27.3位似1(经典课件)

合集下载

27.3 第1课时 位似图形的概念及画法 课件 2023—2024学年人教版数学九年级下册

27.3 第1课时 位似图形的概念及画法 课件 2023—2024学年人教版数学九年级下册

第二十七章 相似
27.3 第1课时 位似图形的概念及画法
情景导入 例题讲解 课堂小结
获取新知 随堂演练
情景导入 下面两幅图中的图形都是相似图形吗?它们还有什么特征?
它们对应顶点所在的直线相交于一点
获取新知
知识点一:位似图形的概念
问题1:下列图形中,每幅图中的两个多边形都是相似图形.分别观察 这三幅图,你发现每幅图中的两个图形各对应点的连线有什么特征?
随堂演练 1.下列各选项的两个图形中,不是位似图形的是( C )
2. 如图,BC∥ED,下列说法不正确的是 ( D )
A. 两个三角形是位似图形
B. 点 A 是两个三角形的位似中心 E
C. B 与 D、C 与 E是对应位似点
D. AE : AD是相似比 B
D A
C
3. 如图,△ABC与△DEF是位似图形,位似比为2 : 3,已知 AB=4,则 DE的长为_6__.
(2)AA′=CC′=2. 在Rt△OA′C′中,
OA′=OC′=2,得A′C′= 2 2. 同理可得AC= 4 2. ∴四边形AA′C′C的周长= 4 6 2.
课堂小结
位似图形的概念: 特殊位置上的相似
位似图形的概念 位似图形的性质:
及画法
相似的性质+对应边共线或平行
位似图形的画法: 关注位似中心的位置进而分类讨论
OA OB OC OD 2 取在四边形 ABCD 内部呢?分别画出这时得到的图形.
A
B
C C' O D' B'
A'
对应点在反向 延长线上
D
A
A'
D B B' O D'
C'C位Fra bibliotek中心在图形内部

最新人教版九年级数学下册《27.3 位似(1)》课件

最新人教版九年级数学下册《27.3 位似(1)》课件

画法:①作射线OA 、OB 、 OC
②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得
OA OB OC 1
B'
OA' OB ' OC ' 2
A'
③顺次连结A' 、B' 、C'
B
就是所要求图形
A C'
C
O
课堂检测 1. 选出下面不同于其他三组的图形 ( B )
A
B
C
D
2. 如图,正五边形 FGHMN 与正五边形 ABCDE 是位似图形,
2.掌握位似图形的画法,能够利用作位似图 形的方法将一个图形放大或缩小。
3.培养学生分类讨论问题的能力。
探究新知
新知一 位似的定义
下列图形中有相似多边形吗?如果有,那 么这种相似有什么特征?
【讨论】什么样的图形叫做位似图形?什么叫做位似中心? 如何判断两个图形是否位似图形?
两个相似多边形,如果它们对应顶点的连线相交于一点, 我们就把这样的两个图形叫做位似图形,这个交点叫做位似 中心.
(2) 以点 C 为位似中心.
A
A′

B

B′
● C ( C′ )
5.如图,F 在 BD 上,BC、AD 相交于点 E,且 AB∥CD∥EF,
(1) 图中有哪几对位似三角形? 选其中一对加以证明;
答案:△DFE 与 △DBA,△BFE 与 △BDC, △AEB 与 △DEC 都是位似图形;证明略.
巩固练习
3. 如图,四边形木框 ABCD 在灯泡发出的光照射下形成
的影子是四边形 A′B′C′D′,若 OB : OB′=1 : 2,则四边形

《27.3 第1课时 位似图形的概念及画法》课件(三套)

《27.3 第1课时 位似图形的概念及画法》课件(三套)

作法一:(1)在四边形ABCD外任取一点O; (2)过点O分别作射线OA,OB,OC,OD; (3)分别在射线OA,OB,OC,OD上取点 A′、B′、C′、D′, 使得 OA OB OC OD 1
OA OB OC OD 2
(4)顺次连结A′B′、B′C′、C′D′、D′A′,得到所要画 的四边形A′B′C′D′,如图2.
把右图中的五边形ABCDE扩大到原来的2倍。
练 A
一B
E
练 C

