2020秋人教版九年级数学上册 期末达标测试卷
人教版九年级数学上册期末测试题及答案【2020精】
第一学期九年级期末考试数学试题一、选择题(每小题3分,共42分)1.计算a7•(1a)2的结果是()A.a B.a5 C.a6 D.a82.要使分式15--x有意义,则x的取值范围是()A、x≠1B、x>1C、x<1D、x≠1-3.下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C. D.4.根据下列已知条件,能唯一画出△ABC的是( )A.AB=2,BC=4,AC=7 B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4 D.∠C=90°,AB=65.下列各式2ba-,xx3+,πy+5,baba-+,)(1yxm-中,是分式的共有()A.1个B.2个C.3个D.4个6.若(x+3)(x-4)=x2+px+q,那么p、q的值是()A.p=1,q=-12 B.p=-1,q=-12C.p=7,q=12 D.p=7,q=-127.下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6 B.∠A=40º、∠B=70ºC.AB=3、BC=8,周长为16 D.∠A=40º、∠B=50º8.若一个多边形的每一个外角都是45°,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形9.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是A.1B.2C.3D.410.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=55°,则∠1的度数为()A.65° B.25° C.35° D.45°11.已知2y10y m++是完全平方式,则m的值是()A.25± B.25 C.5 D.5±12.如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于()A.65° B.115° C.105° D.75°AB CDE F13.若分式方程22x x +=+x m 无解,则m 的值为( ) A .2 B .0 C .1 D .—2 14.若1002=m ,753=n 则n m , 的大小关系为 ( )A .n m >B .n m <C .n m =D .无法确定二、填空题(本大题满16分,每小题4分)15.计算:111x x x -=-- . 16.一个矩形的面积为222)46(cm b a ab +,一边长为2ab cm ,则它的周长为 cm .17.等腰三角形一个顶角和一个底角之和是︒100,则顶角等于 .18.下列图形中对称轴最多的是 .三、解答题(本大题满分62分)19.计算: (每题5分,共10分)(1)()()()ab b a ab 53322-⋅-⋅ (2)[])2()()(22xy y x y x ÷--+20 把下列多项式分解因式: (每题5分,共10分)(1)4x 2y 2-4 (2)221218pm pm p -+.21.(10分) 如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)将△ABC 沿y 轴翻折,,画出翻折后的△A 1B 1C 1,点A 的对应点A 1的坐标是 .(2) △ABC 关于x 轴对称的图形△A 2B 2C 2,直接写出点A 2的坐标 .(3)若△DBC 与△ABC 全等(点D 与点A 重合除外),请直接写出满足条件点D 的坐标.22.(10分)如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE . 线段圆长方形正方形求证:(1)△AEF≌△CEB;(2)AF=2CD.23 (10分).有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克?24.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,则根据(2)的结论E、F之间的距离是多少?并说明理由.选择题BADCC BDBCC AADB15 -116 3b+2a17 20°18 圆19、计算:(每题5分,共10分)(1)解:原式=)5()(3942ab b a b a -⋅-⋅(3分)=8125b a (3分)(2)解:原式=xy xy 24÷ (3分)=2 (3分)20(1) 4(xy+1)(xy-1) (2) ()223p m -21、(1)∵AD ⊥BC ,CE ⊥AB ∴∠AEF=∠CEB=90° 即∠AFE+∠EAF=∠CFD+∠ECB=90° 又∵∠AEF=∠CFD ∴∠EAF=∠ECB在△AEF 和△CEB 中,∠AEF=∠CEB ,AE=CE ,∠EAF=∠ECB∴△AEF ≌△CEB (6分)(2)由△AEF ≌△CEB 得:AF=BC 在△ABC 中,AB=AC ,AD ⊥BC∴CD=BD ,BC=2CD∴AF=2CD. (4分)22 (1) 画图 3分 A1(2,3) (2分)(2) (-2,-3) (2分)(3) (-5,3) (-5,-3) (-2,-3) (3分)23 解:设第一块试验田每亩收获蔬菜x 千克,由题意得:(1分) 9001500300x x =+, (4分) 解得:x=450, (2分)经检验:x=450是原分式方程的解, (2分)答:第一块试验田每亩收获蔬菜450千克. (1分)24 (1)EF=BE+DF ;(2分)(2)EF=BE+DF 仍然成立.(1分)证明:如图2,延长FD 到G ,使DG=BE ,连接AG , ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG ,在△ABE 和△ADG 中,, ∴△ABE ≌△ADG (SAS ), (2分) ∴AE=AG ,∠BAE=∠DAG ,∵∠EAF=∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD ﹣∠EAF=∠EAF , ∴∠EAF=∠GAF , 在△AEF 和△GAF 中, , ∴△AEF ≌△GAF (SAS ), (2分)∴EF=FG , ∵FG=DG+DF=BE+DF ,∴EF=BE+DF ; (1分)(3)E 、F 之间的距离是583米。
2020年新人教版九年级数学上册期末测试卷及答案【必备】
期末检测题(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2016·沈阳)一元二次方程x 2-4x =12的根是( )A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=62.(2016·宁德)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A .2B .4C .6D .83.(2016·玉林)如图,CD 是⊙O 的直径,已知∠1=30°,则∠2=( )A .30°B .45°C .60°D .70°4.(2016·泸州)若关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值范围是( )A .k ≥1B .k >1C .k <1D .k ≤15.(2016·孝感)将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A .(3,-1)B .(1,-3)C .(2,-2)D .(-2,2)第3题图第5题图第6题图6.(2016·新疆)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .c <0C .3是方程ax 2+bx +c =0的一个根D .当x <1时,y 随x 的增大而减小7.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )A .①②B .②③C .①③D .①②③8.已知点A(a -2b ,2-4ab)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A .(-3,7)B .(-1,7)C .(-4,10)D .(0,10)第7题图第9题图第10题图9.如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB ,CB 的延长线分别相交于点E ,F ,则图中阴影部分的面积为( )A .3+π2B .3+πC .3-π2D .23+π210.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc<0;②b 2-4ac 4a >0;③ac-b +1=0;④OA·OB=-ca .其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(每小题3分,共24分)11.(2016·达州)设m ,n 分别为一元二次方程x 2+2x -2 018=0的两个实数根,则m 2+3m +n =______.12.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F.若∠ACF=65°,则∠E=________.第12题图第14题图13.(2016·长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.14.(2016·南通)如图,BD 为正方形ABCD 的对角线,BE 平分∠DBC,交DC 与点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF,若CE =1 cm ,则BF =__________cm .15.(2016·眉山)一个圆锥的侧面展开图是半径为8 cm 、圆心角为120°的扇形,则此圆锥底面圆的半径为________.16.(2016·荆州)若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为________.17.(2016·梧州)如图,点B 、C 把AD ︵分成三等分,ED 是⊙O 的切线,过点B 、C 分别作半径的垂线段,已知∠E =45°,半径OD =1,则图中阴影部分的面积是________.第17题图第18题图18.(2016·茂名)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=33x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=33x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(3,1),则点A8的横坐标是________.三、解答题(共66分)19.(6分)解方程:(1)(2016·淄博)x2+4x-1=0;(2)(x-2)2-3x(x-2)=0.20.(7分)(2016·青岛)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.21.(7分)(2016·宁夏)已知△ABC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=23,求CD的长.22.(7分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.23.(8分)(2016·贵港)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.24.(9分)如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴,y轴分别相交于点D,点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,43).(1)求证:OE=CE;(2)请判断直线CD与⊙P位置关系,证明你的结论,并求出⊙P半径的值.25.(10分)(2016·葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数解析式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?26.(12分)(2016·衡阳)如图,抛物线y =ax 2+bx +c 经过△ABC 的三个顶点,与y 轴相交于(0,94),点A 坐标为(-1,2),点B 是点A 关于y 轴的对称点,点C 在x 轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F 为线段AC 上一动点,过点F 作FE⊥x 轴,FG ⊥y 轴,垂足分别为点E ,G ,当四边形OEFG 为正方形时,求出点F 的坐标;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动,设平移的距离为t ,正方形的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连接DM ,是否存在这样的t ,使△DMN 是等腰三角形?若存在,求t 的值;若不存在,请说明理由.参考答案1.B 2.D 3.C 4.D 5.C 6.C 7.A 8.D 9.A10.B 11.2 016 12.50° 13.5614.2+ 215.83 cm 16.-1或2或1 17.π818.63+6 19.(1)x 1=-2+5,x 2=-2- 5.(2)x 1=2,x 2=-1. 20.这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)=36=12,∴这个游戏对双方是公平的. 21.(1)证明:∵ED=EC ,∴∠EDC=∠C,∵∠EDC=∠B ,∴∠B=∠C,∴AB=AC.(2)如图所示,连接BD ,∵AB 为直径,∴BD⊥AC,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt △ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a)2.在Rt △CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2.∴42-(4-a)2=(23)2-a 2,整理得a =32,即CD =32.22.(1)证明:如图所示,连接AC ,AC′,∵四边形ABCD 为矩形,∴∠ABC=90°,即AB⊥CC′,∵将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′.(2)∵四边形ABCD 为矩形,∴AD=BC ,∠D=∠ABC′=90°,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,∴AD =AD′,∵BC =BC′,∴BC′=AD′,在△AD′E 与△C′BE 中,⎩⎪⎨⎪⎧∠D′=∠ABC′,∠AED′=∠BEC′,AD′=BC′,∴△AD′E≌△C′BE,∴BE=D′E,设AE =x ,则D ′E=2-x ,在Rt △AD′E 中,∠D′=90°,由勾股定理,得x 2-(2-x)2=1,解得x =54,∴AE=54. 23.(1)设2014至2016年该市投入科研经费的年平均增长率为x ,根据题意,得500(1+x)2=720,解得x 1=0.2=20%,x 2=-2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得a -720720×100%≤15%,解得a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a 的取值范围为720<a≤828.24.(1)证明:如图所示,连接OC ,∵直线y =33x +23与y 轴相交于点E ,∴点E 的坐标为(0,23),即OE =2 3.又∵点B 的坐标为(0,43),∴OB=43,∴BE=OE =23,又∵OA 是⊙P 的直径,∴∠ACO=90°,即OC⊥AB,∴OE=CE.(2)直线CD 是⊙P 的切线.证明:连接PC ,PE ,由(1)可知OE =CE.在△POE 和△PCE 中,⎩⎪⎨⎪⎧PO =PC ,PE =PE ,OE =CE ,∴△POE≌△PCE,∴∠POE=∠PCE.又∵x 轴⊥y轴,∴∠POE=∠PCE=90°,∴PC⊥CE,即PC⊥CD.又∵直线CD 经过半径PC 的外端点C ,∴直线CD 是⊙P 的切线.∵对y =33x +23,当y =0时,x =-6,即OD =6,在Rt △DOE 中,DE =OD 2+OE2=62+(23)2=43,∴CD=DE +EC =DE +OE =43+23=6 3.设⊙P 的半径为r ,则在Rt △PCD 中,由勾股定理知PC 2+CD 2=PD 2,即 r 2+(63)2=(6+r)2,解得r =6,即⊙P 半径的值为6. 25.y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得(x -20)y =150,则(x -20)(-2x +80)=150,整理,得x 2-60x +875=0,(x -25)(x -35)=0,解得x 1=25,x 2=35(不合题意舍去),答:每本纪念册的销售单价是25元.(3)由题意可得w =(x -20)(-2x +80)=-2x 2+120x -1600=-2(x -30)2+200,此时当x =30时,w 最大,又∵售价不低于20元且不高于28元,x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元. 26.(1)∵点B 是点A 关于y 轴的对称点,∴抛物线的对称轴为y 轴,∴抛物线的顶点为(0,94),故抛物线的解析式可设为y =ax2+94. ∵A(-1,2)在抛物线y =ax 2+94上,∴a+94=2,解得a =-14,∴抛物线的函数解析式为y =-14x 2+94.(2)①当点F 在第一象限时,如图1,令y =0得,-14x 2+94=0,解得x 1=3,x 2=-3,∴点C的坐标为(3,0).设直线AC 的解析式为y =mx +n ,则有⎩⎪⎨⎪⎧-m +n =2,3m +n =0,解得⎩⎪⎨⎪⎧m =-12,n =32,∴直线AC 的解析式为y =-12x +32.设正方形OEFG 的边长为p ,则F(p ,p).∵点F(p ,p)在直线y =-12x +32上,∴-12p +32=p ,解得p =1,∴点F 的坐标为(1,1).②当点F 在第二象限时,同理可得,点F 的坐标为(-3,3),此时点F 不在线段AC 上,故舍去.综上所述,点F 的坐标为(1,1).(3)过点M 作MH⊥DN 于点H ,如图2,则OD =t ,OE =t +1.∵点E 和点C 重合时停止运动,∴0≤t≤2.当x =t 时,y =-12t +32,则N(t ,-12t +32),DN =-12t +32.当x =t +1时,y =-12(t+1)+32=-12t +1,则M(t +1,-12t +1),ME =-12t +1.在Rt △DEM 中,DM 2=12+(-12t +1)2=14t2-t +2.在Rt △NHM 中,MH =1,NH =(-12t +32)-(-12t +1)=12,∴MN 2=12+(12)2=54.①当DN =DM时,(-12t +32)2=14t 2-t +2,解得t =12;②当ND =NM 时,-12t +32=54=52,解得t =3-5;③当MN =MD 时,54=14t 2-t +2,解得t 1=1,t 2=3.∵0≤t≤2,∴t=1.综上所述,存在这样的t ,使△DMN 是等腰三角形,t 的值为12,3-5或1.。
2020年人教版九年级上学期数学期末考试试卷
cm2 .
15. 如图,在 △ ABC 中, CAB 75 . 在同一个平面内,将
B'
△ ABC 绕点 A 旋转到 △ AB' C' 的位置,使得 CC' ∥ AB , 则 C'
C
BAB' =
.
A
B
16. 同时掷两枚标有数字 1~ 6 的正方体骰子,面朝上的数字之
和为 8 的概率为 .
