文科高考数学立体几何大题求各类体积方法.

合集下载

立体几何求体积

立体几何求体积

立体几何求体积一、求体积的方法常见有如下三种:1、公式法:利用公式求出简单几何体体积。

2、等体积转化法:从不同的角度看待原几何体,通过改变顶点和底面,利用体积不变的原理,求原几何体的体积。

(一般指三棱锥,找高优先)3、割补法:对于给出的一个不规则的几何体,不能直接套用公式,常常需要通过“割”或“补”化复杂图形为已熟知的简单几何体,并作体积的加、减法,从而较快地找到解决问题的突破口。

(注:“一找二证三求”的顺序和原则。

)例1、在正四面体P ABC中,PA a,求此正四面体的体积.例2、三棱柱ABC A'B'C'的体积是36,点M 在侧棱CC '上,求四棱锥M ABB 'A'的体积A'C'B'MA CB例3、若ABCD -A 1B1C1D1 是棱长为a的正方体,E,F 分别是棱 A 1A 与CC1 的中点,求四棱锥C1-EB1FD 的体积。

例4、(10 安徽) 如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2 ,EF∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,(1)求证:FH∥平面EDB; (2)求证:AC⊥平面EDB; (3)求四面体B—DEF 的体积;E FDCHA B 1ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O在线段AD 上,例5、(11 安徽) 如图,OA 1,OD 2, VOAB , △O AC,△ODE ,△O DF 都是正三角形。

(1)证明直线BC ∥EF ;(2)求棱锥F-OBED的体积。

例6、(13·安徽)如图,四棱锥P-ABCD 的底面ABCD 是边长为 2 的菱形,∠BAD =60°.已知PB=PD=2,PA= 6.(1)证明:PC⊥BD;(2)若E 为P A的中点,求三棱锥P-BCE 的体积.例7、(辽宁卷)已知点P,A,B,C,D 是球O 表面上的点,PA⊥平面ABCD,四边形ABCD 是边长为 2 3的正方形.若PA=2 6,求△OAB 的面积.例8、(13·广东)如图1,在边长为 1 的等边三角形ABC 中,D,E 分别是AB,AC 上的点,AD=AE,F 是BC 的中点,AF 与DE 交于点G.将△ABF 沿AF 折起,得到如图 2 所示的三棱锥A-BCF,其中BC= 2.22时,求三棱锥F-DEG 的体积V(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=F-DEG.32练习:1、求侧棱长为2,底面边长为 3 的正三棱锥的体积。

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。

立体几何文科体积问题归类总结

立体几何文科体积问题归类总结

立体几何文科体积问题归类总结
我们在教育中,认真讲解了文科大题中的立体几何体积问题。

这个问题通常作为第二问必考选项,重点考察了等体积、等面积的转化思想。

其中,有两个难点:寻找垂线转移顶点和计算边长。

我们对转化的模型进行了分类。

对于求体积和点到面的距离问题,我们通常采用等体积法。

举例来说,对于三棱锥P-ABCD,底面ABCD是矩形,侧面PAB是正三角形,AB=2,BC=2,PC=6,E,H分别为PA、AB中点,我们需要证明PH⊥平面ABCD,并求三棱锥P-EHD的体积。

另一个例子是三棱柱ABC-A1B1C1,AB,AC,AA1三条棱两两互相垂直,且AB=AC=AA1=2,E,F分别是BC,BB1的中点。

我们需要证明C1E⊥平面AEF,并求F到平面AECC1的距离。

还有一个例子是直三棱柱ABC-A1B1C1,AC=CB,D,E 分别是AB,BB1的中点。

我们需要证明BC1//平面A1CD,CD⊥平面ABB1A1,以及求E到截面ADC的距离d。

最后一个例子是底面为等腰直角三角形的四棱锥ABCM,AB=4,点M是BB1的中点。

我们需要证明平面A1MC⊥平
面ABC,并求点A到平面A1MC的距离。

高中数学立体几何体积解题技巧

高中数学立体几何体积解题技巧

高中数学立体几何体积解题技巧立体几何是高中数学中的一个重要内容,其中涉及到的体积计算问题常常让学生感到困惑。

本文将介绍一些解题技巧,帮助高中学生更好地理解和解决立体几何体积问题。

一、直角三棱柱的体积计算直角三棱柱是指底面为直角三角形的三棱柱。

计算其体积时,可以利用底面积与高的乘积来求解。

例如,已知直角三棱柱的底面是一个直角边长为3cm和4cm 的直角三角形,高为5cm,求其体积。

解答:首先计算底面积,底面积=1/2 × 3cm × 4cm = 6cm²。

然后将底面积与高相乘,体积=6cm² × 5cm = 30cm³。

因此,该直角三棱柱的体积为30cm³。

通过这个例子可以看出,直角三棱柱的体积计算可以通过底面积与高的乘积来求解,这是一个常用的解题方法。

二、棱柱的体积计算棱柱是指底面为多边形的柱体。

计算其体积时,可以利用底面积与高的乘积来求解。

例如,已知一个棱柱的底面是一个边长为6cm的正六边形,高为8cm,求其体积。

解答:首先计算底面积,正六边形的面积可以通过将其分割为六个等边三角形来计算。

每个三角形的面积为1/2 × 6cm × 6cm × sin(60°) = 9√3 cm²。

因此,正六边形的面积为6 × 9√3 cm² = 54√3 cm²。

然后将底面积与高相乘,体积=54√3 cm² ×8cm = 432√3 cm³。

所以,该棱柱的体积为432√3 cm³。

通过这个例子可以看出,对于底面为多边形的棱柱,可以将其分割为若干个三角形来计算底面积,然后再与高相乘求解体积。

三、圆柱的体积计算圆柱是指底面为圆形的柱体。

计算其体积时,可以利用底面积与高的乘积来求解。

例如,已知一个圆柱的底面半径为5cm,高为10cm,求其体积。

立体几何中求体积的几种解法

立体几何中求体积的几种解法

立体几何中求体积的几种解法
作者:庞士昌
来源:《读写算·教研版》2017年第01期
中图分类号:G712 文献标识码:B 文章编号:1002-7661(2017)01-183-02
立体几何是中学数学的一个重点,也是一个难点。

