射源。 雷达探测。分为微波雷达和激光雷达。 ●微波辐射源:0.8-30cm ●激光辐射源:激光雷达—测定卫星的 位置、高度、速度、测量地形等。
22
2、辐射测量(radiometry)
以伽玛射线到电磁波的整个波段范围为对象的物理辐射量 的测定,其度量单位见下表。
C. 二氧化碳:量少;吸收作用主要在红 外区内。可以忽略不计。
Absorption of EM energy by the atmosphere
(二)大气的散射作用
散射作用:散射的概念:电磁波与物质相 互作用后电磁波偏离原来的传播方向的一种现 象。太阳辐射在长波过程中遇到小微粒而使传 播方向改变,并向各个方向散开。改变了电磁 波的传播方向;干扰传感器的接收;降低了遥 感数据的质量、影像模糊,影响判读。
1.绝对黑体:如果一个物体在任何温度下对
任何波长的电磁辐射全部吸收(即吸收系数 恒等于1),则这个物体称为绝对黑体。
23
2. 黑体辐射定律
(1)普朗克热辐射定律
表示出了黑体辐射通量密 度与温度的关系以及按 波长分布的规律。
M
(、T
)
2hc2 5
ehc
/
1
kT
1
24
(2)玻耳兹曼定律
Stefan-Boltzmann's law
2
一、电磁波及其特性
1.波的概念: 2.机械波: 3.电磁波:(ElectroMagnetic Spectrum )
交互变化的电磁场在空间的传播。
3
4.描述电磁波特性的指标
5.电磁辐射 电磁能量的传递过程(包括辐射、吸收、 反射和透射)称为电磁辐射。
4
6.电磁波的特性
1) 电磁波是横波 2) 在真空中以光速传播
阳光,在大气上界和海平面测得的太阳辐射曲线如图所 示。
从太阳光谱曲线可以看出(…): 太 位 0.7太 太阳内6阳阳µ常,m光辐数垂的谱射可:直相的见不于当能光受太量于能大 阳主60量要0气 辐0占集K影 射太的中响 方阳黑在, 向辐体可射在 ,辐见总距 单射光能;太 位,量其阳面的中一积406个单.%38,天位~最文时单间 黑大体辐射所强接度受位的于太波阳长辐0.4射7 µ能m左量右。;(1.360×103W/m2)
即黑体总辐射通量随温度的增加 而迅速增加,它与温度的四次方成正 比。因此,温度的微小变化,就会引 起辐射通量密度很大的变化。是红外 装置测定温度的理论基础。
M0
0
2hc2 5
ech
/
1
kT
1
d
T
4
25
(3)维恩位移定律:Wien's displacement law
随着温度的升高,辐射最大值对应的峰值波长 向短波方向移动。
黑体辐射的三个特性
(1)黑体辐射出射度随波长连续变化,每条曲线只有 一个最大值。
(2)温度愈高,黑体的辐射出射度也愈大,不同温度 的曲线是不相交的。绝对黑体的总辐射出射度与黑 体温度的4次方成正比。(斯忒藩—玻尔兹曼定律)
(3)黑体辐射光谱中最强辐射的波长与黑体绝对温度 成反比。(维恩位移定律)。随着温度的升高,辐 射最大值所对应的波长移向短波方向。
☆ 辐射能量(W):电磁辐射的能量。 ☆ 辐射通量(Φ ):单位时间内通过某一面积的
辐射能量。 ☆ 辐照度(I):被辐射的物体表面单位面积上
的辐射通量。 ☆ 辐射出射度(M):辐射源物体表面单位面积
上的辐射通量。
❖I为物体接收的辐射,M为物体发出的辐射。
22
四、黑体辐射
地物发射电磁波的能力以发射率作为衡量标准;地 物的发射率是以黑体辐射作为参照标准。
➢ 大气外层:800~35 000 km ,空气极稀薄,对卫星基本上 没有影响。
相关文档
最新文档