E
17. 如图,⊙ O 的半径 OD AB 于点 C ,连接 AO 并延长
c
2
b
.
其中正确的结论有
()
A. 1 个
B. 2
个
C. 3
个
D. 4
个
–1 O
x
1
二 . 填空题 ( 本大题共 6 个小题,每题 3 分,共 18 分)
13. 已知关于 x 的方程 x2 2x k 0 的一个根为 1 ,则 k =
.
14. 已知圆锥底面半径为 6cm ,高为 8cm ,则它的侧面展开图的面积为
⑴ .平移⊿ ABC ,使点 A 的对应点 A1 的坐标为 2,2 ,请画出平移后对应的⊿ A1 B1C1 的图形 . ⑵ . ⊿ A1 B1C1 关于 x 轴对称的三角形为⊿ A2 B2 C2 ,并直接写出 A2、yB2、 C2 的坐标 .
B
A
C
O
x
24. (本题满分 14 分)
体育场上,老师用绳子围成一个周长为 30m 的游戏场地,围成的场地是如图所示的矩形
C.60
°
D. 100
°
C
7. 将抛物线 y x2 平移得到抛物线 y
2
x 2 ,则这个平移过程正确的是
2020年新人教版九年级上期末水平测试数学试题及答案
湖北省襄阳市宜城市2020届九年级(上)期末数学试卷一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.下列根式化成最简二次根式后能与合并的是()A.B.C.D.2.用配方法解方程x2+6x﹣16=0时,原方程应变形为()A.(x﹣3)2=25 B.(x+3)2=25 C.(x﹣6)2=55 D.(x+6)2=523.无论p取何值,方程(x﹣3)(x﹣2)﹣p2=0的根的情况()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.点P关于x轴的对称点是P1,P1关于y轴的对称点P2的坐标是(﹣2,﹣3),则P的坐标为() A.(﹣2,3) B.(﹣2,﹣3) C.(2,﹣3) D.(2,3)5.下列说法错误的是()A.圆内接四边形的对角互补B.圆内接四边形的邻角互补C.圆内接平行四边形是矩形D.圆内接梯形是等腰梯形6.两个半径相等的圆的位置关系有()种.A.2B.3C.4D.57.一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是()A.60°B.90°C.120°D.180°8.一天晚上,小伟帮助妈妈清洗3个只有颜色不同的有盖茶杯,此时突然停电了,小伟只好把茶杯和茶盖随机地搭配在一起,则颜色搭配错误的概率是()A.B.C.D.9.已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限B.第三象限C.第二象限D.第一象限10.把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2B.4C.6D.811.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个12.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1 D.二、填空题(本题有6个小题,每小题3分,计15)13.直角三角形两直角边长分别为,,则斜边长为_________.14.若关于x的方程(a﹣2)x2﹣2(a﹣1)x+(a+1)=0有实数根,则a的取值范围是_________.15.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_________.16.向上发射一枚炮弹,经x秒后的高度为ym,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则炮弹飞行第_________秒时高度是最高的.17.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则圆O的直径为_________.三、解答题(本题有9个小题,计69分.)18.已知:x=+,y=﹣,求:()•()的值.19.(6分)(2020•南京)某农场去年种植了10亩地的南瓜,亩产量为2020kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.20206分)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4,随机地摸出一个小球后放回,并把球上的数字作为一个两位数的个位数字,再随机地摸出一个小球,把它上边的数字作为这个两位数的十位数字,求所得两位数是3的倍数的概率.21.(6分)如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?22.(7分)(2020•襄城区模拟)如图,△ABC是边长为5的等边三角形,将△ABC绕点C顺时针旋转12020得到△EDC,连接BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.23.(7分)如图所示,△ABC的外接圆圆心O在AB上,点D是BC延长线上一点,DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的边ND上的中线.(1)求证:AB=DN;(2)试判断CP与⊙O的位置关系,并证明你的结论.24.(9分)(2020•辽阳)某商店经营儿童益智玩具,已知成批购进时的单价是2020调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为252020(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.(10分)(2020•珠海)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP 对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.26.(12分)(2020•顺义区二模)已知抛物线与x轴交于A、B,与y轴交于点C,连结AC、BC,D是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF.若S△OBC=8,AC=BC(1)求抛物线的解析式;(2)求证:BF⊥AB;(3)求∠FBE;(4)当D点沿x轴正方向移动到点B时,点E也随着运动,则点E所走过的路线长是_________.参考答案1. 下列根式化成最简二次根式后能与6合并的是( C )A .32B .40C .5.1D .34 2. 用配方法解方程01662=-+x x 时,原方程应变形为( B )A .25)3(2=-xB .25)3(2=+xC . 55)6(2=-xD .52)6(2=+x3. 无论p 取何值,方程0)2)(3(2=---p x x 的根的情况( D )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4. 点P 关于x 轴的对称点是P 1,P 1关于y 轴的对称点P 2的坐标是(-2,-3),则P 的坐标为( A )A.(-2,3)B.(-2,-3)C.(2,-3)D.(2,3)5. 下列说法错误的是( B )A.圆内接四边形的对角互补B.圆内接四边形的邻角互补C.圆内接平行四边形是矩形D.圆内接梯形是等腰梯形6. 两个半径相等的圆的位置关系有( C )种A .2B .3C .4D .57. 一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是( B )A .60°B .90°C .12020D .180°8. 一天晚上,小伟帮助妈妈清洗3个只有颜色不同的有盖茶杯,此时突然停电了,小伟只好把茶杯和茶盖随机地搭配在一起,则颜色搭配错误的概率是( C )A .91B .61C .65D .98 9. 已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是( D )A .第四象限B .第三象限C .第二象限D .第一象限10. 把抛物线2y x bx 4=++的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为2y x 2x 3=-+,则b 的值为( B )A.2B.4C.6D.8 11. 已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c >0.其中正确的有( A )A .3个B .2个C .1个D .0个12. 如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( C)A .21+π B .12+πC . π+1D .21+π二、填空题(本题有6个小题,每小题3分,计15) 13.如果直角三角形的两条直角边的长分别为132+和132-,则斜边长为 . (26)14. 若关于x 的方程0)1()1(2)2(2=++---a x a x a 有实数根,则a 的取值范围是 . (3≤a )15. 如图,在等边三角形ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE,则CE 的长度为 .(2)16. 向上发射一枚炮弹,经x 秒后的高度为y m ,且时间与高度关系为y =ax 2+bx 。
2020人教版九年级(上)期末数学试卷 含解析答案(五套)
人教版九年级(上)期末数学试卷(一)一.选择题(共10小题)1.已知m,n是一元二次方程x2=x的两个实数根,则下列结论错误的是()A.m+n=0 B.m•n=0 C.m2=m D.n2=n2.在平面直角坐标系中,抛物线y=x(x+2)经过平移变换后得到抛物线y=(x﹣1)2,其变换是()A.右移2个单位,下移1个单位B.右移2个单位,上移1个单位C.左移2个单位,上移1个单位D.左移2个单位,下移1个单位3.在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)4.如图,AB是⊙O的弦,AC是⊙O的直径,将沿着AB弦翻折,恰好经过圆心O.若⊙O 的半径为6,则图中阴影部分的面积等于()A.6πB.9C.9πD.65.已知事件:①掷一次骰子,向上一面的点数是偶数;②在13位同学中至少有2人生肖相同;③若彩票中奖率10%,那么买10张彩票一定中奖;④任意画一个三角形,其内角和为360°,其中随机事件是()A.①②B.①③C.②④D.③④6.如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A.B.C.D.7.已知A(0,﹣1),B(1,﹣3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为()A.(3,9)B.(6,3)C.(6,9)D.(9,3)8.如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+b B.x2=a•b C.x(a+b)=a•b D.2x2=a2+b29.直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()A.2 B.﹣2 C.﹣1 D.±210.如图,在△ABC中,∠ACB=90°,点D是AB边上的动点,设AD=x,CD=y,y关于x 的函数关系图象如图所示,其中M为曲线部分的最低点,则BC的长为()A.10 B.15 C.20 D.25二.填空题(共5小题)11.配方4a(ax2+bx+c)=(2ax+b)2+m,则m=.12.已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=.13.直线y=ax(a≠0)与函数y=(k≠0)的图象交于点A(1,2),若>ax,则x的取值范围是.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE 关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.三.解答题(共8小题)16.关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.17.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)销售单价x=元时,日销售利润w最大,最大值是元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?18.在甲、乙两个不透明的盒子中,分别装有除颜色外其它完全相同的小球,其中,甲盒子装有2个白球,1个红球;乙盒子装有2个红球,1个白球.(1)将甲盒子摇匀后,随机取出一个小球,求小球是白色的概率;(2)小华和同桌商定:将两个盒子摇匀后,各随机摸出一个小球.若颜色相同,则小华获胜;若颜色不同,则同桌获胜,请用列表法或画出树状图的方法说明谁赢的可能性大.19.如图,是一座横跨沙颖河的斜拉桥,拉索两端分别固定在主梁l和索塔h上,索塔h 垂直于主梁l,垂足为D.拉索AE,BF,CG的仰角分别是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的长.(精确到1m,参考数据:≈2.24,≈1.41)20.如图,直线y=x+b与y轴交于点A(0,4),与函数y=(k>0,x<0)的图象交于点C,以AC为对角线作矩形ABCD,使顶点B,D落在x轴上(点D在点B的右边),BD 与AC交于点E.(1)求b和k的值;(2)求顶点B,D的坐标.21.如图,点P在∠MAN内,PA平分∠MAN,PB⊥AM于点B,PC⊥AN于点C,点D是射线AM 上点B右侧的一个定点.(1)作经过A,P,D三点的圆;(保留作图痕进,不写作法)(2)设圆与AN交于点E,∠MAN=60°,PA=4,求AE+AD的值.22.在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M 是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.23.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC 于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.参考答案与试题解析一.选择题(共10小题)1.已知m,n是一元二次方程x2=x的两个实数根,则下列结论错误的是()A.m+n=0 B.m•n=0 C.m2=m D.n2=n【分析】可以根据根与系数的关系判断选项A、B;求出方程的解,即可判断选项C、D.【解答】解:x2=x,x2﹣x=0,由根与系数的关系得:m+n=1,m•n=0,解方程x2﹣x=0得:x=0或1,∵m,n是一元二次方程x2=x的两个实数根,∴设m=0,n=1,∴m2=m,n2=n,即只有选项A符合题意,选项B、C、D都不符合题意;故选:A.2.在平面直角坐标系中,抛物线y=x(x+2)经过平移变换后得到抛物线y=(x﹣1)2,其变换是()A.右移2个单位,下移1个单位B.右移2个单位,上移1个单位C.左移2个单位,上移1个单位D.左移2个单位,下移1个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=x(x+2)=(x+1)2﹣1,顶点坐标是(﹣1,﹣1).y=(x﹣1)2,顶点坐标是(1,0).所以将抛物线y=x(x+2)右移2个单位,上移1个单位得到抛物线y=(x﹣1)2,故选:B.3.在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)【分析】画出相应的图形,借助网格作出AB的中垂线,直角顶点一定在AB的中垂线上,借助可求出四边形ACBD的边长,进而得出ACBD是正方形,得到点C、D符合题意.【解答】解:将A(2,3),B(0,﹣1)描述在坐标系中,如图所示:借助网格,可以作出AB的中垂线CD,此时由勾股定理可求出:AD=BD=BC=AC==,可得ACBD是正方形,从而△ACB,△DAB是等腰直角三角形,∴C(﹣1,2),D(3,0)符合题意,故选:D.4.如图,AB是⊙O的弦,AC是⊙O的直径,将沿着AB弦翻折,恰好经过圆心O.若⊙O 的半径为6,则图中阴影部分的面积等于()A.6πB.9C.9πD.6【分析】由题意△OBC是等边三角形,弓形OnB的面积=弓形BmC的面积,根据S阴=S计算即可.△OBC【解答】解:如图,连接OB,BC.由题意△OBC是等边三角形,弓形OnB的面积=弓形BmC的面积,∴S阴=S△OBC=×62=9,故选:B.5.已知事件:①掷一次骰子,向上一面的点数是偶数;②在13位同学中至少有2人生肖相同;③若彩票中奖率10%,那么买10张彩票一定中奖;④任意画一个三角形,其内角和为360°,其中随机事件是()A.①②B.①③C.②④D.③④【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:随机事件:①③;必然事件:②;不可能事件:④.故选:B.6.如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A.B.C.D.【分析】根据题意设P点坐标为P(x,),再利用反比例函数解析式y=﹣分别表示点A、点B的坐标,然后根据三角形面积公式计算.【解答】解:∵点P在函数y=(x>0)的图象上,PA∥x轴,PB∥y轴,∴设P(x,),∴点B的坐标为(x,﹣),A点坐标为(﹣x,),∴△PAB的面积=(x+)(+)=.故选:D.7.已知A(0,﹣1),B(1,﹣3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为()A.(3,9)B.(6,3)C.(6,9)D.(9,3)【分析】先利用点平移的坐标特征写出平移后A点的对应点的坐标,然后把平移后的点的横纵坐标都乘以﹣3得到位似后点A的对应点坐标.【解答】解:线段AB向左平移3个单位得到A点的对应点的坐标为(﹣3,﹣1),以原点O为位似中心,在第一象限内,将其扩大为原来3倍,所以点A的对应点坐标为(9,3).故选:D.8.如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+b B.x2=a•b C.x(a+b)=a•b D.2x2=a2+b2【分析】利用相似三角形的性质构建关系式即可解决问题.【解答】解:∵四边形ABCD是菱形,∴CD∥AE,∴△FDC∽△FAE,∴=,∴=,整理得:x2=ab,故选:B.9.直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()A.2 B.﹣2 C.﹣1 D.±2【分析】解方程组得到kx2+4x﹣2=0,由反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,得到△=16+8k=0,求得k=﹣2.【解答】解:解得kx2+4x﹣2=0,∵线y=kx+4与函数y=的图象有且只有一个公共点,∴△=16+8k=0,∴k=﹣2,故选:B.10.