近年来,立体几何在高考中往往以大题的形式出现,并占有较重的分值。

而立体几何中求几何体的体积在高考中也是频繁出现,在此,作者介绍几种常用的求体积的解题思维。

点评:此方法是将几何问题转化为向量问题进行解决,大大简化了做题的过程。

向量得运算较为简单,此方法灵活,简便,尤其对于立体几何中求体积,求二面角等,运用向量法非常灵活,非常实用,但大部分学生不习惯运用此方法。

综上,立体几何中求体积的方法多种多样,对于不规则的几何体,我们还可以运用“分割法”去做,这种方法也是非常重要的一种方法,要求学生要会“割”善“补”。

在以上几种方法
中,方法1和方法4是要求学生必须要掌握的,方法3和方法5对一些成绩优异的学生来讲,可以灵活掌握,此种方法灵活,技巧性大,而对于有些立体几何中求体积的问题,方法1和方法4有时候很难求出,这个时候利用方法3或方法5反而很簡单,所以方法3和5也是要求大部分学生要掌握的。

立体几何体积的求解方法

立体几何体积的求解方法

立体几何体积的求解方法重要知识立体几何体体积的求解始终要谨记一个原则:找到易于求解的底面(面积)和高(椎体就是顶点到底面的距离)。

而这类题最易考到的就是椎体的体积(尤其是高的求解)。

求椎体体积通常有四种方法:(1)直接法:直接由点作底面的垂线,求垂线段的长作为高,底面的面积是底面积。

(2)等体积法:更换椎体的底面,选择易于求解的底面积和高。

(3)分割法(割补法):将一个复杂的几何体分成若干易于计算的椎体。

典型例题方法一:直接法例1、如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.求四棱锥B﹣AA1C1D的体积.例2、如图已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.若M是PC的中点,求三棱锥M﹣ACD的体积.方法二:等体积法例3、如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB 为正三角形.若BC=4,AB=20,求三棱锥D﹣BCM的体积.例4、如图,在四棱锥P﹣ABCD中,侧棱PA丄底面ABCD底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.求三棱锥P﹣ACE的体积.方法三:割补法例5:如图,是一个平面截长方体的剩余部分,已知12,8,5,3,4=====CG BF AE BC AB ,求几何体EFGH ABCD -的体积。

例6:四面体ABC S -的三组对棱分别相等,且依次为5,13,52,求四面体ABC S -的体积。

C C例7、如图,四棱锥P ﹣ABCD 的底面ABCD 是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.若E 为PA 的中点,求三棱锥P ﹣BCE 的体积.例8:如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.求三棱锥A-PCD 的体积。

