初等模型(一)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设理想情况下m方分配的席位分别为n1,n2,… , nm (自然应有n1+n2+…+nm=N),
ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm )
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整.
即为两个线性函数l0 (x),l1(x)的线性组合.
称l0 (x),l1(x)为一次插值基函数.
,m
该席给Q值最大的一方 Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
第20席
Q1
wk.baidu.com
1032 1011
96.4,
Q2
632 67
第二章 初等模型 第一讲 Q值法、插值法、拟合
一、Q值法:公平的席位分配
问 三个系学生共200名(甲系100,乙系60,丙系40),代表 题 会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
系别 学生 比例 20席的分配 21席的分配
rA (n1, n2 )
~ 对A的相对不公平度 公平分配方案应
类似地定义 rB(n1,n2)
使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 即
设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B
不妨设分配开始时 p1/n1> p2/n2 ,即对A不公平
应讨论以下几种情况 初始 p1/n1> p2/n2 1)若 p1/(n1+1)> p2/n2 , 则这席应给 A 2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否! 若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给 A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B
1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一
2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, ni不应减少
“比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但可举例说明不满足 1)。
由直线方程的两点式可得:
p1 ( x)
x x1 x0 x1
y0
x x0 x1 x0
y1
L L ()
p1 ( x)称为Lagrange型线性插值函数, ()称
为Lagrange型线性插值公式.
若令l0
(x)
@x x0
x1 x1
, l1 (
x)
@x x1
x0 x0
,则
p1(x) l0 (x) y0 l1(x) y1
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5
虽二者的绝对 不公平度相同
但后者对A的不公平 程度已大大降低!
“公平”分配方 将绝对度量改为相对度量 法若 p1/n1> p2/n2 ,定义
p1 / n1 p2 / n2 p2 / n2
94.5,
Q3
342 3 4
96.3
Q1最大,第20席给甲系
第21席
Q1
1032 1112
80.4,
Q2 ,
Q3 同上
Q3最大,第 21席给丙系
Q值方法 分配结果
甲系11席,乙系6席,丙系4 席
公平吗?
进一步的讨论
Q值方法比“比例加惯例”方法更公平吗? 席位分配的理想化准则
已知: m方人数分别为 p1, p2,… , pm, 记总人数为 P= p1+p2+…+pm, 待分配的总席位为N。
令人遗憾!
二、插值及其在数学建模中的应用 question : 什么是插值? 给定一个函数的函数表,如何求出任意 点的函数值?
x x0 x1 … xn y = y0 y1 … yn f(x)
求解插值问题的基本思路
构造一个(相对简单的)函数 y g(x), 通过全部节点,即
g ( x j ) y j ( j 0,1,L n) 再用 g(x) 计算插值,即 y* g(x*).
比 例
人数 (%) 比例 结果
比例
结果
对 丙
加 甲 103 51.5 10.3 10 10.815 11 系
惯 乙 63 31.5 6.3 6 6.615 7 公
例 丙 34 17.0 3.4
4
3.570
3
平 吗
总和 200 100.0 20.0 20 21.000 21
“公平”分配方 法 人数 席位
当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A rA, rB的定义
p22
p12
该席给A
n2 (n2 1) n1(n1 1) 否则, 该席给B
定义
Qi
pi2 ni (ni 1)
,
i 1,2, 该席给Q值较大的一方
推广到m方 分配席位
计算
Qi
pi2 , ni (ni 1)
i 1,2,
y*
y1
y0 •
• •
x0 x1 x*
• •
xn
线性插值是代数插值中最简单的一种: 给定y f (x)的插值条件,构造函数p1(x) 满足条件: 1.p1(x)是一个不超过一次的代数多项式 2.p1(x0 ) y0, p1(x1) y1
目的: 构造p1(x)来近似代替f (x).当求某一 点x的函数值f (x)时,可用p1(x)近似代替.
A方 p1 n1 B方 p2 n2
衡量公平分配的数量指标 当p1/n1= p2/n2 时,分配公平 若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
p1/n1– p2/n2=5
ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm )
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整.