如图,在△ABC中,∠ACB=90°,点D是AB边上的动点,设AD=x,CD=y,y关于x 的函数关系图象如图所示,其中M为曲线部分的最低点,则BC的长为()A.10 B.15 C.20 D.25【分析】由图象可得当CD⊥AB时,CD的长最小,可得此时AD=9,CD=12,由勾股定理可求AC,由锐角三角函数可求BC的长.【解答】解:由题意可得当CD⊥AB时,CD的长最小,∴此时AD=9,CD=12,∴AC===15,∵tan∠A=,∴∴BC=20,故选:C.二.填空题(共5小题)11.配方4a(ax2+bx+c)=(2ax+b)2+m,则m=4ac﹣b2.【分析】根据完全平方公式配方,即可得m.【解答】解:4a(ax2+bx+c)=4a2x2+4abx+b2﹣b2+4ac=(2ax+b)2+﹣b2+4ac=(2ax+b)2+m,则m=4ac﹣b2.故答案是:4ac﹣b2.12.已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=﹣3 .【分析】根据已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点求出抛物线的对称轴,求出b的值,再把点(﹣1,a)代入,即可求出答案.【解答】解:∵抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,∴抛物线的对称轴是直线x==1,即﹣=1,解得:b=2,即y=﹣x2+bx+c=﹣x2+2x+c,把(﹣1,a)代入得:a=﹣1﹣2+c,即a﹣c=﹣3,故答案为:﹣3.13.直线y=ax(a≠0)与函数y=(k≠0)的图象交于点A(1,2),若>ax,则x的取值范围是0<x<1或x<﹣1 .【分析】根据对称性即可得到点B的坐标,然后根据A、B点的坐标即可求得x的取值范围.【解答】解:∵直线y=ax(a≠0)与函数y=(k≠0)的图象交于点A(1,2),∴直线y=ax(a≠0)与函数y=(k≠0)的图象交于另一个点B的坐标是(﹣1,﹣2),如图,若>ax,则x的取值范围是0<x<1或x<﹣1,故答案为0<x<1或x<﹣1.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE 关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为4或2.【分析】连接BB′,根据直角三角形的判定定理得到∠BB′C=90°,求得∠B′CD<90°,(1)如图1,∠B′DC=90°,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,根据相似三角形的性质即可得到结论.【解答】解:连接BB′,∵BE=B′E=EC,∴∠BB′C=90°,∴∠B′CD<90°,(1)如图1,∠B′DC=90°,则四边形ABEB′和ECDB′是正方形,∴BC=2AB=4,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,则F,B′是对角线BD的三等分点,∵△BCB′∽△CDB′,∴==,∴=,∴BC=CD=2,故答案为:4或2.三.解答题(共8小题)16.关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.【分析】(1)根据当△>0时,方程有两个不相等的两个实数根、一元二次方程的定义列式计算即可;(2)根据题意求出m,利用因式分解法解出方程.【解答】解:(1)由题意得,m+2≠0,(﹣4)2﹣4×(m+2)>0,解得,m<2且m≠﹣2;(2)∵m<2,m为正整数,∴m=1,则原方程可化为3x2﹣4x+1=0,(3x﹣1)(x﹣1)=0,解得,x1=,x2=1.17.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)销售单价x=100 元时,日销售利润w最大,最大值是2000 元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意列出有关利润w与销售单价x之间的二次函数,配方后即可确定最值;(2)根据销售利润不低于3750元列出不等式即可确定正确的答案.【解答】解:(1)w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∵﹣5<0,∴当x=100时,w取得最大值,最大值是2000;故答案为:100,2000;(2)设成本单价为a圆,当x=100时,w=(﹣5×90+600)(90﹣a)≥3750,解得,a≤65,答:该产品的成本单价应不超过65元.18.在甲、乙两个不透明的盒子中,分别装有除颜色外其它完全相同的小球,其中,甲盒子装有2个白球,1个红球;乙盒子装有2个红球,1个白球.(1)将甲盒子摇匀后,随机取出一个小球,求小球是白色的概率;(2)小华和同桌商定:将两个盒子摇匀后,各随机摸出一个小球.若颜色相同,则小华获胜;若颜色不同,则同桌获胜,请用列表法或画出树状图的方法说明谁赢的可能性大.【分析】(1)由概率公式即可得出答案;(2)由列表可知,共有9种等可能结果,其中颜色不相同的结果有4种,颜色相同的结果有5种,P(颜色不相同)=,P(颜色相同)=,即可得出答案.【解答】解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P(摸出白球)=;(2)根据题意,列表如下:由上表可知,共有9种等可能结果,其中颜色不相同的结果有5种,颜色相同的结果有4种,∴P(颜色不相同)=,P(颜色相同)=,∵<,∴同桌获胜获胜的可能性大.19.如图,是一座横跨沙颖河的斜拉桥,拉索两端分别固定在主梁l和索塔h上,索塔h 垂直于主梁l,垂足为D.拉索AE,BF,CG的仰角分别是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的长.(精确到1m,参考数据:≈2.24,≈1.41)【分析】证出△BDF是等腰直角三角形,得出FD=BD=BC+CD=9m,证明△ADE∽△GDC,得出=,则AD•CD=GD•ED,设EF=3FG=3x,则24×4=(9﹣x)(9+3x),解得EF=3,得出DE=EF+FD=12m,由勾股定理求出AE即可.【解答】解:在Rt△BDF中,∵∠DBF=45°,∠BDF=90°,∴△BDF是等腰直角三角形,∴FD=BD=BC+CD=9m,∵α+β=90°,∠ADE=∠GDC=90°,∴△ADE∽△GDC,∴=,∴AD•CD=GD•ED,设EF=3FG=3x,则24×4=(9﹣x)(9+3x),解得:x=1,或x=5(舍去),∴EF=3,∴DE=EF+FD=12m,∵AD=AB+BD=24m,∴AE===12≈27(m),答:拉索AE的长约为27m.20.如图,直线y=x+b与y轴交于点A(0,4),与函数y=(k>0,x<0)的图象交于点C,以AC为对角线作矩形ABCD,使顶点B,D落在x轴上(点D在点B的右边),BD 与AC交于点E.(1)求b和k的值;(2)求顶点B,D的坐标.【分析】(1)根据点A坐标可以确定b的值,得出直线的解析式,令y=0,求得E的坐标,由E(﹣3,0)是AC的中点,推出点C(﹣6,﹣4),然后根据待定系数法即可求得k;(2)根据勾股定理求得AE,利用矩形的性质EA=EB=ED,即可解决问题;【解答】解:(1)∵直线y=x+b与y轴交于点A(0,4),∴b=4,∴直线为y=x+4,令y=0,解得x=﹣3,∴E(﹣3,0),∵四边形ABCD是矩形,∴E(﹣3,0)是AC的中点,∴C(﹣6,﹣4),∵点C在函数y=的图象上,∴k=﹣6×(﹣4)=24;(2)∵AE2=AO2+EO2,∴AE==5,∵四边形ABCD是矩形,∴ED=EB=EA=5,∴B(﹣8,0),D(2,0).21.如图,点P在∠MAN内,PA平分∠MAN,PB⊥AM于点B,PC⊥AN于点C,点D是射线AM 上点B右侧的一个定点.(1)作经过A,P,D三点的圆;(保留作图痕进,不写作法)(2)设圆与AN交于点E,∠MAN=60°,PA=4,求AE+AD的值.【分析】(1)作AP和AD的垂直平分线,两条直线的交点即为过A、P、D三点的圆心;(2)连接PE、PD证明△PCE与△PBD全等即可求解.【解答】解:(1)如图所示:作AP和AD的垂直平分线,两条线相交于点O,以点为圆心,OA为半径的圆即为所求作的图形;(2)连接PE、PD,∵PA平分∠MAN,PB⊥AD于点B,PC⊥AN于点C,∴PB=PC,在圆中,∵∠EAP=∠DAP,∴PE=PD,在△PCE和△PBD中,∵∠PCE=∠PBD=90°,PB=PC,PE=PD.∴Rt△PCE≌Rt△PBD(HL).∴CE=BD.∵∠MAN=60°,PA平分∠MAN,∴∠PAB=30°,PA=4,∴AB=2,∴AE+AD=2AB=4.22.在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M 是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,的值是,直线MN与直线PC相交所成的较小角的度数是60°.(2)类比探究如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.【分析】(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.证明△PAC≌△DAB(SAS),利用全等三角形的性质以及三角形的中位线定理即可解决问题.(2)如图设MN交AC于F,延长MN交PC于E.证明△ACP∽△AMN,推出∠ACP=∠AMN,==可得结论.(3)分两种情形分别画出图形,利用三角形中位线定理即可解决问题.【解答】解:(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.∵CA=CB,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=∠PAD=60°,AC=AB,∴∠PAC=∠DAB,∵AP=AD,∴△PAC≌△DAB(SAS),∴PC=BD,∠ACP=∠ABD,∵AN=ND,AM=BM,∴BD=2MN,∴=.∵∠CGK=∠BGA,∠GCK=∠GBA,∴∠CKG=∠BAG=60°,∴BK与PC的较小的夹角为60°,∵MN∥BK,∴MN与PC较小的夹角为60°.故答案为,60°.(2)如图设MN交AC于F,延长MN交PC于E.∵CA=CB,PA=PD,∠APD=∠ACB=120°,∴△PAD∽△CAB,∴=,∵AM=MB,AN=ND,∴=,∴△ACP∽△AMN,∴∠ACP=∠AMN,==,∵∠CFE=∠AFM,∴∠FEC=∠FAM=30°.(3)设MN=a,∵==,∴PC=a,∵ME是△ABC的中位线,∠ACB=90°,∴ME是线段BC的中垂线,∴PB=PC=a,∵MN是△ADB的中位线,∴DB=2MN=2a,如图3﹣1中,当点P在线段BD上时,PD=DB﹣PB=(2﹣)a,∴=2﹣.如图3﹣2中,PD=DB+PB=(2+)a,∴=2+.23.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC 于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.【分析】(1)先由直线y=﹣x+2求出A,C的坐标,再将其代入抛物线y=ax2+x+c 中,即可求出抛物线解析式;(2)①用含m的代数表示出P,E的坐标,再求出含m的代数式的PE的长度,将等腰三角形分三种情况进行讨论,即可分别求出m的值;②当点F'落在坐标轴上时,存在两种情形,一种是点F'落在y轴上,一种是点F′落在x轴上,分情况即可求出点P的坐标.【解答】解:(1)∵直线y=﹣x+2经过A,C,∴A(4,0),C(0,2),∵抛物线y=ax2+x+c交x轴于点B,交y轴于点C,∴,∴a=﹣,c=2,∴抛物线的解析式为y=﹣x2+x+2;(2)∵点P在抛物线在第一象限内的图象上,点P的横坐标为m,∴0<m<4,P(m,﹣m2+m+2),①∵PD⊥x轴,交直线y=﹣x+2于点E,∴E(m,﹣m+2),∴PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,∵PD∥CO,∴=,∴CE==m,当PE=CE时,﹣m2+2m=m,解得,m1=4﹣,m2=0(舍去);当PC=CE时,PD+ED=2CO,即(﹣m2+m+2)+(﹣m+2)=2×2,∴﹣m2+m=0,解得,m1=2,m2=0(舍去);当PC=PE时,取CE中点G,则G(m,﹣m+2),PG⊥AC,∴∠GEP=∠OCA,∴Rt△PGE∽Rt△AOC,∴==2,∴(﹣m2+m+2)﹣(﹣m+2)=2(m﹣m),﹣m2+m=0,解得,m1=,m2=0(舍去),综上,当△PCE是等腰三角形时,m的值为m=4﹣,2,;②P(1,3),P(,),理由如下,当点F'落在坐标轴上时,存在两种情形:如图2﹣1,当点F'落在y轴上时,点P(m,﹣m2+m+2)在直线y=x +2上,∴﹣m2+m+2=m+2,解得,m1=1,m2=0(舍去),∴P(1,3);如图2﹣2,当点F'落在x轴上时,△COF'∽△F'DP,∴==,∴=,∵PF=2﹣(﹣m2+m+2)=m(m﹣3),∴F'D==m﹣3,∴OF'=OD﹣FD=m﹣(m﹣3)=3,在△CBF'中,CF'==,∴m=,P(,),综上所述,当点F′落在坐标轴上时,点P的坐标为(1,3)或(,).人教版九年级(上)期末数学试卷(二)一.选择题(共10小题)1.若一元二次方程x2+2x+a=0有一根为1,则a的值为()A.1 B.﹣1 C.3 D.﹣32.下列语句描述的事件中,是随机事件的为()A.心想事成B.只手遮天C.瓜熟蒂落D.水能载舟亦能覆舟3.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°4.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.5.某农产品市场经销一种销售成本为40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克:销售单价每涨1元,月销售量就减少10千克,设销售单价为每干克x元,月销售利润可以表示为()A.(x﹣40)[500﹣10(x﹣50)]元B.(x﹣40)(10x﹣500)元C.(x﹣40)(500﹣10x)元D.(x﹣40)[500﹣10(50﹣x)]元6.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,8.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分9.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①c>0;②﹣3<x2<﹣2;③a+b+c <0;④b2﹣4ac>0;⑤已知图象上点A(4,y1),B(1,y2),则y1>y2.其中,正确结论的个数有()A.5 B.4 C.3 D.2二.填空题(共8小题)11.已知二次函数y=ax2的图象开口向上,则a.12.如果关于x的一元二次方程ax2+x+1=0没有实数根,则a的取值范围是.13.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.14.将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为.15.如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB的度数为.16.电影《中国机长》首映当日票房已经达到1.92亿元,2天后当日票房达到2.61亿元,设平均每天票房的增长率为x,则可列方程为.17.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿,因曰:我亦无他,唯手熟尔.”可见技能通过反复苦练而达到熟能生巧.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为.(结果保留π)18.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°圆弧多次复制并首尾连接而成,现有一点P从A(A为坐标原点),以每秒米的速度沿曲线向右运动,则在第2020秒时点P的纵坐标为.三.解答题(共8小题)19.先化简,再求值:(﹣)÷,其中a是一元二次方程对a2+3a﹣2=0的根.20.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.21.在如图所示8×7的正方形网格中,A(2,0),B(3,2),C(4,2),请按要求解答下列问题:(1)将△ABO向右平移4个单位长度得到△A1B1O1,请画出△A1B1O1并写出点A1的坐标;(2)将△ABO绕点C(4,2)顺时针旋转90°得到△A2B2O2,请画出△A2B2O2并写出点A2的坐标;(3)将△A1B1O1绕点Q旋转90°可以和△A2B2O2完全重合,请直接写出点Q的坐标.22.(北师大版)连接着汉口集家咀的江汉三桥(晴川桥),是一座下承式钢管混凝土系杆拱桥.它犹如一道美丽的彩虹跨越汉江,是江城武汉的一道靓丽景观.桥的拱肋ACB视为抛物线的一部分,桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,相邻系杆之间的间距均为5米(不考虑系杆的粗细),拱肋的跨度AB为280米,距离拱肋的右端70米处的系杆EF的长度为42米.以AB所在直线为x轴,抛物线的对称轴为y轴建立如图②所示的平面直角坐标系.(1)求抛物线的解析式;(2)正中间系杆OC的长度是多少米?是否存在一根系杆的长度恰好是OC长度的一半?请说明理由.23.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=6,求图中阴影部分的面积.24.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.25.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.26.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.参考答案与试题解析一.选择题(共10小题)1.若一元二次方程x2+2x+a=0有一根为1,则a的值为()A.1 B.﹣1 C.3 D.﹣3【分析】将x=1代入方程即可求出a的值.【解答】解:将x=1代入方程可得:1+2+a=0,∴a=﹣3,故选:D.2.下列语句描述的事件中,是随机事件的为()A.心想事成B.只手遮天C.瓜熟蒂落D.水能载舟亦能覆舟【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、心想事成是随机事件,故此选项正确.B、只手遮天是不可能事件,故此选项错误;C、瓜熟蒂落是必然事件,故此选项错误;D、水能载舟,亦能覆舟是必然事件,故此选项错误;故选:A.3.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.。
2020年九年级数学上册期末测试卷(附答案)人教版 新版