高考数学中如何解决复杂的立体几何体积问题

高考数学中如何解决复杂的立体几何体积问题

高考数学中如何解决复杂的立体几何体积问题在高考数学考试中,立体几何体积问题是一个常见且具有一定难度的题型。

解决这类问题需要灵活运用立体几何的相关知识,掌握计算体积的方法和技巧。

以下将从计算几何体积的基本公式、应用场景以及解题技巧三个方面来介绍如何解决复杂的立体几何体积问题。

一、计算几何体积的基本公式要解决立体几何体积问题,首先需要掌握计算各种几何体积的基本公式,包括立方体、长方体、圆柱体、圆锥体和球体等常见几何体的体积计算公式。

下面以几种典型的几何体为例进行介绍。

1. 立方体的体积计算公式:立方体的体积计算公式非常简单,即体积等于边长的立方,也可以记为V=a³(a为边长)。

2. 长方体的体积计算公式:长方体的体积计算公式为V=a×b×h (a、b、h分别为长方体的长、宽和高)。

3. 圆柱体的体积计算公式:圆柱体的体积计算公式为V=πr²h (r为底面半径,h为高)。

4. 圆锥体的体积计算公式:圆锥体的体积计算公式为V=1/3πr²h (r为底面半径,h为高)。

5. 球体的体积计算公式:球体的体积计算公式为V=4/3πr³ (r为球体的半径)。

了解和熟练掌握这些几何体积的计算公式,是解决立体几何体积问题的基础。

二、应用场景在高考数学中,立体几何体积问题常常涉及到实际生活和应用场景,例如容器的容积、房屋的体积、水池的容量等。

在解决这类问题时,需要根据实际情况选择合适的几何体模型,并运用适当的计算公式进行计算。

例如,某水池为圆柱形,要求计算池中的水量。

根据题目给出的信息,可以确定使用圆柱体的体积计算公式V=πr²h进行计算,其中r为底面半径,h为水池的深度。

通过代入公式中的数值,即可得到水池的容量。

三、解题技巧在解决复杂的立体几何体积问题时,除了掌握计算公式外,还需要一些解题技巧。

以下列举几点常用的技巧:1. 分割几何体:对于复杂的几何体,可以通过分割成多个简单几何体来计算体积。

高考数学中的立体几何体积

高考数学中的立体几何体积

高考数学中的立体几何体积在高考数学中,立体几何是我们必须要掌握的一项知识。

其中,计算各种立体几何的体积也是一项非常重要的技能。

那么,在立体几何中,我们应该如何计算体积呢?本文将详细探讨这个问题,帮助大家更好地掌握立体几何的体积计算知识。

1. 三棱锥体积的计算我们先来看一下三棱锥体积的计算。

三棱锥是指顶点为三角形顶点,底面为三角形的锥体。

计算三棱锥体积的公式为:$V =\frac{1}{3}S_hh$,其中$S_h$为底面积,$h$为高。

我们可以通过以下例题来更好地理解三棱锥体积的计算方法:如图所示,底面为边长为$3$的等边三角形,高为$4$,求此三棱锥的体积。

解:首先,我们需要求出三角形的面积$S$。

由于此三角形是等边三角形,因此可以使用海伦公式计算其面积:$$S=\sqrt{3}\times\frac{(3+3+3)}{2}\times\frac{(3+3-3)}{2}=3\sqrt{3}$$由此,我们可以得到该三棱锥的体积$V$:$$V=\frac{1}{3}S_hh=\frac{1}{3}\times3\sqrt{3}\times4=4\sqrt{3} $$因此,该三棱锥的体积为$4\sqrt{3}$。

2. 圆锥体积的计算我们接下来来看圆锥体积的计算。

圆锥是指顶点在圆锥轴上,底面为圆的锥体。

计算圆锥体积的公式为:$V = \frac{1}{3}\pir^2h$,其中$r$为底面半径,$h$为高。

以下是一个例题:如图所示,底面半径为$4$,高为$5$,求此圆锥的体积。

解:根据圆锥的体积公式,可以轻松计算出此圆锥的体积$V$:$$V=\frac{1}{3}\pir^2h=\frac{1}{3}\pi\times4^2\times5=\frac{80}{3}\pi$$因此,该圆锥的体积为$\frac{80}{3}\pi$。

3. 球体积的计算最后,我们来看一下球体积的计算。

球体积是指球体内部所填充的物质的容积。

高中数学立体几何体积计算方法及应用技巧

高中数学立体几何体积计算方法及应用技巧

高中数学立体几何体积计算方法及应用技巧立体几何是高中数学中的一个重要部分,其中计算体积是一个常见的考点。

在解题过程中,我们需要掌握一些方法和技巧,以便更加高效地解决问题。

本文将介绍几种常见的计算体积的方法,并结合具体题目进行分析和说明,帮助高中学生和他们的父母更好地理解和掌握这些技巧。

一、立方体和长方体的体积计算方法立方体和长方体是最基本的几何体,其体积的计算方法非常简单。

立方体的体积等于边长的立方,即V = a^3;长方体的体积等于长、宽、高的乘积,即V = lwh。

例如,如果一个立方体的边长为3cm,则其体积为27cm^3;如果一个长方体的长、宽、高分别为4cm、5cm、6cm,则其体积为120cm^3。

二、棱柱和棱锥的体积计算方法棱柱和棱锥是常见的几何体,其体积计算方法与长方体类似,只需将长方体的宽替换为棱柱或棱锥的底面积即可。

对于棱柱,其体积等于底面积乘以高,即V = Bh;对于棱锥,其体积等于底面积乘以高再除以3,即V = (Bh)/3。

其中,B为底面积,h为高。

例如,如果一个棱柱的底面积为10cm^2,高为6cm,则其体积为60cm^3;如果一个棱锥的底面积为8cm^2,高为12cm,则其体积为32cm^3。

三、球体和圆柱的体积计算方法球体和圆柱是另外两种常见的几何体,其体积计算方法有一些独特之处。

对于球体,其体积等于4/3乘以π乘以半径的立方,即V = (4/3)πr^3。

例如,如果一个球体的半径为5cm,则其体积为(4/3)π(5^3) ≈ 523.6cm^3。

对于圆柱,其体积等于底面积乘以高,即V = πr^2h。

例如,如果一个圆柱的底面积为16cm^2,高为8cm,则其体积为16π ≈ 50.3cm^3。

通过以上的介绍,我们可以看到不同几何体的体积计算方法有所不同,但都可以归纳为底面积乘以高或者半径的立方。

在解题过程中,我们需要根据具体情况选择合适的计算方法,并注意单位的转换。

高中数学解题技巧:立体几何高考核心题型,求空间几何体的体积

高中数学解题技巧:立体几何高考核心题型,求空间几何体的体积

高中数学解题技巧:立体几何高考核心题型,求空间几何体的
体积
1.处理体积问题的思路
(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高.
(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算.
(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法.
2.求空间几何体的体积的常用方法
(1)公式法.对于规则几何体的体积问题,可以直接利用公式进行求解.
(2)割补法.把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积.
(3)等体积法.一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.
3.由三视图求相关几何体的体积
已知几何体三视图求体积的思路与已知几何体三视图求表面积的思路相同,求解时注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用求体积的方法求解.。

立体几何求体积

立体几何求体积

如图,在六面体ABC-FEDG中,BG⊥平面ABC,平面ABC∥平面FEDG, AF∥BG,FE∥GD,∠FGD=90°,AB=BC=BG=2,GD=2BC,四边 形AEDC是菱形,则六面体ABC-FEDG的体积为____.
如图,连接AG,AD, 则V六面体ABC-FEDG=V四棱锥A-FEDG+V四棱锥A-BCDG=2V四棱锥A-FEDG, 由题意得,EF=2,DG=4,FG=AF=2, ∴S 梯形 FEDG=12×(2+4)×2=6, ∴V 四棱锥 A-FEDG=13×S 梯形 FEDG×AF=4, ∴V六面体ABC-FEDG=8.
∴V三棱锥F-EBC=V三棱锥C-EFB=
1 2
V = 三棱锥C=12×12V四棱锥E-ABCD=4.
∴多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.