O D
D` ●
`E ●
`●
A

C`

B`
四、归纳小结
1、如果两个图形不仅是相似图形,而且是每组对 应点连线相交于 一点 ,对应边互相 平行 ,那么 这样的两个图形叫做__位__似__图_形__.这个点叫 做 位似中心 .
2、利用位似进行作图的关键是确定_位__似_中__心 _和 _关__键__点____.
第二十七章 相似 27.3 位似
第1课时 位似图形的概念及画法
一、新课引入 1、我们学过的图形变换形式有哪些?
平移、旋转、对称
2、什么叫相似?相似与全等有什么区别与联系? 相似:形状相同。 全等:大小、形状相同,能够重合 区别:相似不一定全等,但全等一定相似。 联系:形状相同
二、学习目标
1 了解位似图形及其有关概念,了解 位似与相似的联系和区别,掌握位 似图形的性质;
解析:由题意得,五边形ABCDE与五边形A′B′C′D′E′ 是位似图形,所以五边形ABCDE与五边形A′B′C′D′E′ 相似,所以它们的周长的比等于对应边的比,即等于
OA 10 1 . OA 20 2
答案:1
2
通过这节课的学习,你有哪些收获? 1.如果两个相似图形的每组对应点所在的直线都交于一点, 对应边平行,那么这样的两个图形叫做位似图形, 这个交 点叫做位似中心, 这时两个相似图形的相似比又叫做它们 的位似比. 2.位似图形的对应点和位似中心在同一条直线上,它们到 位似中心的距离之比等于位似比.

27.3.1 位似图形课件

27.3.1  位似图形课件

知2-讲
总 结
两个图形位似,则两个图形相似,所以相似图 形的性质,位似图形都满足,可以直接运用.
知2-练
1 〈沈阳〉如图,△ABC与△DEF位似,位似中心为
4 点O,且△ABC的面积等于△DEF面积的 ,则 9
AB∶DE=________.
知2-练
2 (2016•十堰)如图,以点O为位似中心,将△ABC缩
第二十七章 相

27.3


第1课时
位似图形
1课堂讲解Fra bibliotek位似图形的定义 位似图形的性质 位似图形的画法
2
课时流程
逐点 导讲练
课堂 小结
作业 提升
用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会
形成物的倒像,我们把这样的现象叫小孔成像.前后移动中 间的板,屏幕上像的大小也会随之发生变化.这种现象反映 了光沿直线传播的性质. 同时,我们可以发现,像与实物是两个相似的图形,而 且它们对应点的连线都过一个点, 我们可以说它们是位似图形.生 活中还有哪些图形是位似图形呢?
快来学习本节课内容吧!
知1-导
知识点
1
位似图形的定义
在日常生活中,我们经常见到这样一类相似的图形,
例如,放映幻灯时,通过光源,
把幻灯片上的图形放大到屏幕 上(如图显示了它工作的原理).
这样的放大缩小,没有改变图形形状,经过放大或
缩小的图形,与原图形是相似的,因此,我们可以得到 真实的图片和满意的照片.
知3-导
1 例如,要把四边形ABCD缩小到原来的 , 我们可 2
以在四边形ABCD外任取一点O(如图),分别在线段
OA,OB,OC,OD上取点A′ ,B′ ,C′ ,D′ ,使得 D′, 所得四边形A′B′C′D′就是所要求的图形 .

课件4:27.3 位似(1)

课件4:27.3 位似(1)
第二十七章 相似
27.3 位似(1)
位似图形的探究1
如何探究这两个相似图形之间的内在关系呢?
对应点的连线相交于一点
除对应点连线外,我们还可以怎样去探究?
对应边互相平行
位似图形的探究2
对类似的这两个相似图形,同学们知道怎样去探究了吗?
对应点连线相交于一点
对应边平行
位似图形的探究3
再探究这两个相似图形,对同学们来说已经不是难事了,我们完全 有能力自己去探究!
A
B
C
O C’
B’
A’
三、位似图形的性质:
位似图形上任意一对对应点到位似中心的距离之比等于相似比.
练习:如图:以O为位似中心,将△ABC放大为原来的两倍
C'' A''
B A
O C
B'
B A'
A
O
C
C'
B''
小结
一、位似图形的定义: 二、位似图形的性质: 三、位似图形的画法:
1、画出基本图形 2、选取位似中心 3、根据条件确定对应点,并描出对应点 4、顺次连结各对应点,所成的图形就是
对应点连线相交于一点
对应边平行
1.位似图形的定义:
两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行, 像这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又 称为位似比.
(1)相似 (2)对应点的连线相交一点 (3)对应边平行
二、位似图形的画法
以0为位似中心把△ABC
A
在同侧缩小为原来的一半。
步骤: 1、画出ABC 2、选取中心点
A’ B’
3、连结OA、OB、OC。 O

人教版第二学期数学九年级下 27.3 位似第1课时 位似图形的概念及画法课件(共20张PPT)

人教版第二学期数学九年级下 27.3 位似第1课时  位似图形的概念及画法课件(共20张PPT)