九年级(上)期末数学试卷一、选择题(每题3分,共30分)1.下列函数中,不是反比例函数的是()A.y= B.y=﹣(m不等于0)C.y=D.y=2.下列方程是一元二次方程的是()A.3x2+=0 B.2x﹣3y+1=0 C.(x﹣3)(x﹣2)=x2D.(3x﹣1)(3x+1)=33.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48或16D.84.若,则等于()A.8 B.9 C.10 D.115.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB6.下列等式成立的是()A.sin 45°+cos45°=1 B.2tan30°=tan60°C.2sin60°=tan45° D.sin230°=cos60°7.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.8.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2 000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.1509.为了解自己家的用电情况,李明在6月初连续几天同一时刻观察电表显示的情况记录如下:日期1号2号3号4号5号6号7号8号电表显示(千瓦时)117 120 124 129 135 138 142 145按照这种用法,李明家6月份的用电量约为()A.105千瓦时B.115千瓦时C.120千瓦时D.95千瓦时10.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A. B. C.D.二、填空题(毎题3分,共24分)11.点P(2m﹣3,1)在反比例函数的图象上,则m=______.12.已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为______.13.若关于x的一元二次方程x2﹣3x+c=0有一个根是2,则另一根是______.14.如果方程x2+2x+m=0有两个同号的实数根,m的取值范围是______.15.已知线段a=3cm,b=6cm,c=5cm,且a,b,d,c成比例线段,则d=______cm.16.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离AA′=______.17.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境.预计花园每平方米造价为30元,学校建这个花园需要投资______元.(精确到1元)18.如图,条形统计图是从曙光中学800名学生中帮助失学儿童捐款金额的部分抽样调查数据,扇形图统计图是该校各年级人数比例分布图.那么该校七年级同学捐款的总数大约为______元.三、解答题(每题8分,共24分)19.用适当的方法解下列方程:(1)4(x﹣3)2﹣25=0(2)2x2+7x﹣4=0.20.已知反比例函数y=(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而减小,求k的取值范围.21.计算下列各题:(1)tan45°﹣sin60°•cos30°;(2)sin230°+sin45°•tan30°.四、应用题(每题8分,共24分)22.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.23.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.24.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?五、综合题(共18分)25.马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.26.如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.参考答案与试题解析一、选择题(每题3分,共30分)1.下列函数中,不是反比例函数的是()A.y= B.y=﹣(m不等于0)C.y=D.y=【考点】反比例函数的定义.【分析】根据反比例函数的定义,反比例函数的一般式是(k≠0),即可判定各函数的类型是否符合题意.【解答】解:A、符合反比例函数的定义,y是x的反比例函数,错误;B、符合反比例函数的定义,y是x的反比例函数,错误;C、y与x﹣1成正比例,y不是x的反比例函数,正确;D、符合反比例函数的定义,y是x的反比例函数,错误.故选C.2.下列方程是一元二次方程的是()A.3x2+=0 B.2x﹣3y+1=0 C.(x﹣3)(x﹣2)=x2D.(3x﹣1)(3x+1)=3【考点】一元二次方程的定义.【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、3x2+=0是分式方程,故此选项错误;B、2x﹣3y+1=0为二元一次方程,故此选项错误;C、(x﹣3)(x﹣2)=x2是一元一次方程,故此选项错误;D、(3x﹣1)(3x+1)=3是一元二次方程,故此选项正确.故选D.3.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48或16D.8【考点】解一元二次方程-因式分解法;勾股定理;勾股定理的逆定理.【分析】由x2﹣16x+60=0,可利用因式分解法求得x的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.【解答】解:∵x2﹣16x+60=0,∴(x﹣6)(x﹣10)=0,解得:x1=6,x2=10,当x=6时,则三角形是等腰三角形,如图①,AB=AC=6,BC=8,AD是高,∴BD=4,AD==2,=BC•AD=×8×2=8;∴S△ABC当x=10时,如图②,AC=6,BC=8,AB=10,∵AC2+BC2=AB2,∴△ABC是直角三角形,∠C=90°,=BC•AC=×8×6=24.S△ABC∴该三角形的面积是:24或8.故选:B.4.若,则等于()A.8 B.9 C.10 D.11【考点】比例的性质.【分析】设=k,得出a=2k,b=3k,c=4k,代入求出即可.【解答】解:设=k,则a=2k,b=3k,c=4k,即===10,故选C.5.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB【考点】相似三角形的判定.【分析】根据已知及相似三角形的判定方法进行分析,从而得到答案.【解答】解:∵∠A=∠A∴当∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB时,△ABE和△ACD相似.故选C.6.下列等式成立的是()A.sin 45°+cos45°=1 B.2tan30°=tan60°C.2sin60°=tan45° D.sin230°=cos60°【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,分别计算即可判断.【解答】解:A、因为sin45°+cos45°=+=.故错误.B、因为2tan30°=,tan60°=,所以2tan30°≠tan60°,故错误.C、因为2sin60°=,tan45°=1,所以2sin60°≠tan45°故错误,D、因为sin230°=,cos60°=,所以sin230°=cos60°,故正确.故选D.7.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】互余两角三角函数的关系.【分析】根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.【解答】解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.8.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2 000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.150【考点】用样本估计总体;频数与频率.【分析】根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2 000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【解答】解:0.28×2000=560.故选B.9.为了解自己家的用电情况,李明在6月初连续几天同一时刻观察电表显示的情况记录如下:日期1号2号3号4号5号6号7号8号电表显示(千瓦时)117 120 124 129 135 138 142 145按照这种用法,李明家6月份的用电量约为()A.105千瓦时B.115千瓦时C.120千瓦时D.95千瓦时【考点】用样本估计总体.【分析】根据样本估计总体的统计思想:可先求出7天中用电量的平均数,作为6月份用电量的平均数,则一个月的用电总量即可求得.【解答】解:30×=120(千瓦时).故选C.10.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A. B. C.D.【考点】反比例函数的图象;一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定正比例函数y=kx和反比例函数y=图象所在的象限.【解答】解:如图所示,∵一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0.∴正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选:C.二、填空题(毎题3分,共24分)11.点P(2m﹣3,1)在反比例函数的图象上,则m=2.【考点】反比例函数图象上点的坐标特征.【分析】此题可以直接将P(2m﹣3,1)代入反比例函数解析式即可求得m的值.【解答】解:∵点P(2m﹣3,1)在反比例函数的图象上,∴(2m﹣3)×1=1,解得m=2.故答案为:2.12.已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为y=﹣.【考点】反比例函数的性质.【分析】根据图象关于y轴对称,可得出所求的函数解析式.【解答】解:关于y轴对称,横坐标互为相反数,纵坐标相等,即y=,∴y=﹣故答案为:y=﹣.13.若关于x的一元二次方程x2﹣3x+c=0有一个根是2,则另一根是1.【考点】根与系数的关系.【分析】首先设另一个根为α,由关于x的一元二次方程x2﹣3x+c=0有一个根是2,根据根与系数的关系可得α+2=3,继而求得答案.【解答】解:设另一个根为α,∵关于x的一元二次方程x2﹣3x+c=0有一个根是2,∴α+2=3,∴α=1,即另一个根为1.故答案为1.14.如果方程x2+2x+m=0有两个同号的实数根,m的取值范围是0<m≤1.【考点】根的判别式;根与系数的关系.【分析】根据题意得出△≥0,m>0,代入求出m的范围即可.【解答】解:∵方程x2+2x+m=0有两个同号的实数根,∴△≥0,m>0,△=22﹣4×1×m=4﹣4m≥0,解得:m≤1,即m的取值范围是0<m≤1,故答案为:0<m≤1.15.已知线段a=3cm,b=6cm,c=5cm,且a,b,d,c成比例线段,则d= 2.5cm.【考点】比例线段.【分析】根据线段成比例,则可以列出方程a:b=d:c,代入数值求解即可.【解答】解:∵线段a,b,c,d成比例,∴a:b=d:c,由题中a=3cm,b=6cm,c=5cm,∴代入方程可得d=2.5.16.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离AA′=.【考点】相似三角形的判定与性质;平移的性质.【分析】利用相似三角形面积的比等于相似比的平方先求出A′B,再求AA′就可以了.【解答】解:设BC与A′C′交于点E,由平移的性质知,AC∥A′C′,∴△BEA′∽△BCA,∴S△BEA′:S△BCA=A′B2:AB2=1:2,∵AB=,∴A′B=1,∴AA′=AB﹣A′B=,故答案为:.17.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境.预计花园每平方米造价为30元,学校建这个花园需要投资7794元.(精确到1元)【考点】解直角三角形的应用.【分析】延长BC,过A作AD⊥BC的延长线于点D,再根据补角的定义求出∠ACD的度数,由锐角三角函数的定义接可求出AD的长,再根据三角形的面积公式求出此三角形的面积,再根据每平方米造价为30元计算出所需投资即可.【解答】解:延长BC,过A作AD⊥BC的延长线于点D,∵∠ACB=120°,∴∠ACD=180°﹣120°=60°,∵AC=20米,∴AD=AC•sin60°=20×=10(米),∴S△ABC=BC•AD=×30×10=150(平方米),∴所需投资=150×30≈7794(元).故答案为:7794.18.如图,条形统计图是从曙光中学800名学生中帮助失学儿童捐款金额的部分抽样调查数据,扇形图统计图是该校各年级人数比例分布图.那么该校七年级同学捐款的总数大约为5010元.【考点】条形统计图;扇形统计图.【分析】首先根据扇形统计图和已知条件求出七年级同学的人数,然后求出样本平均数,再利用样本估计总体的思想即可求出该校七年级同学捐款的总数.【解答】解:∵曙光中学有800名学生,∴七年级同学的人数为:800×36%=288人,而抽样调查数据平均数为:=≈17.4元,∴17.4×288≈5010元,∴该校七年级同学捐款的总数为5010元,故答案为:5010.三、解答题(每题8分,共24分)19.用适当的方法解下列方程:(1)4(x﹣3)2﹣25=0(2)2x2+7x﹣4=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先移项得到4(x﹣3)2=25,然后利用直接开平方法解方程;(2)利用因式分解法解方程.【解答】解:(1)4(x﹣3)2=25,2(x﹣3)=±5,所以x1=,x2=;(2)(2x﹣1)(x+4)=0,2x﹣1=0或x+4=0,所以x1=,x2=﹣4.20.已知反比例函数y=(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而减小,求k的取值范围.【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】(1)根据反比例函数图象上点的坐标特征得到k﹣1=1×2,然后解方程即可;(2)根据反比例函数的性质得k﹣1>0,然后解不等式即可.【解答】解:(1)根据题意得k﹣1=1×2,解得k=3;(2)因为反比例函数y=,在这个函数图象的每一分支上,y随x的增大而减小,所以k﹣1>0,解得k>1.21.计算下列各题:(1)tan45°﹣sin60°•cos30°;(2)sin230°+sin45°•tan30°.【考点】实数的运算;特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=1﹣×=1﹣=;(2)原式=×+×=.四、应用题(每题8分,共24分)22.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.【考点】根的判别式;解一元二次方程-公式法.【分析】(1)因为方程有两个不相等的实数根,△>0,由此可求k的取值范围;(2)在k的取值范围内,取负整数,代入方程,解方程即可.【解答】解:(1)∵方程有两个不相等的实数根,∴(﹣3)2﹣4(﹣k)>0,即4k>﹣9,解得;(2)若k是负整数,k只能为﹣1或﹣2;如果k=﹣1,原方程为x2﹣3x+1=0,解得,,.(如果k=﹣2,原方程为x2﹣3x+2=0,解得,x1=1,x2=2)23.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.【考点】相似三角形的判定;平行线的性质.【分析】根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE ∽△EFC.【解答】证明:∵DE∥BC,∴∠AED=∠C.又∵EF∥AB,∴∠A=∠FEC.∴△ADE∽△EFC.24.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?【考点】相似三角形的应用.【分析】如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.【解答】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.五、综合题(共18分)25.马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.【考点】解直角三角形的应用-方向角问题.【分析】(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)分别求出PA、PB的长,根据两船航行速度,计算出两艘船到达P点时各自所需要的时间,即可作出判断.【解答】解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=36.5°,∠PBA=45°,设PE为x海里,则BE=PE=x海里,∵AB=140海里,∴AE=海里,在Rt△PAE中,,即:解得:x=60,∴可疑漂浮物P到A、B两船所在直线的距离约为60海里;(2)在Rt△PBE中,PE=60海里,∠PBE=45°,则BP=PE=60≈84.8海里,B船需要的时间为:84.8÷30≈2.83小时,在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,∴A船需要的时间为:100÷40=2.5小时,∵2.83>2.5,∴A船先到达.26.如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.【考点】反比例函数综合题.【分析】(1)把A点坐标代入y=可得k的值,进而得到函数解析式;(2)根据A、B两点坐标可得AC=4﹣n,BC=m﹣1,ON=n,OM=1,则=,再根据反比例函数解析式可得=n,则=m﹣1,而=,可得=,再由∠ACB=∠NOM=90°,可得△ACB∽△NOM;(3)根据△ACB与△NOM的相似比为2可得m﹣1=2,进而得到m的值,然后可得B点坐标,再利用待定系数法求出AB的解析式即可.【解答】解:(1)∵y=(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4﹣n,BC=m﹣1,ON=n,OM=1,∴==﹣1,∵B(m,n)在y=上,∴=n,∴=m﹣1,而=,∴=,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m﹣1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴解析式为y=﹣x+.。
九年级上期末质量数学试题含答案新人教版(2020年)
2020年最新
南平市 - 第一学期九年级期末质量检测数学试题
(满分: 150 分;考试时间: 120 分钟)
★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;
② 试题未要求对结果取近似值的,不得采取近似计算.