求体积
求几何体体积的四种常用方法 (1)公式法:规则几何体直接代入公式求解. (2)等积法:如四面体的任何一个面都可以作为底面,只需选用 底面积和高都易求的形式即可. (3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱、 三棱柱补成四棱柱等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.
一、公式法
例5 (1)(2021·新高考全国Ⅱ)正四棱台的上、下底面的边长分别为2,4, 侧棱长为2,则其体积为
A.20+12 3
B.28 2
C.56 3
D.28 2 3
棱台的高 h= 22-2 2- 22= 2,
下底面面积S1=16,上底面面积S2=4, 所以该棱台的体积 V=13h(S1+S2+ S1S2)
3.如图,在多面体 ABCDEF 中,已知面 ABCD 是边长为 4 的正 方形,EF∥AB,EF=2,EF 上任意一点到平面 ABCD 的距离均为 3, 求该多面体的体积.

立体几何中常见体积问题的求解

立体几何中常见体积问题的求解

立体几何中有关体积的求法一、常见图形的面积求解方法。

二、空间中常见几何体的体积公式。

三、空间中常见求体积问题变换方法。

等价转换法:当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积.1.在边长为a 的正方体1111ABCD A B C D -中,M N P ,,分别是棱11111A B A D A A ,,上的点,且满足11112A M A B =,112A N ND =,1134A P A A =(如图1),试求三棱锥1A MNP -的体积.2.(2013年高考江西卷(文))如图,直四棱柱1111ABCD A B C D -中,//AB CD ,AD AB ⊥,2AB =,2AD =,13AA =,E 为CD 上一点,1DE =,3EC =.求三棱锥111B EA C -的体积.割补法:割补法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法.3.如图2,在三棱柱111ABC A B C -中,E F ,分别为AB AC ,的中点,平面11EB C F 将三棱柱分成两部分,求这两部分的体积之比4.如图,是一个平面截长方体的剩余部分,已知12,8,5,3,4=====CG BF AE BC AB ,求几何体EFGH ABCD -的体积。

5.如图,直四棱柱1111D C B A ABCD -的底面ABCD 是菱形,060ABC ∠=,其侧面展开图是边长为8的正方形。

E 、F 分别是侧棱1AA 、1CC 上的动点,8=+CF AE . 问多面体1BCFB AE -的体积V 是否为常数?若是,求这个常数,若不是,求V 的取值范围.CDHEBGF真题演练:【2014全国2,文7】正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,求三棱锥11A B DC -的体积1.【2016高考新课标1文数】(本题满分12分)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点,D 在平面ABP 内的正投影为点E,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.1PABD CGE2. 【2014高考北京文第17题】(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.3. 【2015高考北京,文18】(本小题满分14分)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B且C C A =B =O ,M 分别为AB ,V A 的中点.(I )求证:V //B 平面C MO ;(II )求证:平面C MO ⊥平面V AB ;(III )求三棱锥V C -AB 的体积.C 1B 1A 1FE CBA4. 【2014高考广东卷.文.18】(本小题满分13分)如图2,四边形为矩形,平面,,,作如图3折叠,折痕.其中点.分别在线段.上,沿折叠后点在线段上的点记为,并且.(1)证明:平面;(2)求三棱锥的体积.5. [2016高考新课标Ⅲ文数]如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求四面体N BCM -的体积.ABCD PD ⊥ABCD 1AB =2BC PC ==//EF DC E F PD PC EF P AD M MF CF ⊥CF ⊥MDF M CDE-图3图2MFEPDCBA PDCB A6. 【2015高考陕西,文18】如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(I)证明:CD ⊥平面1AOC ;(II)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为a 的值.7. 【2015高考新课标1,文18】(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.8.【2014福建,文19】((本小题满分12分)如图,三棱锥A BCD -中,AB ⊥平面,BCD CD BD ⊥. (1)求证:CD ⊥平面ABD ;(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.9. 【2014辽宁文19】(本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点. (Ⅰ)求证:EF ⊥平面BCG ; (Ⅰ)求三棱锥D -BCG 的体积.补充练习1、如图,直三棱柱ABC ﹣A 1B 1C 1中,AA 1=2AC=2BC ,D 是AA 1的中点,CDⅠB 1D . (1)证明:CDⅠB 1C 1;(2)平面CDB 1分此棱柱为两部分,求这两部分体积的比.2.已知在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,PAⅠ平面ABCD ,PA=,AB=1,AD=2,ⅠBAD=120°,E ,G 分别是BC ,PC 的中点.求三棱锥P ﹣GED 的体积.3.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点. (1)求证:EFⅠ平面ABC 1D 1; (2)求证:EFⅠB 1C ; (3)求三棱锥1B EFC V 的体积.4.在四棱锥P ﹣ABCD 中,ⅠABC=ⅠACD=90°,ⅠBAC=ⅠCAD=60°,PAⅠ平面ABCD ,E 为PD 的中点,PA=2AB=2.求三棱锥P ﹣ACE 的体积V .。

