浅谈在分数除法应用题中如何列等量关系式【VIP专享】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈在分数除法应用题中如何列等量关系式
马宗迁
摘要:比较量÷标准量=分率
关键词:比较量、标准量、分率
分数应用题的教学,是小学数学中的一个重点,也是学生学习的一个难点。因为这类题比较抽象,学生常常因为分析失误而错解。我在几年的小学数学教学中,摸索总结出一些规律,想把它推荐给大家。
一、分数乘除法所用的等量关系
比较量÷标准量=分率比比较量÷标准量=分率
认识理解这个数量关系,是我们列等量关系的基础。那么什么是比较量、标准量、分率呢?我们来看下面的例句分析就明白了。
例如:桃树棵数是梨树棵数的,同时桃树棵数又是苹果树的
这两句中的“是”都是等于的意思,前一句中的,是把梨树的棵数看作单位“1”,平均分5份,桃树棵数占3份,后一句中的,是把苹果的棵数看作单位“1”,平均分2份,桃树棵数有3份,如下图所示:
梨树棵树
桃树棵树
苹果树棵树
同样的的桃树的棵数,去和梨树比时结果是,因为说明桃树棵数数量小。去和苹果树棵数比结果是,>1说明苹果树棵数的数
量大。为什么同一个数会出现又大又小的矛盾呢?是因为两句中比法的标准不一样造成的。前一句的结果是以梨树棵数为标准,后一句结果是以苹果树棵数为标准,可见这个标准尺子很重要,同一个数量和不同的标准去比结果是不一样的。
在这类关键句子中,位置和身份类似于“梨树棵数”“苹果棵数”的量,我们称之为标准量。也就是单位“1”在分数中是分母,在除法中做除数。那么位置和身份类似于“桃树的棵数”的量,称之为“比较量”相当于分数中的分子,教比常常做被除数,他们相除的商叫分率,表示二者的倍比关系。
类似句子再如:(1)故事书(比较量)占童话书(标准量)的(分率)(2)三好学生(比较量)相当于全班人数(标准量)的(分率)
如此说来句子中的标准量(单位“1”)是很重要的,那么如何判断句子中的标准量呢?这要看题中句子的具体的结构,一般说来,(1)某数的几分之几“某数”就是单位“1”(2)谁比谁多几分之几或少几分之几,“比”字后面的数量,多几分之几,前面紧邻的数量就是单位“1”,(3)谁是谁的几分之几,“是”后面的数量就是单位“1”
明确了标准量的判断方法,也知道了标准量在等式中位置作除数,那么我们在句子中找等量关系,列等式就唾手可得啦。下面我们就来看一看常见句子中,哪些是标准量,哪些是比较量。
二、常见句子中的标准量
1、“是”结构的句子
这种句子直接反应了两个数量的关系。标准量容易找,等式也好列。
例如:甲是乙的,这个关键句子直接把甲和乙的大小关系在中表达出来,根据前面标准量的判断方法,“是”字后面是乙,乙是标准量,甲是比较量,是分辨率,表示甲乙的倍比关系。
因为乙是标准量,作除数,甲是比较量作被除数,那么“甲是乙的”这句话中的“是”字,虽然是等于意思,可直接利用它转化成等式中的“÷”号,即甲÷乙=
这句话也可以说成“乙的是甲”,或“甲是乙的”的倒装句,这里“是”仍然是“等于”的意思,也可以用“占”“相当于”代替,但没有“的”重要了,故称“的”结构,“的”前面是标准量乙,甲是比较量“的”可直接转化为“×”号即乙×=甲弄明了这类句子的特点,解题就有规律啦。
如“求一个数是另一个数的几分之几,这句话根据是判断另一个数是标准量作除数,一个数是比较量作被除数,是也就相当于“÷”,所求的几分之几就是分率,即一个数÷另一个数,这就是分数乘除法应用题的第一种,求一个数是另一个数的几分之几是多少,用除法。
例如8米(比较量)是10米(标准量)的几分之几?
3千克(比较量)占4千克(标准量)的几分之几?
1.8立方米(比较量)相当于
2.1立方米(标准量)的几分之几?
分数应用题的第二种,就是求一个数(标准量)必知道标准量和分率,就是求一个数(标准量)的×几分之几是多少,用乘法,就
是强调的字句子。
例如:14吨(单位“1”)的(分率)是多少?
分(单位“1”)的(分率)是多少?
升(单位“1”)的(分率)是多少?
如果求标准量(单位“1”)必须已知比较量和分率,属于分数
应用题的第三种,已知某数的几分之几是多少求某数,用除法。
例如:一个数(单位“1”)的是24,求某数。
一个数(标准量)的(分率)是24(比较量),求某数,
2、“比”结构
这种句子标准量的“比”字后面,分率是两个亮点差与标准量
的关系,也就是差是比较量。
例如“甲比乙多,这句话中,单位“1”是乙,是分率,乙的
是比较量,即是甲与乙的差。即甲-乙=差因为句子中含有“……比……多(少)几分之几”故把这类句子称“比”结构句子。
因为“甲比乙多”表示甲比乙多乙的4份的1份,那么甲就是(等于)乙的(1+),这就把“比”结构句子转化成了“是”结
构的句子。同理“甲比乙少”可推出“甲是乙的
因此“比“结构的句子与“是”结构的句子是相互依存的不能单独存在。每一个“是”结构的句子中都隐含有一个“比”结构句子,反之每一个“比”结构句子也都隐含一个“是”结构的句子,二者
可以相互依存转化,句子形式不同,也就隐含着不同形式的等量关
系式。
弄明白了“是”结构句子和“比”字结构句子的结构特点,从中能很快列出等量关系式,掌握了这两种句子结构规律,复杂句子的
结构也就容易掌握了,因为复杂的句子都是由这两种基本句子组合
而成的。
三、列等量关系式的方法
找等量关系是解答应用题最关键的一步,找出了等量关系,解
答应用题就已经大功告成,上面我们介绍了分数乘除法所用的数量
关系,及单位“1”的判断,基本句子的结构特征,有了这些知识,列等量关系式就容易了。
例如“男生人数是全班人数的,这句话中标准量是“全班人数”作除数,“男生人数是比较量,作除数,是分率作为商,得等量关系式,男生人数÷全班人数=或全班人数×=男生人数
同理得“今年小麦总产量是去年的,可得今年小麦总产量÷去年总产量=,或去年小麦总产量×=今年小麦的总产量。
因此“是”结构句子列量式方法可总结为:
一个数是另一个数的,得一个数÷另一个数=或另一个数× =一个数。