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.每小题只有一个正确的 选项,请在答.题.卡.的相应位置填涂)
a 的取值范围
是
.ቤተ መጻሕፍቲ ባይዱ
B
C
(第 15 题图)
三、解答题(本大题共 9 小题,共 86 分.在答.题.卡.的 相应位置作答)
17.解方程(每小题 4 分,共 8 分)
( 1) x2 2 x 0
(2) 3x2 2x 1 0
18.( 8 分)已知关于 x 的方程 kx2 (k 3)x 3
( 1)求证:方程一定有两个实数根; ( 2)若方程的两个实数根都是整数,求正整数
x
x1< 0< x2,
则下列结论正确的是
A .y1 <0< y2
B .y2<0< y1
C. y1< y2< 0
D . y2<y 1< 0
第1页 共 11页
2020年最新
9. 如图, AB 为⊙ O 的直径, PD 切⊙ O 于点 C,交 AB 的延长线
于 D, 且 CO=CD,则∠ PCA=
A .30°
°.
14. 设 O 为 △ABC 的内心,若 △A=48 °,则 △BOC =
人教版九年级上学期期末考试数学试题及答案(2)(2020年)
角,
旋转后的矩形记为矩形 EDCF .在旋转过程中,
2020年最新
怀柔区 ——第一学期期末九年级教学质量检测
数学试卷
一、选择题(共 8 道小题,每小题 4 分,共 32 分) 下面各题均有四个选项,其中只有一个 ..是符合题意的.
1
1. 的相反数是
3
2012.1
()
A. 3
B.3
1
C.
3
1
D.
3
2.已知, △ ABC 中,∠ C=90°, sin∠ A=
200 元,均可得到一
次抽奖的机会, 在一个纸盒里装有 2 个红球和 2 个白球, 除颜色外其它都相同, 抽奖者一次
从中摸出两个球,根据球的颜色决定送礼金券 (在他们超市使用时,与人民币等值)的多少
(如下表).
甲超市.
球 礼金券(元)
两红 20
一红一白 50
两白 20
第3页 共14页
2020年最新
3
,则∠ A 的度数是
2
()
A .30°
B .45°
C. 60 °
D . 90°
3.若反比例函数 y
k
2
的图象位于第二、
四象限内, 则 k 的取值范围是
x
()
A. k 2
B. k 2
C. k 0
D. k 0
4.如图,⊙O 的半径为 5,AB 为弦,OC⊥ AB,垂足为 C,若 OC= 3,则弦 AB 的长为( ).
(1)求证: CD 是△O 的切线;
D
(2)若 AB 2 2 ,求 OC 的长.
证明:
A
O
BC
22.在 △ABC 中,∠ C=120°, AC=BC ,AB=4 ,半圆的圆心 O 在 AB 上,且与 AC,BC 分
2020年人教版数学九年级上期末检测题附答案
︵ 9.如图 ,已知 AB 是⊙ O 的直径 ,AD 切⊙ O 于点 A ,点 C 是 EB 的中点 ,则下列结论: ①OC∥ AE ;② EC=BC;③∠ DAE =∠ ABE ;④ AC⊥ OE, 其中正确的有 ( ) A . 1 个 B. 2 个 C.3 个 D. 4 个 10. 二次函数 y= a(x- 4)2- 4(a≠ 0)的图象在 2< x<3 这一段位于 x 轴的下方 , 在 6< x <7 这一段位于 x 轴的上方 ,则 a 的值为 ( ) A . 1 B.- 1 C. 2 D .- 2 二、填空题 (每小题 3 分 , 共 24 分 ) 11.(2016 ·江西 ) 如图 ,△ABC 中,∠ BAC = 33°,将△ ABC 绕点 A 按顺时针方向旋转 50° , 对应得到△ AB′ C,′则∠ B′ AC的度数为 ____ .
16.公路上行驶的汽车急刹车时 ,刹车距离 s(m)与时间 t(s)的函数关系式为 s= 20t- 5t2, 当遇到紧急情况时 ,司机急刹车 , 但由于惯性汽车要滑行 ___m 才能停下来.
17. 如图 , 在平面直角坐标系中 , ⊙P 的圆心是 (2, a)(a> 2), 半径为 2, 函数 y= x 的
范围是 ___.
14.(2016 ·葫芦岛 )如图 ,一只蚂蚁在正方形 ABCD 区域内爬行 ,点 O 是对角线的交点 , ∠MON = 90° ,OM , ON 分别交线段 AB ,BC 于 M ,N 两点 ,则蚂蚁停留在阴影区域的概
率为 ___.
2020年人教版九年级数学上册期末试卷附答案
人教版九年级数学上册期末试卷一.选择题(共10小题,每题3分共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是()A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球3.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm4.方程x2﹣2x=0的解是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=2 5.将抛物线y=3x2向上平移2个单位,得到抛物线的解析式是()A.y=3x2﹣2B.y=3x2C.y=3(x+2)2D.y=3x2+2 6.2015年琼中县的槟榔产值为4200万元,2017年上升到6500万元.这两年琼中槟榔的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.4200(1+x)2=6500B.6500(1+x)2=4200C.6500(1﹣x)2=4200D.4200(1﹣x)2=65007.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B.C.D.8.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.19.方程x2+2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤A.B.C.D.二.填空题(共6小题,每题3分,共18分)11.若函数y=ax2﹣x+a﹣2的图象经过(1,3),则a=.12.如图,已知扇形AOB的半径为10,∠AOB=60°,则弧AB的长为(结果保留π)13.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.14.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为.15.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.16.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=;(2)当OA=2时,AP=.三.解答题(共8小题)17.解方程:3(x﹣4)2=﹣2(x﹣4)(4分)18.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣4),(8分)(1)作出△ABC关于原点O对称的△A1B1C1;(2)写出点A1、B1、C1的坐标.19.袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.(8分)20.已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.(8分)21.投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(8分)(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.。
2020年新人教版九年级数学上册期末测试题附答案【必备】
九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c 的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2x(x﹣3)﹣5(x﹣3)=0,再把方程左边进行因式分解得(x﹣3)(2x ﹣5)=0,方程就可化为两个一元一次方程x﹣3=0或2x﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的x的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时x的取值范围是0<x<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为x==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当x=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与x轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当x=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2×a×tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2×8=AB×AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣x2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于x轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程x2﹣3x+2=0进行因式分解,变为(x﹣2)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x1=2,x2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4×1×(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c 的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)抛物线上是存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
2020年新人教版九年级上期末检测数学试题及答案
江西省吉安市吉州区2020-2020学年上学期九年级期末检测数学试卷说明:本卷共有七个大题,24个小题,全卷满分12020考试时间12020。
一、选择题(本大题共6小题,每小题只有一个正确选项。
每小题3分,共18分) 1. 下列长度的三条线段能构成直角三角形的是( ) A. 24,25,7 B. 4,5,6C. 6,9,10D. 8,15,162. 如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,正确的是( )A. ①②③④B. ④②③①C. ④①③②D. ④③②①3. 义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译。
若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )A.53 B.107 C.103 D.2516 4. 如图,∠AOC=∠BOC ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E 。
若OD=8,OP=10,则PE 的长为( )A. 5B. 6C. 7D. 85. 如图,A 、B 是反比例函数y=x6图象上两点,AC 和BD 都与坐标轴垂直,垂足分别为C ,D ,OD=1,OC=2,AC 与BD 交于点P ,则△AOB 的面积为( )A. 4B. 6C. 8D. 106. 如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C'处,点D 落在D'处,其中M 是BC 的中点。
连接AC',BC',则图中共有等腰三角形的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,每小题3分,共24分) 7. 计算:︒60cos 2= 。
8. 如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE= 。
9. 如图,菱形ABCD 的周长为8,两邻角的比为2:1,则对角线的长分别为 。
人教版2020届九年级上册期末综合检测数学试卷(含答案)
人教版2020届九年级上册期末综合检测数学试卷时间:120分钟满分:120分一.选择题(满分30分,每小题3分)1.将方程x2﹣8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、102.下列交通标志图案中,是中心对称图形的是()A.B.C.D.3.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.B.C.D.4.把方程x2+3=4x配方得()A.(x﹣2)2=7B.(x+2)2=21C.(x﹣2)2=1D.(x+2)2=2 5.如图,AB为⊙O直径,已知圆周角∠BCD=30°,则∠ABD为()A.30°B.40°C.50°D.60°6.将抛物线y=x2﹣2x+3向上平移3个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为()A.y=(x﹣1)2+5B.y=(x﹣3)2+5C.y=(x+2)2+6D.y=(x﹣4)2+67.如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ的最小值为()A.﹣1B.2C.2D.38.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2109.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24B.36C.40D.9010.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①abc<0;②点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2;③b2>(a+c)2;④2a﹣b<0.正确的结论有()A.4个B.3个C.2个D.1个二.填空题(满分15分,每小题3分)11.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.二次函数的解析式为y=﹣2(x+1)2+3,顶点坐标是.13.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为.14.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D 点重合,AB′交CD于点E.若AB=3,则△AEC的面积为.15.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是.三.解答题(共8小题,满分75分)16.(8分)用合适的方法解方程:(1)(2t+3)2=3(2t+3)(2)(2x﹣1)2=9(x﹣2)2(3)2x2=5x﹣1(4)x2+4x﹣5=017.(9分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.18.(9分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)19.(9分)如图,AC是⊙O的直径,OB是⊙O的半径,P A切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,P A=6时,求MB、MC的长.20.(9分)如图,半圆的直径AB=20,C、D、E是半圆的四等分点.(1)求∠CAE的度数;(2)求阴影部分面积.21.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?22.(10分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.23.(11分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:x2﹣8x=10,x2﹣8x﹣10=0,所以一次项系数、常数项分别为﹣8、﹣10,故选:A.2.解:四张交通标志图案的卡片中,只有第三张为中心对称图形.故选:C.3.解:∵小明从A处进入公园,那么从B,C,D三个出口出来共有3种等可能结果,其中从C出口出来是其中一种结果,∴恰好在C出口出来的概率为,故选:B.4.解:方程x2+3=4x,变形得:x2﹣4x=﹣3,配方得:x2﹣4x+4=1,即(x﹣2)2=1.故选:C.5.解:连接AD.∵AB为⊙O直径,∴∠ADB=90°,又∵∠DAB=∠BCD=30°,∴∠ABD=90°﹣∠DAB=90°﹣30°=60°.故选:D.6.解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为y=(x﹣3)2+5,故选:B.7.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3,∴AB=OA=6,∴OP==3,∴PQ==2.故选:C.8.解:由题意得,x(x﹣1)=210,故选:B.9.解:设袋中有黑球x个,由题意得:=0.6,解得:x=90,则布袋中黑球的个数可能有90个.故选:D.10.解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵抛物线的对称轴为直线x=﹣,而﹣1<﹣<0,∴点(﹣3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,∴y1>y2,所以,②正确;∵x=1时,y>0,即a+b+c>0,x=﹣1时,y<0,即a﹣b+c<0,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<0,∴b2>(a+c)2,所以③正确;∵﹣1<﹣<0,∴﹣2a<﹣b,∴2a﹣b>0,所以④错误.故选:B.二.填空题(共5小题,满分15分,每小题3分)11.解:由已知得:,即,解得:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.12.解:∵二次函数的解析式为y=﹣2(x+1)2+3,∴二次函数图象的顶点坐标为(﹣1,3).故答案为:(﹣1,3).13.解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率==.故答案为.14.解:如图,由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=,∴CE==,DE=,AD=,∴=.故答案为.15.解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴当O′中⊙O上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′OB ﹣S扇形O′OB=×2×2﹣=2﹣,故答案为2﹣.三.解答题(共8小题,满分75分)16.解:(1)(2t+3)2=3(2t+3)(2t+3)2﹣3(2t+3)=0(2t+3)(2t+3﹣3)=0∴2t+3=0或2t=0∴t1=﹣,t2=0.(2)(2x﹣1)2=9(x﹣2)2(2x﹣1)2﹣9(x﹣2)2=0(2x﹣1+3x﹣6)(2x﹣1﹣3x+6)=05x﹣7=0或﹣x+5=0∴x1=,x2=5.(3)2x2=5x﹣12x2﹣5x+1=0x=∴x1=,x2=.(4)x2+4x﹣5=0(x﹣1)(x+5)=0x1=1,x2=﹣5.或者x2+4x+4=9(x+2)2=±3∴x+2=3或x+2=﹣3∴x1=1,x2=﹣5.17.解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GEO为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)=∴EF=.18.解:画树状图为:共有16种等可能的结果数,其中红色和蓝色的结果数4,所以摸到的两个球的颜色能配成紫色的概率==.19.证明:(1)∵AC是⊙O的直径,P A切⊙O于点A,∴P A⊥OA∴在Rt△MAP中,∠M+∠P=90°,而∠COB=∠APB,∴∠M+∠COB=90°,∴∠OBM=90°,即OB⊥BP,∴PB是⊙O的切线;(2)∵∠COB=∠A PB,∠OBM=∠P AM,∴△OBM∽△APM,∴=,设MB=x,则MA=2x,MO=2x﹣3,∴MP=4x﹣6,在Rt△AMP中,(4x﹣6)2﹣(2x)2=62,解得x=4或0(舍去)∴MB=4,MC=2.20.解:(1)∵C、D、E是半圆的四等分点,∴∠CAE=××180°=45°;(2)连接OC、OE、CE,∵△ACE和△COE等底等高,∴S△ACE =S△COE,∵C、D、E是半圆的四等分点,AB=20,∴∠COE=180°÷2=90°,OA=10,∴阴影部分的面积=S扇形COE==25π.21.解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.22.解:(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△AMD中,∠MDA=45°,∴cos45°=,∵AD=2,∴DM=AM=,在Rt△AMG中,根据勾股定理得:GM==,∵DG=DM+GM=+,∴BE=DG=+;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.23.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=CO=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设PH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点(﹣,﹣).。