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

专题11立体几何解答题考纲解读三年高考分析1、对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.2、空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.垂直关系的证明和平行关系的证明是考查的重点,解题时常用到平行判定定理、垂直判定定理、垂直性质定理、平行性质定理,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.2、直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.【2019年天津文科17】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.2.【2019年新课标3文科19】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.【2019年新课标2文科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E﹣BB1C1C的体积.4.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.5.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.6.【2018年新课标2文科19】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.7.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.8.【2018年新课标3文科19】如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.9.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.10.【2018年天津文科17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.11.【2017年新课标2文科18】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.12.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.13.【2017年新课标3文科19】如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14.【2017年北京文科18】如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC =2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.15.【2017年天津文科17】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.1.【2019年湖南省娄底市高三上学期期末】如图1,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,22AB CD BC ==,BD 为梯形对角线,将梯形中的ABD ∆部分沿AB 翻折至ABE 位置,使ABE∆所在平面与原梯形所在平面垂直(如图2).(1)求证:平面AED ⊥平面BCE ;(2)探究线段EA 上是否存在点P ,使//EC 平面PBD ?若存在,求出EPEA;若不存在说明理由. 2.【四川省威远中学2020届高三上学期第一次月考】如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.3.【2019年山西重点中学协作体高三暑假联考】如图,在等腰梯形ABCD 中,AB CD ∥,1AD DC CB ===,60ABC =︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ; (2)求多面体ABCDEF 的体积.4.【2020年四川省雅安市雨城区雅安中学高三上学期开学摸底】如图,已知多面体ABCDEF 中,ABD ∆、ADE ∆均为正三角形,平面ADE ⊥平面ABCD ,AB CD EF P P ,::2:3:4AD EF CD =. (Ⅰ)求证:BD ⊥平面BFC ; (Ⅱ)若2AD =,求该多面体的体积.5.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】如图所示,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,160,CBB A ∠=o在侧面11BB C C 上的投影恰为1B C 的中点O .(1) 证明:1B C AB ⊥; (2) 若1ACAB ⊥,且三棱柱111ABC A B C -的体积为38,求三棱柱111ABC A B C -的高.6.【湖南省衡阳市第八中学2020届高三上学期月考(二)】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .(1)证明://OF 平面ABE ;(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.7.【江西省南昌市2020届高三上学期开学摸底考试】如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且12A F FE =.(Ⅰ)证明:AF⊥平面1A BC ;(Ⅱ)求三棱锥11C A FC -的体积.8.【2020年安徽省江淮十校高三第一次联考】如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,AE SC ⊥,垂足为E ,点A 在面SDC 上的投影为F 。

必修二—立体几何体积计算的五种方法

必修二—立体几何体积计算的五种方法

体积计算的五种方法方法1.公式法例1.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .20+B .C .563D 例2.(2020全国1卷)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.解析:(1)连接,,OA OB OC ,D Q 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥ 平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π=2222OD l r =-=,解得1,r l ==2sin 60AC r =,在等腰直角三角形APC 中,22AP AC ==Rt PAO 中,2PO ===,∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△.方法2.等积转化1.等体积转化法一般情况下是三棱锥才有的特性。

2.尽可能寻找在表面的三个点,通过三棱锥“换底”求解三棱锥的体积。

转化的目的是为了找到易于计算的:“好底”与“好高”.例3.如图,在棱长为2的正方体1111ABCD A B C D -中,E 是侧面11BB C C 内的一个动点,则三棱锥1D AED -的体积为_________.例4.如图所示,在正方体1111ABCD A B C D -中,E 为1DD 中点.若正方体棱长为2,求三棱锥1D AEC -的体积.23三、多面体割,补法求体积1.分割法:把不规则的几何体分割成规则的几何体,当规则的几何体用公式不易求出时,再将其分割没转化成比较好求体积的几何体;大多数情况下,可以把不规则几何体分割为三棱锥+四棱锥,从四棱锥底面对角线或者几何体表面四边形对角线处寻找分割的“刀口”2、补形法:把不规则的几何体补成规则的几何体,便于计算;常见的补形有:(1)将正四面体补形成正方体;(2)将等腰四面体(对棱相等)补形成长方体;(3)将三条棱两两相互垂直且相等的三棱锥补成正方体;(4)将台体补成锥体等等。

第34讲 立体几何解答题中的体积求解策略(原卷版)

第34讲 立体几何解答题中的体积求解策略(原卷版)