E′
D′
D
E
O
A
A′
B
C′
A
C
B′
C′
O
B
C
B′
A′
归纳:
1. 位似图形的对应角相等,对应边成比例,周长比
等于相似比,面积比等于相似比的平方;
2. 位似图形的对应点的连线相交于一点,即经过位似中心;
3. 位似图形的对应边互相平行或在同一条直线上;
4. 位似图形上任意一对对应点到位似中心的距离之比等
于相似比.
例2 如图所示,四边形ABCD 和四边形A′ B′ C′ D′位似,相似比1 = 2,四边
形A′ B′ C′D′和四边形A″ B″ C″D″位似,相似比2 = 1. 则四边形A″ B″ C″ D″
和四边形ABCD 是位似图形吗?如果是,请说明理由并求出相似比.
解:∵ 四边形ABCD 和四边形A′ B′ C′ D′位似,
E
OD;在射线OA、OB、OC、
H
A
OD上分别取点D、E、F,使
D
O
B
C
OE = 2OA , OF = 2OB , OG =
2OC , OH = 2OD;顺次连结E、
F、G、H,使正方形ABCD与
F
G
5.如图所示,四边形ABCD的一个位似图形是四边形A′ B′ C′ D′ ,
且A,B,C,D的对应点分别是A′ ,B′ ,C′ ,D′. 图中给出了AB的对应
似中心的位似图形,且











;五边形ABCDE 与五


边形A′ B′ C′ D′ E′是以点O 为位似中心的位似图形,且′ = ′ =

九年级人教版数学下册课件:27.3位似(1)课件

九年级人教版数学下册课件:27.3位似(1)课件

A
1.如图,已知 △ABC∽△DEF, 它们对
应顶点的连线AD,BE,CF D
相交于点O,这两个三角形 是不是位似三角形?
B E
0
F
C
2.练一练:判断下列各对图形哪些是位似图形, 哪些不是.
(1)正方形ABCD与正 方形A′B′C′D′.
(2)等边三角形ABC 与等边三角形 O A′B′C′
(3)扇形ABC与扇形 A′B′C′,(B、A 、B′在 一条直线上,C、A 、C′在 一条直线上)
D
C D/ C/ O
A
A/
B/
D A
B C
O
B
D/ C/
B/
A/
O
D D/
C C/
A A/
B/ B
观察下图中的五个图,回答下列问题:
在各图中,位似图形的位似中心与这两个图形有 什么位置关系?
D
C D/ C/ O
A
A/
B/
D A
B C
O
B
D/ C/
B/
A/
O
D D/
C C/
A A/
B/ B
位置不一样,位似 中心就不一样.
(4)△ABC与△ADE(①DE∥BC ②∠AED=∠B)
3.以下说法对吗? 1.位似图形必是全等图形。
2.不是位似图形必定不相似。 3.相似图形一定位似。 4.位似图形不一定相似。
4.如图,已知△ABC和点O.以O为位似中 心,求作△ABC的位似图形,并把△ABC的边 长缩小到原来的一半.
5.作△ABC与的位似图形△DEF
(1)-2
(2)等边三角形ABC与等边三角形A′B′C′
(2)
(4)反比例函数 y=6x (x>0)的图像与 y=6x (x<0)的图像

人教版九年级下册 数学 课件 27.3:位似1 (共24张PPT)

人教版九年级下册 数学 课件 27.3:位似1 (共24张PPT)
类似地,可以确定其他顶点的坐标.
,即(-3,3).
(1)五边形ABCDE与五边形A′B′C′D′E′;
(3)正方形ABCD与正方形A′B′C′D′.
③顺次连结A' 、B' 、C' 就是所要求图形
图中每幅图中的两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,
已知四边形ABCD,如图所示,画一个四边形A‘B’C‘D’,
形放大为原来的2倍.
-2 A
C
-4 A'
C'
-6
B
-8
解: A'( 4 ,- 4 ),B ' (
B' 8 , - 10 ),C ' ( 10 ,-4 ),
A" (- 4 , 4 ),B" (- 8 , 10 ),C" (-10 ,4 ),
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能 说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?
C
A'
B'
C'
已知四边形ABCD,如图所示,画一个四边形A‘B’C‘D’,
使四边形A‘B’C‘D’与原图形相似比为2.5.
AD
B
C
A'
A
D
B
C
B'
D'
(A ) A' D
D'
B
C
C' B'
C'
练习
3.如图,△OAB和△OCD是位似图形,AB与CD平行吗?
为什么?
C
AB∥CD
A
∵△OAB与△ODC是位似图形