人教版初中九年级数学上册期末测试卷及答案【2020精】
第一学期期末测试卷一、选择题(每题3分,共30分)1.下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )2.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子一次,则向上一面的数字不小于3的概率是( ) A.12 B.16 C.13 D.233.已知二次函数y =-x 2+2x +1,若y 随x 的增大而增大,则x 的取值范围是( )A .x <1B .x >1C .x <-1D .x >-14.用配方法解方程2x 2-43x -2=0,变形正确的是( )A.⎝ ⎛⎭⎪⎫x -132=89 B.⎝ ⎛⎭⎪⎫x -232=0 C.⎝ ⎛⎭⎪⎫x +132=109 D.⎝ ⎛⎭⎪⎫x -132=109 5.一元二次方程x 2+3x =2的正根是( )A.-3±172B.3±172 C.-3-172 D.-3+1726.如图,将Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,连接AD ,若∠B =65°,则∠ADE 等于( )A .30°B .25°C .20°D .15°(第6题) (第8题)(第10题)7.已知圆锥侧面展开图的面积为65π cm 2,弧长为10π cm ,则圆锥的母线长为( )A .5 cmB .10 cmC .12 cmD .13 cm8.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°-2αB.2α C.90°+α D.90°-α9.二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.410.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM =120°,其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.12.若(m+1)x|m|+1+6mx-2=0是关于x的一元二次方程,则m=________.13.二次函数y=ax2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析式为____________.14.如图为一个电路图,在该电路图上有四个开关S1,S2,S3,S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2,S3,S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.(第14题)(第15题)(第16题)15.如图为一个玉石饰品的示意图,与中心在同一平面上的点A,B为外圆上的两点,且AB与内圆相切于点C,过点C作CD⊥AB交外圆于点D,测得AB=24 cm,CD =6 cm,则外圆的直径为________cm.16.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D 恰好落在BC上,则AP的长是________.17.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为________.(第17题)(第18题)18.如图是一座抛物线型拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9 m,AB=36 m,D,E为拱桥底部两点,且DE∥AB,点E到直线AB的距离为7 m,则DE长为______m.三、解答题(20题8分,24题14分,19,22题每题10分,其余每题12分,共66分)19.已知关于x的一元二次方程mx2-2x+1=0.(1)若方程有两个实数根,求m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2=12,求m的值.20.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份营业额的月平均增长率.21.我省某地区为了了解2018年初中毕业生的毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图①,图②).(1)填空:该地区共调查了________名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2018年初中毕业生共有3 500人,请估计该地区2018年初中毕业生中读普通高中的人数;(4)老师想从甲、乙、丙、丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.(第21题)22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,过点D作⊙O的切线交AC的延长线于点E,DE=4,CE=2.(1)求证:DE⊥AE;(2)求⊙O的半径.(第22题)23.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司这种健身产品的年产量为6千件,若在国内市场上销售,平均每件产品的利润y 1(元)与国内的销售数量x (千件)的关系为y 1=⎩⎨⎧15x +90(0<x≤2),-5x +130(2<x <6);若在国外市场上销售,平均每件产品的利润y 2(元)与国外的销售数量t (千件)的关系为y 2=⎩⎨⎧100(0<t≤2),-5t +110(2<t <6). (1)用含x 的代数式表示t 为t =__________;当0<x <4时,y 2与x 的函数解析式为y 2=________________;当________≤x <________时,y 2=100.(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x (千件)的函数解析式,并指出x 的取值范围.(3)该公司每年国内、国外的销售数量各为多少时,可使公司每年的总利润最大?最大值为多少?24.如图,抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,且当x =0和x =2时,y 的值相等,直线y =3x -7与这条抛物线交于两点,其中一点横坐标为4,另一点是这条抛物线的顶点M .(1)求顶点M 的坐标.(2)求这条抛物线对应的函数解析式.(3)P 为线段BM 上一点(P 不与点B ,M 重合),作P Q ⊥x 轴于点Q ,连接PC ,设O Q=t ,四边形P Q AC 的面积为S ,求S 与t 的函数解析式,并直接写出t 的取值范围.(4)在线段BM 上是否存在点N ,使△NMC 为等腰三角形?若存在,求出点N 的坐标,若不存在,说明理由.(第24题)答案一、1.D 2.D 3.A 4.D 5.D 6.C7.D 8.D 9.C 10.A二、11.(-3,4) 12.113.y =-4x 2-16x -12 14.12 15.30 16.6 17.2512π 18.48三、19.解:(1)根据题意,得m ≠0且Δ=(-2)2-4m ≥0.解得m ≤1且m ≠0.(2)根据题意,得x 1+x 2=2m ,x 1x 2=1m .∵x 1x 2-x 1-x 2=12,即x 1x 2-(x 1+x 2)=12,∴1m -2m =12,解得m =-2.经检验,m =-2是分式方程的解且符合题意.20.解:设3月份到5月份营业额的月平均增长率是x ,根据题意,得400(1+10%)(1+x )2=633.6,解得x 1=-2.2(不合题意,舍去),x 2=0.2=20%.答:3月份到5月份营业额的月平均增长率是20%.21.解:(1)200(2)B 类别的学生有:200-110-16-4=70(人),C 类别所占的百分比为16÷200×100%=8%,补全的统计图如图所示.(第21(2)题)(3)3 500×55%=1 925(人),所以估计该地区2018年初中毕业生中读普通高中的有1 925人.(4)画树状图如图:(第21(4)题)由树状图可知,共有12种等可能的结果,其中选中甲同学的有6种,所以选中甲同学的概率为612=12.22.(1)证明:如图,连接AD ,OD .∵DE 是⊙O 的切线,∴DE ⊥OD .∵OA =OD ,∴∠2=∠3.∵D 是弧BC 的中点,∴BD ︵=CD ︵.∴∠1=∠2.∴∠1=∠3.∴OD ∥AE .∴DE ⊥AE .(第22题)(2)解:如图,过点O 作OF ⊥AE 于点F .易知四边形ODEF 为矩形.∴OF =DE =4,EF =OD .∵OF ⊥AC ,∴AF =CF .设⊙O 的半径为x ,则AF =CF =EF -CE =x -2.在Rt △AFO 中,AF 2+OF 2=AO 2,即(x -2)2+42=x 2,解得x =5.∴⊙O 的半径为5.23.解:(1)6-x ;5x +80;4;6(2)当0<x ≤2时,w =(15x +90)x +(5x +80)(6-x )=10x 2+40x +480;当2<x <4时,w =(-5x +130)x +(5x +80)(6-x )=-10x 2+80x +480;当4≤x <6时,w =(-5x +130)x +100(6-x )=-5x 2+30x +600.综上所述,w =⎩⎨⎧10x 2+40x +480(0<x≤2),-10x 2+80x +480(2<x <4),-5x 2+30x +600(4≤x<6).(3)当0<x ≤2时,w =10x 2+40x +480=10(x +2)2+440,所以当x =2时,w 最大值=600;当2<x <4时,w =-10x 2+80x +480=-10(x -4)2+640,所以600<w <640;当4≤x <6时,w =-5x 2+30x +600=-5(x -3)2+645,所以当x =4时,w 最大值=640.综上可知,当x =4时,w 最大值=640.故当国内的销售数量为4千件,国外的销售数量为2千件时,可使公司每年的总利润最大,最大值为640千元.24.解:(1)∵当x =0和x =2时,y 的值相等,∴抛物线的对称轴为直线x =1.∴顶点M 的横坐标为1.又∵顶点M 在直线y =3x -7上,∴y =-4,∴M (1,-4).(2)把x =4代入y =3x -7,解得y =5,设抛物线对应的函数解析式为y =a (x -1)2-4,将点(4,5)的坐标代入得a =1,∴抛物线对应的函数解析式为y =(x -1)2-4,即y =x 2-2x -3.(3)由y =x 2-2x -3,可得A (-1,0),B (3,0),C (0,-3),∴直线MB 对应的函数解析式为y =2x -6,∴P (t ,2t -6).∴S =12×1×3+12(3+6-2t )t ,即S =-t 2+92t +32(1<t <3).(4)存在.假设存在这样的点N ,使△NMC 为等腰三角形.∵点N 在BM 上,∴不妨设N 点的坐标为(m ,2m -6)且1<m <3, 则CM 2=12+12=2,CN 2=m 2+(2m -6+3)2,MN 2=(m -1)2+(2m -6+4)2.△NMC 为等腰三角形,有以下三种可能:①若CN =CM ,则m 2+(2m -6+3)2=2,解得m =75或m =1(舍去),∴N ⎝ ⎛⎭⎪⎫75,-165.②若CM =MN ,则(m -1)2+(2m -6+4)2=2,解得m =1±105.∵1<m <3,∴m =1-105舍去.∴N ⎝⎛⎭⎪⎫1+105,2105-4. ③若CN =MN ,则m 2+(2m -6+3)2=(m -1)2+(2m -6+4)2.解得m =2.∴N (2,-2). 综上,点N 的坐标为(75,-165),(1+105,2105-4)或(2,-2).。
2020年新人教版九年级上期末检测数学试题及答案(WORD版)
湖北省仙桃市2020届九年级(上)期末数学试卷一、选择题(本大题共10分,每小题3分,共30分,下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填写在答题卷上的表格内)1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>12.下列标志中,可以看作是中心对称图形的是()3.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.4.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°5.已知⊙O的直径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断6.下列计算正确的是()A.4B.C.2=D.37.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.8.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号9.如图,AB是半圆O的直径,C、D是半圆上两点,且AD∥OC.已知∠DBC=31°,则∠ABD的度数为()A.28°B.29°C.30°D.31°10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0二、填空题(本大题5个小题,每小题3分,共15分,请直接将答案填写在答题卷上相应的横线上,不写过程)11.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_________个.12.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为_________.13.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22=_________.14.有两把不同的锁和四把不同的锁,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是_________.15.分别以坐标平面内的点M(,0)与点N(n,0)为圆心作圆.⊙M的半径为8,⊙N的半径为6,若两圆的交点在y轴上,则点N的坐标为_________.三、解答题(本大题10小题,共计75分)16.(5分)解方程:x2﹣2x=5.17.(5分)计算:(﹣)﹣﹣|﹣3|18.(6分)已知Rt△ABC的一条直角边AB=12cm,另一条直角边BC=5cm,以AB为轴旋转一周得到一个几何体,求该几何体的表面积.19.(6分)如图,在平面直角坐标系中,抛物线y1=x2先向右平移2个单位,再向下平移2个单位,得到抛物线y2.(1)求抛物线y2的解析式(化为一般式);(2)直接写出抛物线y2的对称轴与两段抛物线弧围成的阴影部分的面积.20206分)为落实“两免一补”政策,某市2020年投入教育经费2500万元,预计2020年要投入教育经费3600万元.已知2020年至2020年的教育经费投入逐年增长,求这两年该市教育经费的年平均增长率.21.(8分)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点.(1)求点O到直线A′B′的距离.(2)求线段B′E的长.22.(8分)一个不透明的口袋里装有四个小球,上面分别标有汉字“灵”、“动”、“仙”、“桃”,除汉字不同之外,小球没有任何区别,按照先搅拌均匀在摸球的方式,先从中摸一球,不放回,再从中摸一球,求取出的两个小球上的汉字恰能组成“灵动”或“仙桃”的概率.23.(8分)(如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.24.(10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为2020那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?参考答案一、选择题(本大题共10分,每小题3分,共30分,下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填写在答题卷上的表格内)1.B2.D3.B4.D5.A6.C7.D8.D9.A10.D二、填空题(本大题5个小题,每小题3分,共15分,请直接将答案填写在答题卷上相应的横线上,不写过程)11.12.12.(﹣3,4).13.﹣3.14..15.(﹣,0)或(,0).三、解答题(本大题10小题,共计75分)16.解:x2﹣2x=5,(x﹣1)2=6,x﹣1=,x1=1+,x2=1﹣.17.解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣)=﹣6.18.解:圆锥的表面积=×10π×13+π×52=90πcm2.19.解:(1)∵抛物线y1=x2的顶点坐标为(0,0),把点(0,0)先向右平移2个单位,再向下平移2个单位后得到的点的坐标为(2,﹣2),∴抛物线y2的解析式为y=(x﹣2)2﹣2;(2)抛物线y2的对称轴与两段抛物线弧围成的阴影部分的面积=4.20.解:设两年该市教育经费的年平均增长率为x,根据题意得:2500(1+x)2=3600,即(1+x)2=,开方得:1+x=±,解得:x1==2020x2=﹣(舍去),则两年该市教育经费的年平均增长率为202021.解:(1)∵∠AOB=90°,AO=3,BO=6,∴AB==3,∵△AOB绕顶点O逆时针旋转到△A′OB′处,∴AO=A′O=3,A′B′=AB=3,∵点E为BO的中点,∴OE=BO=×6=3,∴OE=A′O,过点O作OF⊥A′B′于F,S△A′OB′=A′B′•OF=OA′•OB′,即:×3•OF=×3×6,解得OF=;即:点O到直线A′B′的距离为:.(2)在Rt△EOF中,EF==,∵OE=A′O,OF⊥A′B′,∴A′E=2EF=,(等腰三角形三线合一),∴B′E=A′B′﹣A′E=3﹣=.22.解:列表如下:灵动仙桃灵﹣﹣﹣(动,灵) (仙,灵) (桃,灵) 动(灵,动) ﹣﹣﹣(仙,动) (桃,动) 仙(灵,仙) (动,仙) ﹣﹣﹣(桃,仙) 桃(灵,桃) (动,桃) (仙,桃) ﹣﹣﹣所有等可能的情况有12种,其中取出的两个小球上的汉字恰能组成“灵动”或“仙桃”的有2种,则P==.23.证明:(1)∵AB是⊙O的切线,∴OB⊥AB,∵∠A=30°,∴∠AOB=60°,∵OB=OC,∴∠OCB=∠OBC=∠AOB=30°,∴∠A=∠OCB,∴AB=BC;(2)连接OD,∵∠AOB=60°,∴∠BOC=12020∵D为的中点,∴=,∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD与△COD是等边三角形,∴OB=BD=OC=CD,∴四边形BOCD是菱形.24.解:(1)当x=2020y=﹣10x+500=﹣10×202000=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20202=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当2020≤40时,w≥3000.又∵x≤25,∴当2020≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20201000.∵k=﹣2020.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.。