第34讲 立体几何解答题中的体积求解策略【高考地位】立体几何是高考数学命题的一个重点,解答题中体积的求法也是重点考查的知识,其求解的策略主要有两种方法:其一针对三棱锥的换顶点的思路,其二是对于多面体求体积可用切割法.方法一 换顶点法万能模板 内 容使用场景 三棱锥体积的求解解题模板第一步 观察三棱锥的4个顶点;第二步 找到易求高的顶点的三棱锥,有时需要等价转化顶点,如平行转化,相似,全等转化;第三步 根据公式求解结果.例1【广西北海市2021届高三第一次模拟考试数学(文)】如图,在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,PAB △为等边三角形,AC BC ⊥且2AC BC ==,O 、M 分别为棱AB 、PA 的中点.(1)求证:平面MOC ⊥平面PAB ; (2)求三棱锥P ABC -的体积.【变式演练1】【四川省泸州市2020届高三数学临考冲刺模拟试卷(文科)(四模)】如图,在多面体ABCDEF 中,侧面ADEF 是平行四边形,底面ABCD 是等腰梯形,//AB CD ,4AB =,2BC CD ==,顶点E 在底面ABCD 内的射影恰为点C .(Ⅰ)求证:BC⊥平面ACE;(Ⅰ)若CD CE=,求四面体ABEF的体积.【变式演练2】【河南省名校联考2020-2021学年高三上学期第一次模拟考试文科数学】如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD//BC,ADⅠAB,PAⅠ平面ABCD,过AD的平面与PC,PB分别交于点M,N,连接MN.(1)证明:BC//MN;(2)已知PA=AD=AB=2BC,平面ADMNⅠ平面PBC,求P BDMP ABCDVV--的值.方法二切割法万能模板内容使用场景多面体体积的求解解题模板第一步观察几何体特征,多面体切割成其他锥体或者补起来;第二步分别求出组成的几何体的体积;第三步根据公式求解结果.例2、【安徽省皖豫名校联盟体2021届高三(上)第一次联考数学(文科)】如图,已知四边形ABCD为等腰梯形,//BC AD,90ABD∠=︒,四边形ADMN为矩形,点G,H分别是线段MN,CD的中点,点I在线段AD上.(1)探究:是否存在点I,使得平面//GHI平面ACN?并证明;(2)若142DM BC AB===,线段MN在平面ABCD内的投影与线段AD重合,求多面体BC ADMN -的体积.例3、《九章算术》中所述“羡除”,是指如图所示五面体ABCDEF ,其中////AB DC EF ,“羡除”形似“楔体”.“广”是指“羡除”的三条平行侧棱之长a ,b ,c 、“深”是指一条侧棱到另两条侧棱所在平面的距离m 、“袤”是指这两条侧棱所在平行直线之间的距离n (如图).已知3a =,2b =,1c =,2m =,1n =,则此“羡除”的体积为( )A .2B .3C .32D .42【来源】安徽省合肥一六八中学2021届高三下学期最后一卷理科数学试题【变式演练3】【云南省昆明市第一中学2021届高三高中新课标第一次摸底测试】如图,在六面体ABCDEF 中,AB //CD ,AB ⊥AD ,且AB =AD =12CD = 1,四边形ADEF 是正方形,平面ADEF ⊥平面ABCD .(1)证明:平面BCE Ⅰ平面BDE ; (2)求六面体ABCDEF 的体积.【变式演练4】【四川省内江市2020届高三下学期第三次模拟考试】如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求多面体1111ABC A B C D -的体积.【高考再现】1.【2020年高考全国Ⅰ卷文数19】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC ∆是底面的内接正三角形,P 为DO 上一点,90APC ∠=︒.(1)证明:平面PAB ⊥平面PAC ; (2)设2DO =,圆锥的侧面积为3π,求三棱锥P ABC -的体积.2.【2020年高考全国Ⅱ卷文数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C △的中心,若6AO AB ==,AO //平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.。

立体几何中求体积的几种方法

立体几何中求体积的几种方法

立体几何中求体积的几种方法
立体几何中求体积的方法:
1、分割法,一般的考试题目不会给你一个简单的长方体,正方体,圆等等一些能套公式就能求出体积,而是弄一些多面体,让你求它的体积。

分割法,就是把多面体分割成几个我们常见的立体,然后求各个分割体的体积,最后相加就能得出所要求的体积了。

2、补形法,多面体加以拼补,把它拼成我们常见的立体,求出该立体的体积后,把补上去的各个立体的体积算出来,相减就能得出所要求的体积了。

3、等体积法,这个方法举例比较好说明,比如,求四面体P-ABC的体积,但是顶点P到面ABC的距离不好求(即高h),然而我们把顶点和底面换一下,换成四面体A-PBC,此时,定点A到面PBC的距离可以很容易就得到(AP丄面PBC,即AP就是高),这样四面体A-PBC的体积就很容易求出来了。