即为两个线性函数l0 (x),l1(x)的线性组合.
称l0 (x),l1(x)为一次插值基函数.
,m
该席给Q值最大的一方 Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
第20席
Q1
wk.baidu.com
1032 1011
96.4,
Q2
632 67
第二章 初等模型 第一讲 Q值法、插值法、拟合
一、Q值法:公平的席位分配
问 三个系学生共200名(甲系100,乙系60,丙系40),代表 题 会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
系别 学生 比例 20席的分配 21席的分配
rA (n1, n2 )
~ 对A的相对不公平度 公平分配方案应
类似地定义 rB(n1,n2)
使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 即
设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B
不妨设分配开始时 p1/n1> p2/n2 ,即对A不公平
应讨论以下几种情况 初始 p1/n1> p2/n2 1)若 p1/(n1+1)> p2/n2 , 则这席应给 A 2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否! 若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给 A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B
1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一
2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, ni不应减少
“比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但可举例说明不满足 1)。
由直线方程的两点式可得:
p1 ( x)
x x1 x0 x1
y0
x x0 x1 x0
y1
L L ()
p1 ( x)称为Lagrange型线性插值函数, ()称
为Lagrange型线性插值公式.
若令l0
(x)
@x x0
x1 x1
, l1 (
x)
@x x1
x0 x0
,则
p1(x) l0 (x) y0 l1(x) y1
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5
虽二者的绝对 不公平度相同
但后者对A的不公平 程度已大大降低!
“公平”分配方 将绝对度量改为相对度量 法若 p1/n1> p2/n2 ,定义
p1 / n1 p2 / n2 p2 / n2
94.5,
Q3
342 3 4
96.3
Q1最大,第20席给甲系
第21席
Q1
1032 1112
80.4,
Q2 ,
Q3 同上
Q3最大,第 21席给丙系
Q值方法 分配结果
甲系11席,乙系6席,丙系4 席
公平吗?
进一步的讨论
Q值方法比“比例加惯例”方法更公平吗? 席位分配的理想化准则
已知: m方人数分别为 p1, p2,… , pm, 记总人数为 P= p1+p2+…+pm, 待分配的总席位为N。
令人遗憾!
二、插值及其在数学建模中的应用 question : 什么是插值? 给定一个函数的函数表,如何求出任意 点的函数值?
x x0 x1 … xn y = y0 y1 … yn f(x)
求解插值问题的基本思路
构造一个(相对简单的)函数 y g(x), 通过全部节点,即
g ( x j ) y j ( j 0,1,L n) 再用 g(x) 计算插值,即 y* g(x*).
比 例
人数 (%) 比例 结果
比例
结果
对 丙
加 甲 103 51.5 10.3 10 10.815 11 系
惯 乙 63 31.5 6.3 6 6.615 7 公
例 丙 34 17.0 3.4
4
3.570
3
平 吗
总和 200 100.0 20.0 20 21.000 21
“公平”分配方 法 人数 席位
当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A rA, rB的定义
p22
p12
该席给A
n2 (n2 1) n1(n1 1) 否则, 该席给B
定义
Qi
pi2 ni (ni 1)
,
i 1,2, 该席给Q值较大的一方
推广到m方 分配席位
计算
Qi
pi2 , ni (ni 1)
i 1,2,
y*
y1
y0 •
• •
x0 x1 x*
• •
xn
线性插值是代数插值中最简单的一种: 给定y f (x)的插值条件,构造函数p1(x) 满足条件: 1.p1(x)是一个不超过一次的代数多项式 2.p1(x0 ) y0, p1(x1) y1
目的: 构造p1(x)来近似代替f (x).当求某一 点x的函数值f (x)时,可用p1(x)近似代替.
A方 p1 n1 B方 p2 n2
衡量公平分配的数量指标 当p1/n1= p2/n2 时,分配公平 若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
p1/n1– p2/n2=5