人教版九年级数学上册期末测试卷(带答案)【2020精】
九年级(上)期末数学试卷一、选择题(每题3分)1.一元二次方程x(2x+3)=5的常数项是()A.﹣5 B.2 C.3 D.52.如图所示的几何体的左视图是()A.B.C.D.3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.4.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分5.小明乘车从广州到北京,行车的平均速度y(km/h)和行车时间x(h)之间的函数图象()A.B.C.D.6.如图,小强和小明去测量一座古塔的高度,他们在离古塔60m的A处,用测角仪测得古塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔BE的高为()A.(20﹣1.5)m B.(20+1.5)m C.31.5m D.28.5m7.若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A.4:9 B.2:3 C.:D.3:28.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)二、填空题(每题4分)9.在Rt△ABC中,∠C=90°,BC=3,AB=12,sinA=______.10.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面______,这种投影称为正投影.11.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是______.12.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是______.13.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,若AD=8cm,则OE的长为______cm.14.如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为______.15.某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是______.16.如图,Rt△ABO中,∠AOB=90°,∠ABO=30°,点A在第二象限,点B在第一象限,过点A 的反比例函数表达式为y=﹣,则过点B的反比例函数表达式为______.三、解答题17.计算:2cos30°﹣tan45°﹣.18.已知,如图,在△ABC中,点D在AB边上,连接CD,∠1=∠2.(1)求证:△ACD∽△ABC;(2)如果AD=2,BD=1,求AC的长.19.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.(1)若他去买一本笔记本,则他买到A种笔记本的概率是______;(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.20.已知,如图,△ABC中,CD平分∠ACB,DE∥BC,AD:DB=7:5,AC=24,求DE的长.21.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷.五、解答题22.如图,一艘渔船位于小岛M的北偏东42°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(参考数据:参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9044,≈1.732,结果精确到0.1海里)(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时)23.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB 于点F,求△CEF的面积.24.通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(0<x<30)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?25.如图①所示,矩形ABCD一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O,连接AP,OP,OA,△PDA的面积是△OCP的面积的4倍.(1)求证:△OCP∽△PDA;(2)求边AB的长;(3)连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.①按上面的叙述在图②中画出正确的图象;②当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.一元二次方程x(2x+3)=5的常数项是()A.﹣5 B.2 C.3 D.5【考点】一元二次方程的一般形式.【分析】方程整理为一般形式后,找出常数项即可.【解答】解:方程整理得:2x2+3x﹣5=0,则常数项为﹣5,故选A.2.如图所示的几何体的左视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:从几何体的左边看可得直角三角形,故选:A.3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【考点】列表法与树状图法;点的坐标.【分析】画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.【解答】解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.4.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分【考点】矩形的判定与性质.【分析】根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.【解答】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选:D.5.小明乘车从广州到北京,行车的平均速度y(km/h)和行车时间x(h)之间的函数图象()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据时间x、速度y和路程s之间的关系,在路程不变的条件下,得y=,则y是x的反比例函数,且x>0.【解答】解:由题意可得:y=(x>0),故y是x的反比例函数.故选:B.6.如图,小强和小明去测量一座古塔的高度,他们在离古塔60m的A处,用测角仪测得古塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔BE的高为()A.(20﹣1.5)m B.(20+1.5)m C.31.5m D.28.5m【考点】解直角三角形的应用-仰角俯角问题.【分析】作AC⊥BE于点C.则CE=AD,AC=DE.在直角△ABC中选择适当的三角函数求出BC 即可得解.【解答】解:过点A作AC⊥BE于点C.根据题意有:AC=DE=60,CE=AD=1.5.∴BC=AC×tan30°=20.故古塔BE的高为BC+CE=(20+1.5)m.故选B.7.若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A.4:9 B.2:3 C.:D.3:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比为2:3,∴这两个三角形的相似比为:,∴这两个三角形的周长的比为:,故选:C.8.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)【考点】坐标与图形变化-旋转.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.二、填空题(每题4分)9.在Rt△ABC中,∠C=90°,BC=3,AB=12,sinA=.【考点】锐角三角函数的定义.【分析】根据正弦的概念计算即可.【解答】解:sinA==,故答案为:.10.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面垂直,这种投影称为正投影.【考点】平行投影.【分析】根据正投影定义解答.【解答】解:在平行投影中,当投影线垂直于投影面时,这种投影叫正投影,故答案为:垂直.11.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是2.【考点】根的判别式.【分析】根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.【解答】解:根据题意得:△=b2﹣4(b﹣1)=(b﹣2)2=0,则b的值为2.故答案为:212.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是k<3.【考点】反比例函数的性质.【分析】先根据当x>0时,y随x的增大而增大判断出k﹣3的符号,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象,当x>0时,y随x的增大而增大,∴k﹣3<0,解得k<3.故答案为:k<3.13.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,若AD=8cm,则OE的长为4cm.【考点】菱形的性质;三角形中位线定理.【分析】根据已知可得OE是△ABC的中位线,从而求得OE的长.【解答】解:∵OE∥DC,AO=CO∴OE是△ABC的中位线∵AB=AD=8cm∴OE=4cm.故答案为4.14.如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为2.【考点】相似三角形的判定与性质;等边三角形的性质.【分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故答案为:2.15.某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是20%.【考点】一元二次方程的应用.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x,根据题意即可列出方程.【解答】解:设平均增长率为x,根据题意可列出方程为:2000(1+x)2=2880,(1+x)2=1.44.1+x=±1.2.所以x1=0.2,x2=﹣2.2(舍去).故x=0.2=20%.即:这个增长率为20%.故答案是:20%.16.如图,Rt△ABO中,∠AOB=90°,∠ABO=30°,点A在第二象限,点B在第一象限,过点A的反比例函数表达式为y=﹣,则过点B的反比例函数表达式为y=.【考点】待定系数法求反比例函数解析式.【分析】解直角三角形求得=,然后过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可证明△AOC∽△OBD,由点A在y=﹣上,可求得△AOC的面积,由相似三角形的性质可求得△BOD的面积,可求得答案.【解答】解:∵Rt△ABO中,∠AOB=90°,∠ABO=30°,∴tan30°==,如图,过A作AC⊥x轴,过B作BD⊥x轴,垂足分别为C、D,∵∠AOB=90°,∴∠BOD+∠AOC=∠DBO+∠BOD,∴∠DBO=∠AOC,∴△AOC∽△OBD,∴=()2=()2=,设A点坐标为(x A,y A),∵点A在函数y=﹣的图象上,∴x A y A=k=﹣1,∴S△AOC=|k|=,∴S△OBD=3S△AOC=,设B点坐标为(x B,y B),∴x B y B=,∴过B点的反比例函数的解析式为y=,故答案为:y=.三、解答题17.计算:2cos30°﹣tan45°﹣.【考点】特殊角的三角函数值.【分析】直接把各特殊角的三角函数值代入进行计算即可.【解答】解:原式=2×﹣1﹣=﹣1﹣(﹣1)=0.18.已知,如图,在△ABC中,点D在AB边上,连接CD,∠1=∠2.(1)求证:△ACD∽△ABC;(2)如果AD=2,BD=1,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到,代入数据即可得到结果.【解答】(1)证明:∵∠1=∠2,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴,∴AC2=AB•AD,∵AD=2,BD=1,∴AC=.19.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.(1)若他去买一本笔记本,则他买到A种笔记本的概率是;(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由学校旁边的文具店里有A、B、C、D四种笔记本,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好买到A种笔记本和C 种笔记本的情况,再利用概率公式即可求得答案.【解答】解:(1)∵学校旁边的文具店里有A、B、C、D四种笔记本,∴若他去买一本笔记本,则他买到A种笔记本的概率是:;故答案为:.(2)画树状图得:∵共有12种等可能的结果,恰好买到A种笔记本和C种笔记本的有2种情况,∴恰好买到A种笔记本和C种笔记本的概率为:=.20.已知,如图,△ABC中,CD平分∠ACB,DE∥BC,AD:DB=7:5,AC=24,求DE的长.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例的知识求出AE,EC,然后判断ED=EC,即可得出答案.【解答】解:∵DE∥BC,∴,又∵AC=24,∴AE=14,EC=10,∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC=10.21.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再由当x=1时,y=0求出a的值,选取合适的a的值代入进行计算即可.【解答】解:原式=[1﹣]÷=•=,∵y=2x2﹣ax﹣a2,且当x=1时,y=0,∴2﹣a﹣a2=0,解得a1=1,a2=﹣2,当a=1时,原式=3;当a=﹣2时,a+2=0,原式无意义.故原式=3.五、解答题22.如图,一艘渔船位于小岛M的北偏东42°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(参考数据:参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9044,≈1.732,结果精确到0.1海里)(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点M作MD⊥AB于点D,根据∠AME的度数求出∠A=42°,再根据AM的值求出和特殊角的三角函数值即可求出答案;(2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB的值,最后根据路程÷速度=时间,即可得出答案.【解答】解:(1)过点M作MD⊥AB于点D,∵∠AME=42°,∴∠A=42°,∵AM=180海里,∴MD=AM•sin42°≈120.4(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离约为120.4海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=120.4海里,∴MB=≈139,0,∴139.0÷20≈7.0(小时),答:渔船从B到达小岛M的航行时间约为7.0小时.23.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB 于点F,求△CEF的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,将点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.【解答】解:(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y=,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y=.(2)将点P的纵坐标y=﹣1,代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,故可得EF=3,CE=OE+OC=2+1=3,故可得S△CEF=CE×EF=.24.通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(0<x<30)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?【考点】一次函数的应用.【分析】(1)通过描点画图可知y是x的一次函数,从而利用待定系数法即可求出该解析式;(2)令y=z,求出此时的x,则农民的总销售收入是xy元;(3)可设这时该农副产品的市场价格为a元/千克,因为该地区农民的总销售收入比未精加工市场平衡时增加了17600元,则a(﹣100a+5000)=40000+17600,解之即可.【解答】解:(1)描点.因为由图象可知,y是x的一次函数,所以设y=kx+b,由x=5,y=4500;x=10,y=4000得:则所以即y=﹣100x+5000(2)∵y=z,∴﹣100x+5000=400x,∴x=10.∴总销售收入=10×4000=40000(元)∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.(3)设这时该农副产品的市场价格为a元/千克,则a(﹣100a+5000)=40000+17600,解之得:a1=18,a2=32.∵0<a<30,∴a=18.∴这时该农副产品的市场价格为18元/千克.25.如图①所示,矩形ABCD一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O,连接AP,OP,OA,△PDA的面积是△OCP的面积的4倍.(1)求证:△OCP∽△PDA;(2)求边AB的长;(3)连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.①按上面的叙述在图②中画出正确的图象;②当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.【考点】相似形综合题.【分析】(1)利用折叠和矩形的性质可得到∠C=∠D,∠APD=∠POC,可证得相似;(2)利用面积比可求得PC的长,在Rt△APD中利用勾股定理可求得AB的长;(3)①结合描述画出图形即可,②作MQ∥AN交PB于点Q,利用条件证明△MFQ≌△NFB,得到EF=PB,且可求出PB的长,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°,由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B,∴∠APO=90°,∴∠APD=90°﹣∠CPO=∠POC,∴△OCP∽△PDA;(2)解:∵△OCP与△PDA的面积比为1:4,∴==,∴CP=4,设AB=x,则AP=x,DP=x﹣4,在Rt△ADP中,由勾股定理可得AP2=AD2+DP2,即x2=82+(x﹣4)2,解得x=10,即边AB的长为10;(3)解:①如图所示,②EF的长度不变,理由如下:作MQ∥AN,交PB于点Q,如上图,∵AP=AB,MQ∥AN,∴∠APB=∠ABP,∠ABP=∠MQP,∴∠∠APB=∠MQP,∴MP=MQ,∵ME⊥PQ,∴PE=EQ=PQ,∵BN=PN,MP=MQ,∴BN=QM,∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,,∴△MFQ≌△NFB(AAS),∴QF=BF,∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,又由(1)可知在Rt△PBC中,BC=8,PC=4,∴PB=4,∴EF=2,即EF的长度不变.。