显然,四面体P-ABC和四面体A-PBC是同一个立体,因此,求出四面体A-PBC的体积也是求出四面体P-ABC的体积。

立体几何中的体积计算方法

立体几何中的体积计算方法

立体几何中的体积计算方法体积是立体几何中一个重要的概念,用来描述一个立体物体所占据的空间大小。

在立体几何中,我们常常需要计算各种形状的立体体积,以便解决实际问题或进行几何分析。

本文将介绍几种常见的体积计算方法。

一、长方体体积计算方法长方体是体积计算最简单的一种立体形状。

它有六个面,两对面相对平行且相等,每个面上的边长分别为a、b和c。

长方体的体积可以通过公式V = a * b * c计算得到。

二、正方体体积计算方法正方体是一种特殊的长方体,它的六个面都是正方形。

正方体的体积可以直接通过公式V = a * a * a计算得到。

三、圆柱体体积计算方法圆柱体是一种由两个平行的圆面和一个侧面组成的立体形状。

其中一个圆面叫做底面,另一个圆面与底面平行且等大小,叫做顶面。

侧面是由底面和顶面的所有相对位置相连形成的。

圆柱体的体积可以通过公式V = π * r^2 * h计算得到,其中r为底面半径,h为圆柱体的高度。

四、圆锥体体积计算方法圆锥体是一种由一个圆锥面和一个圆面组成的立体形状。

圆锥体的体积可以通过公式V = 1/3 * π * r^2 * h计算得到,其中r为底面半径,h为圆锥体的高度。

五、球体体积计算方法球体是一种由所有与球心距离相等的点构成的立体形状。

球体的体积可以通过公式V = 4/3 * π * r^3计算得到,其中r为球体的半径。

六、其他立体体积计算方法除了上述常见的立体形状外,我们在现实生活和科学研究中,还会遇到其他复杂的立体形状,这些立体形状的体积计算方法可能不具有明确的公式。

在这种情况下,我们可以采用逼近法,将复杂形状估计为一系列简单形状的组合,通过计算每个简单形状的体积并将其相加来近似计算整个立体形状的体积。

总结:立体几何中的体积计算是一个复杂而重要的问题。

不同形状的立体体积计算方法也各不相同。

对于常见的形状如长方体、正方体、圆柱体、圆锥体和球体,我们可以利用相应的公式进行计算。

而对于其他复杂的形状,我们可以通过逼近法进行估算。

求体积的几种常用的方法

求体积的几种常用的方法
E
VBDEF VBEFD
1
4
3 SDEF AB 3 F
D
C
A
B
变式4、如图,在边长为a的正方体ABCD A1B1C1D1
中,点E为AB上的任意一点,求三棱锥 A1 DEB1 的
体积。
解法分析:V A1 DEB1 = VD A1EB1
D1
1
C1
3 SA1EB1 DA
A1 D
A
B1
P
E
F
H D CQ
GA
BP
(补形法)
F
D
C
A
B
(分割法2)
D
C
A
B
(分割法3)
(分割法1)
E
多面体分割成一个三棱锥和一个
D
四棱锥,但是,三棱锥E-ADF的
A
体积不易求得,所以,不考虑这
种方法。
注:将几何体分割时,尽量分 E
割成体积容易求得的小几何体。
D
A
F
C B
F
C B
(分割法2)
ห้องสมุดไป่ตู้
分别过A、B作EF的垂线,垂
VD1 EDF
VF DED1
1 3
SDED1
h
1 1 1 32
1 6
变式2、在棱长为2的斜三棱柱ABC-DEF中,已知
BF⊥AE,BF∩CEO,AB=AE,连结AO. (Ⅰ)求证:AO⊥平面FEBC;
(Ⅱ)求三棱锥B-DEF的体积. D
A H
C F
O
E
B
VBDEF VDBEF VABEF
变式3、如图所示,正方形ABCD与直角梯形 ADEF所在平面互相垂直,∠ADE=900,AF//DE, DE=DA=2AF=2. 求四面体BDEF的体积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B CD PA B CDP文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011⋅新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值. 2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD .(Ⅰ) 证明:PA BD ⊥;(Ⅱ) 设1PD AD ==,求棱锥D PBC -的高.根据DE PB PD BD ⋅=⋅,得32DE =.即棱锥D PBC -的高为32.3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.4.【2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。

(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。

5.【2012 新课标全国理】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。

6.【2012 新课标全国文】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

【命题意图猜想】1.纵观2011年和2010年高考对本热点的考查,均以四棱锥为背景,并且建立空间直角坐标系较为容易,在第一问中均考查线线垂直的证明,这种位置关系的证明已经连续三年进行了考查.理科考查了线面角和二面角,这两种角的考查有隔年考查的规律.两年的文科试题考查了体积问题.在2012年以三棱柱为背景,考查垂直关系的证明和二面角的求解,文科考查了面面垂直的证明和几何体的体积求解.猜想2013年很可能以棱锥或者球相关的组合体为背景,在建坐标系上不会太直观,考查线面平行位置关系,理科第二问可能给出某个角,考查点的位置或设置一问探索性问题,而文科第二问仍以求体积或表面积为主.2.从近几年的高考试题来看,直线与平面平行的判定,以及平面与平面平行的判定是高考的热点,题型既有选择题、填空题,也有解答题,难度为中等偏低;主要考查线面平行的判定,考查线∥线⇌线∥面⇌面∥面的转化思想,并且考查学生的空间想象能力以及逻辑推理能力.预测2013年仍将以线面平行的判定为主要考查点,重点考查学生的空间想象能力和逻辑推理能力.3.从近几年的高考试题来看,线面垂直的判定、面面垂直的判定与性质、线面角(理)等是高考的热点,题型既有选择题、填空题又有解答题,难度中等偏高,客观题主要考查线面垂直、面面垂直的判定与性质,考查线面角的概念及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.预测2013年高考仍将以线面垂直、面面垂直、线面角为主要考查点,重点考查学生的空间想象能力以及逻辑推理能力.4.从近几年的理科高考试题来看,利用空间向量证明平行与垂直,以及求空间角是高考的热点,题型主要为解答题,难度属于中等,主要考查向量的坐标运算,以及向量的平行与垂直的充要条件,如何用向量法解决空间角问题等,同时注重考查学生的空间想象能力、运算能力.预测2013年高考仍将以用向量证明平行与垂直,以及利用向量求空间角为主要考点,重点考查向量的数量积及学生的空间想象能力、运算能力等.【最新考纲解读】1.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义.了解可以作为推理依据的公理和定理.(2)以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定.(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.2.空间向量及其运算(理)(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(4)理解直线的方向向量与平面的法向量定义.(5)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用.【回归课本整合】1.直线与平面平行的判定和性质(1)判定:①判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交,那么这条直线和交线平行.注意:在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质.2.直线和平面垂直的判定和性质(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直.②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直. (2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直.②如果两条直线都垂直于同一个平面,那么这两条直线平行.3.平面与平面平行(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行.注意:这里必须清晰“相交”这个条件.如果两个平面平行,那么在其中一个平面内的所有直线与另一个平面无公共点,即这些直线都平行于另一个平面.(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.注意:这个定理给出了判断两条直线平行的方法,注意一定是第三个平面与两个平行平面相交,其交线平行.4.两个平面垂直的判定和性质(1)判定:①判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②定义法:即证两个相交平面所成的二面角为直二面角;注意:在证明两个平面垂直时,一般先从已知有的直线中寻找平面的垂线,若不存在这样的直线,则可以通过添加辅助线解决,而作辅助线应有理论依据;如果已知面面垂直,一般先用面面垂直的性质定理,即在一个平面内作交线的垂直,使之转化为线面垂直,然后进一步转化为线线垂直.(2)性质:①如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.②两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内. 注意:性质定理中成立有两个条件:一是线在平面内,二是线垂直于交线,才能有线面垂直.(3)立体几何中平行、垂直关系的证明的基本思路是利用线面关系的转化,即:线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−5.(理)直线与平面所成的角(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。