人教版九年级数学下册27.3位似(1)课件

人教版九年级数学下册27.3位似(1)课件

P
复习:1.位似图形的概念
如果两个图形不仅相似,而且每组对应点所在的直线都经 过同一点,对应边互相平行,那么这样的两个图形叫做位似 图形,这个点叫做位似中心.
相似
对应点的连 线相交一点
对应边平行
A
D
E
F
B
C
G
相似的两个图形不一定位似,位似的两个图形一定 相似。
2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,则OAO′A =
所以∆ADE和 ∆ABC是位似图形. 判断下列各图形哪些是位似图形:
B
位似图形中每组对应点所在的直线必相互平行
O C 问题1:位似中心的个数?
1.位似图形的对应点和位似中心在同一条直线上
F
位似可以将一个图形放大或缩小。
观察对应点之间的坐标的变化,你有什么发现?
A D 如果两个图形相似,并且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
• 掌握位似图形的画法,能够利用作位似图 解:(1) ∆ADE和 ∆ABC是位似图形.
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),请画出△ABC以原点O为位似中心,相似比为1:2的放大后的位似 图形.
形的方法将一个图形放大或缩小。 在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),请画出△ABC以原点O为位似中心,相似比为1:2的放大后的位似
• 理解位似图形及其有关概念,了解位似与相 位似是一种具有位置关系的相似。
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,将△ABC放大. 分别观察这五个图,你发现每个图中的各对对应点与位似中心的连线(即OA与OA'、OB与OB'、OC与OC'、OD与OD')的比有什么关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质:位似图形上任意一对对应点到位似中心 的距离之比等于相似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
A’ A B O C B’
OC:OC’= 1:2
A
A' .
O. B B’ C C’
1.如图,已知△ABC和点O.以O为位似中心,求作 △ABC的位似图形,并把△ABC的边长扩大到原来的两倍.
2.位似图形的性质
位似图形上的任意一对对应点到位似中心的 距离之比等于位似比 3.利用位似可以把一个图形放大或缩小
A
以0为中心把△ABC 缩小为原来的一半。
C O
B
C’
B’
A’
注意
位似是一种具有位置关系的相似。 位似图形是相似图形的特殊情形。 位似图形必定是相似图形,而相似图形 不一定是位似图形。 两个位似图形的位似中心只有一个。 两个位似图形可能位于位似中心的两侧, 也可能位于位似中心的一侧。
位似图形的性质 对应点与位似中心共线。 不经过位似中心的对应边平行。 位似图形上任意一对应点到位似中心的 距离之比等于位似比。
位似的作用 位似可以将一个图形放大或缩小。
小结
1.什么叫位似图形? 如果两个图形不仅相似,而且对应顶点的连线 相交于一点,像这样的两个图形叫做位似图形, 这 个点叫做位似中心, 这时的相似比又称为位似比.
思考:还有没其他作法?
C’ B’ A
. O
B C
A'
如果位似中心跑到三角形内部呢?
A
O
B C
3. 位似图形的画法:
画出基本图形。 选取位似中心。 根据条件确定对应点,并描出对应点。 顺次连结各对应点,所成的图形就是所求的图形。 符合要求的图形不唯一,因为所作的图形与所 确定的位似中心的位置有关,并且同一个位似 中心的两侧各有一个符合要求的图形。
思考:1.是否相似图形都是位似图形?
2.位似图形有何性质?
2. 位似图形的性质
OA 从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,则 = OA′ OB AB AF AP AE EP FP = .从第(3)图中同样可以看到 = = = = OB′ A′B′ AD AC AB BC DC
点叫做位似中心.
相似 对应点的连 线相交一点 对应边平行
判断下面的正方形是不是位似图形?
A
D
不是
E (1) B C F G
显然,位似图形是相似图形的特殊情形.相似图形不 一定是位似图形,可位似图形一定是相似图形
1. 判断下列各对图形是不是位似图形. (1)正五边形ABCDE与正五边形A′B′C′D′E′; 是 (2)等边三角形ABC与等边三角形A′B′C′. 是
下面请欣赏如下图形的变换
下列图形中,每个图中的四边形ABCD和 四边形A′B′C′D′都是相似图形.分别观察这五个 图,你发现每个图中的两个四边形各对应点的连线 有什么特征?对应边有什么关系?
1.位似图形的概念
如果两个图形不仅相似,而且每组对应点
所在的直线都经过同一点,对应边互相平行
,那么这样的两个图形叫做位似图形,这个
1. 前面我们已经学习了图形的哪些变换?
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基 础.
对称(轴对称与轴对称图形,中心对称与中心 对称图形):对称轴,对称中心. 平移:平移的方向,平移的距离. 旋转:旋转中心,旋转方向,旋转角度 . 相似:相似比.
相关文档
最新文档