2020年最新人教版九年级数学上册期末试卷(B4纸)
九年级数学(上)期末测试卷一、选择题(每小题3分,30分) 1.一元二次方程3x 2﹣x=0的解是( ) A .x=0 B .x 1=0,x 2=3C .x 1=0,x 2=D .x=2.抛物线y=(x ﹣1)2+2的顶点是( )A .(1,﹣2)B .(1,2)C .(﹣1,2)D .(﹣1,﹣2)3.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .4.如图,C 是⊙O 上一点,O 是圆心,若∠C=35°,则∠AOB 的度数为( ) A .35° B .70° C .105° D .150°5.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .确定事件6.已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断7.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=22.5°,OC=4,CD 的长为( ) A .2 B .4 C .4 D .88.若方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,则方程必有一根为( ) A .0 B .1 C .﹣1 D .±19.如图,在△ABC 中,∠CAB=70°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( ) A .30° B .35° C .40° D .50°10.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中正确的是( ) A .a >0 B .当﹣1<x <3时,y >0 C .c <0 D .当x ≥1时,y 随x 的增大而增大二、填空题(每小题3分,24分)11.已知点P (﹣2,3)关于原点的对称点为M (a ,b ),则a+b= .12.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染 了 个人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末达标测试卷一、选择题(每题3 分,共30 分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()2.一元二次方程x(x-3)=4 的解是()A.x=1 B.x=4 C.x1=-1,x2=4 D.x1=1,x2=-43 1 23.抛物线y=--3 的顶点坐标是()5(x+2)1 1 1 1A.(,-3) B.(-,-3) C.(,3) D.(-,3)2 2 2 24.《九章算术》是中国传统数学重要的著作,书中有一个关于门和竹竿的问题,简译为:今有一扇门,不知门的高和宽.另有一竹竿,也不知竹竿的长短.竹竿横着放时比门的宽长4 尺,竹竿竖着放时比门的高长2 尺,竹竿斜着放时与门的对角线恰好相等,求门的对角线长.若设门的对角线长为x 尺,则可列方程为()A.(x+2)2=(x-4)2+x2 B.(x+4)2=x2+(x-2)2C.x2=(x-4)2+(x-2)2 D.(x+4)2=(x+2)2+x25.如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是()A.36°B.33°C.30°D.27°6.一个不透明的袋子中有若干个白球.为估计白球个数,小何向其中投入8 个黑球(黑球与白球除颜色外,其他均相同),搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋子中,不断重复摸球400 次,其中88 次摸到黑球,则估计袋子中有白球()A.18 个B.28 个C.36 个D.42 个7.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.15°B.20°C.25°D.30°8.如图,在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,以O为圆心作半圆O交BC于点M,N,半圆O与AB,AC相切,切点分别为D,E,则半圆O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()5 3A.5 B. C.5 2 D.5 3210.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>1 70;(4)若点A(-3,y1),点B(-,y2),点C(,y3)在该函数图象上,则y1<2 2y3<y2;(5)若方程a(x+1)(x-5)=-3 的两根为x1 和x2,且x1<x2,则x1<-1<5<x2,其中正确的有()A.2 个B.3 个C.4 个D.5 个二、填空题(每题3 分,共30 分)m211.已知关于x的方程x2+(1-m)x+=0 有两个不相等的实数根,则m的最4大整数值是________.12.在平面直角坐标系中,点(-3,2)关于原点对称的点的坐标是________.13.设m,n分别为一元二次方程x2+2x-2 018=0 的两个实数根,则m2+3m+n=________.14.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E 作⊙O的切线,切点为F.若∠ACF=65°,则∠E=________.15.如图,五一期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入,从C或D出口离开的概率是________.16.如图,在等腰直角三角形ABC中,AC=BC,∠ACB=90°,点O分斜边AB 为BO∶OA=1∶ 3.将△BOC绕C点沿顺时针方向旋转到△AQC的位置,则∠AQC=________.17.如图,小方格都是边长为1 的正方形,则以格点为圆心,半径为1 和2 的两种弧围成的叶状阴影图案的面积为________.18.如图,用一个圆心角为120°的扇形围成一个无底的圆锥,若这个圆锥底面圆的半径为1 cm,则这个扇形的半径是________cm.19.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为________.20.如图,在平面直角坐标系中,已知点A的坐标为(4,0),且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.过点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF 的长度最短时,点P的坐标为________.三、解答题(21 题8 分,22,23 题每题6 分,26 题10 分,27 题12 分,其余每题9 分,共60 分)21.选择适当的方法解下列方程:(1)x2-2x-143=0; (2)5x+2=3x2.22.已知抛物线y=ax2+bx+3 的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx-8=0 的一个根为4,求方程的另一个根.23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1 的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2 点所经过的路径长(结果保留根号和π).24.若一个三位数的十位数字比个位数字和百位数字都大,则称这个三位数为“伞数”.现从1,2,3,4 这4 个数字中任取3 个,组成无重复数字的三位数.(1)请用画树状图的方法求所有可能得到的三位数;(2)甲、乙两人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏规则公平吗?试说明理由.25.如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C 作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成圆锥的底面圆的半径r.26.某商场要经营一种新上市的文具,进价为20 元/件.试营销阶段发现:当销售单价是25 元时,每天的销售量为250 件;销售单价每上涨1 元,每天的销售量就减少10 件.(1)写出商场销售这种文具每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A,B两种营销方案:A方案:该文具的销售单价高于进价且不超过30 元;B方案:每天销售量不少于10 件,且每件文具的利润至少为25 元.请比较哪种方案的最大利润更高,并说明理由.27.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1 的图象与x 轴相交于O,A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.答案一、1.C2.C3.B4.C5.A点拨:连接BD,∵CD是⊙O的直径,∴∠DBC=90°.∴∠BDC=90°-∠BCD=90°-54°=36°.∴∠A=∠BDC=36°.6.B7.C点拨:∵正方形ODEF是由正方形OABC绕点O逆时针旋转40°得到的,∴∠AOC=90°,∠COF=40°,OA=OF,∴∠AOF=90°+40°=130°,180°-130°∴∠OFA==25°.28.A9.Db10.B点拨:∵-=2,∴4a+b=0.故(1)正确.∵当x=-3 时,y<0,2a∴9a-3b+c<0,∴9a+c<3b.故(2)错误.由图象可知抛物线经过(-1,0)a-b+c=0,b=-4a,和(5,0),∴{25a+5b+c=0,)解得{c=-5a,)∴8a+7b+2c=8a-28a-10a=-30a.∵a<0,∴8a+7b+2c>0.故(3)正确.∵点A(-3,y1),点B1 7 7 3 1 5 3 5 (-,y3)2 (-2 ),y2),点C( 在该函数图象上,且-2=,2-=,<,∴22 2 2 2 21点C离对称轴的距离近.∴y3>y2.∵a<0,-3<-<2,∴y1<y2.23∴y1<y2<y3.故(4)错误.∵a<0,∴(x+1)(x-5)=->0,即(x+1)a(x-5)>0,故x<-1 或x>5,故(5)正确.∴正确的结论有3 个,故选B.二、11.012.(3,-2)13.2 016114.50°15.16.105°317.2π-4点拨:标注字母如图所示,连接AB,由题意得,阴影部分的面积=90π× 22 12(S扇形OAB-S△AOB)=2×( -×2×2)=2π-4.360 218.3 点拨:扇形的弧长等于圆锥底面圆的周长,设扇形的半径为 r cm , 120 则 ×πr =2π×1,解得 r =3. 18019.2r 点拨:连接 OD ,OE .易知 BD =BE =OD =OE =r .∵MN 与⊙O 相切于点 P ,且⊙O 是△ABC 的内切圆,∴MD =MP ,NP =NE .∴△MBN 的周长= BM +MP +PN +BN =BM +MD +NE +BN =BD +BE =2r . 3+ 173- 1720.(,2)或(,2)22点拨:连接 OD ,由题意可知,四边形 OFDE 是矩形,则 OD =EF .根据垂线 段最短,可得当 OD ⊥AC 时,OD 最短,此时 EF 最短.在 Rt △AOC 中,易 知 OC =OA =4,∴当 D 是 AC 的中点时,OD ⊥AC .易得 DF ∥OC ,DF = 1OC =2,∴点 P 的纵坐标是 2.∵A 的坐标为(4,0),且 OA =4OB ,∴点 B2的坐标为(-1,0).设过 A ,B ,C 三点的抛物线的解析式为 y =a (x +1)(x - 4),由点 C 的坐标为(0,4),得-4a =4,解得 a =-1,因此抛物线的解析 3 ± 17 式为 y =-x 2+3x +4,当 y =2 时, x 2-3x -2=0,解得 x =.∴当线 23+ 17 3- 17段 EF 的长度最短时,点 P 的坐标为(,2)或(,2).22三、21.解:(1)原方程可化为 x 2-2x +1=143+1,得(x -1)2=144,∴x -1=±12,∴x 1=13,x 2=-11. (2)原方程可化为 3x 2-5x -2=0, (3x +1)(x -2)=0, 得 3x +1=0 或 x -2=0,1∴x 1=- ,x 2=2.322.(1)证明:∵抛物线 y =ax 2+bx +3 的对称轴是直线 x =1,b∴- =1,即 2a =-b , 2a移项,得 2a +b =0.(2)解:把 x =4 代入方程 ax 2+bx -8=0,得 16a +4b -8=0 ①.由(1)可知,2a+b=0②,①②联立,解得{b=-2,)∴原方程为x2-2x-8=0,解得x1=4,x2=-2.即方程的另一个根是x=-2.23.解:(1)如图.点A1 的坐标为(2,-4).(2)如图.90π·13(3)BC=32+22=13,所以C 点旋转到C2 点所经过的路径长==18013π.224.解:(1)根据题意画树状图如图:由树状图可得,所有可能得到的三位数有24 个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.(2)这个游戏规则不公平.理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8 个,∴甲胜的概率为=,24 316 2乙胜的概率为=.24 31 2∵≠,3 3∴这个游戏规则不公平.25.解:(1)猜想:AC与⊙O相切.证明如下:∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°.∵OB=OC,∴∠OCB=∠OBC=30°.∴∠ACO=∠ACB-∠OCB=90°.∴OC⊥AC.又OC是⊙O的半径,∴AC与⊙O相切.(2)四边形BOCD为菱形.证明如下:连接OD,∵CD∥AB,∴∠AOC=∠OCD.∵∠AOC=∠OBC+∠OCB=60°,∴∠OCD=60°.又OC=OD,∴△OCD为等边三角形.∴CD=OD=OB.∵CD∥OB,∴四边形BOCD为平行四边形.又OB=OC,∴四边形BOCD为菱形.(3)在Rt△AOC中,AC=6,∠A=30°,∴OA=2OC.∴OC2+62=(2OC)2.解得OC=2 3(负值舍去).由(2)得∠AOC =60°,∴∠COB =120°.120π × 2 3 2 3根据扇形的弧长等于圆锥底面圆的周长,得 =2πr .解得 r =.180 3 26.解:(1)由题意得,销售量为 250-10(x -25)=-10x +500,则 w =(x -20)(-10x +500)=-10x 2+700x -10 000.(2)w =-10x 2+700x -10 000=-10(x -35)2+2 250.∵-10<0,∴当 x =35 时,w 最大=2 250.故当销售单价为 35 元时,该文具每天的销售利润最大.(3)A 方案的最大利润更高,理由如下:A 方案中:20<x ≤30,∵函数 w =-10(x -35)2+2 250 的图象开口向下,对称轴为直线 x =35, ∴当 x =30 时,w 有最大值,此时 wA 最大=2 000.-10x +500 ≥ 10,B 方案中:{x -20 ≥ 25, )故 x 的取值范围为 45≤x ≤49.∵函数 w =-10(x -35)2+ 2 250 的图象开口向下,对称轴为直线 x =35, ∴当 x =45 时,w 有最大值,此时 w B 最大=1 250.∵w A 最大>w B 最大,∴A 方案的最大利润更高.27.解:(1)∵函数的图象与 x 轴相交于点 O ,∴0=k +1.∴k =-1.∴y =x 2-3x .(2)设 B 点的坐标为(x 0,y 0).∵△AOB 的面积等于 6,1∴ AO ·|y 0|=6.2当 x 2-3x =0 时,即 x (x -3)=0,解得 x =0 或 x =3.∴AO =3.∴|y 0|=4,即|x 20-3x 0|=4.3 2 25 3 2 7∴(x2)=4 或(x2)=-(舍去).0-0-4解得x0=4 或x0=-1(舍去).当x0=4 时,y0=x20-3x0=4,∴点B 的坐标为(4,4).(3)假设存在点P.设符合条件的点P的坐标为(x1,x21-3x1).∵点B的坐标为(4,4),∴∠BOA=45°,BO=42+42=4 2.当∠POB=90°时,易得点P在直线y=-x上,∴x21-3x1=-x1.解得x1=2 或x1=0(舍去).∴x21-3x1=-2.∴在抛物线上存在点P,使∠POB=90°,且点P的坐标为(2,-2).∴OP=22+22=2 2.1 1∴△POB的面积为PO·BO= 2 2×4 2=8.2 2。