当直线和平面垂直时,就说直线和平面所称的角为直角;当直线与平面平行或在平面内时,就说直线和平面所称的角为0角.(2)范围:[0,90];(3)求法:作出直线在平面上的射影,关键是找到异于斜足的一点在平面内的垂足,可根据面面垂直的性质定理来确定垂线。

(4)最小角定理:斜线与平面中所有直线所成角中最小的角是斜线与平面所成的角。

6.(理) 二面角(1)二面角定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.二面角的大小是通过其平面角来度量的平面角,而二面角的平面角的三要素:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直。

(2)作平面角的主要方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②三垂线法:过其中一个面内一点作另一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;③垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角;(3)二面角的范围:[0,]π;7(理) 利用向量处理平行问题(1)证明线线平行,找出两条直线的方向向量,证明方向向量共线;(2)证明线面平行的方法:①证明直线的方向向量与平面内的某一向量是共线(平行);②证明直线的方向向量与平面的两个不共线向量是共线向量,即利用共面向量定理进行证明;③证明直线的方向向量与该平面的法向量垂直.(3)平面与平面平行的证明方法:证明两个平面的法向量平行.8(理)利用向量处理垂直问题(1)证明线线垂直,可证明两条线的方向向量的数量积为0;(2)证明线面垂直方法:①根据线面垂直的判定定理利用向量证明直线与平面内的两条相交直线垂直;②转化为证明直线的方向向量与平面的法向量共线.(3)证明面面垂直的方法:①根据面面垂直的判定定理利用向量证明一个平面内的一条直线方向向量为另一个平面的法向量;②证明一个平面的法向量与另一人平面平行;③转化为证明这两个平面的法向量互相垂直.9.(理)利用向量处理角度问题1.求异面直线所成的角的向量法:其基本步骤是(1)在a 、b 上分别取,AB CD ;或者建立空间直角坐标系用坐标表示,AB CD ;(2)由公式cos ||||||AB CD AB CD θ⋅=⋅确定异面直线a 与b所成角θ的大小。

2.求直线和平面所成的角的向量法:在斜线上取一方向向量a ,并求出平面α的一个法向量n ,若设斜线和平面所成的角为θ,由sin cos ,||||||a n a n a n θ⋅=<>=⋅.3.求二面角的向量法:方法(1)设n ,m 分别是平面,βα的法向量,则向量n 和m 的夹角与二面角l αβ--的平面角相等或互补. 方法(2)二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、,则二面角βα--l 的大小等于向量21n n 、的夹角,即 cos 21n n =θ 【方法技巧提炼】1. 线线平行与垂直的证明证明线线平行的方法:(1)平行公理;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)向量平行.要注意线面、面面平行的性质定理的成立条件. 证明线线垂直的方法:(1)异面直线所成的角为直角;(2)线面垂直的性质定理;(3)面面垂直的性质定理;(4)三垂线定理和逆定理;(5)勾股定理;(6)向量垂直.要注意线面、面面垂直的性质定理的成立条件.解题过程中要特别体会平行关系性质的传递性,垂直关系的多样性.2.线面平行与垂直的证明方法线面平行与垂直位置关系的确定,也是高考考查的热点,在小题中考查关系的确定,在解答题考查证明细节.线面平行的证明方法:(1)线面平行的定义;(2)线面平行的判断定理;(3)面面平行的性质定理;(4)向量法:证明这条直线的方向向量和这个平面内的一个向量互相平行;证明这个直线的方向向量和这个平面的法向量相互垂直.线面平行的证明思考途径:线线平行⇔线面平行⇔面面平行.线面垂直的证明方法:(1)线面垂直的定义;(2)线面垂直的判断定理;(3)面面垂直的性质定理;(4)向量法:证明这个直线的方向向量和这个平面的法向量相互平行.线面垂直的证明思考途径:线线垂直⇔线面垂直⇔面面垂直.3.面面平行与垂直的证明(1)面面平行的证明方法:①反证法:假设两个平面不平行,则它们必相交,在导出矛盾;②面面平行的判断定理;③利用性质:垂直于同一直线的两个平面平行;平行于同一平面的两个平面平行;④向量法:证明两个平面的法向量平行.(2)面面垂直的证明方法:①定义法;②面面垂直的判断定理;③向量法:证明两个平面的法向量垂直.解题时要由已知相性质,由求证想判定,即分析法和综合法相结合寻找证明思路,关键在于对题目中的条件的思考和分析,掌握做此类题的一般技巧和方法,以及如何巧妙进行垂直之间的转化.4.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.5. 如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径。

相关文档
最新文档