高中数学-变量之间的相关关系教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3.1变量之间的相关关系教案
一、学习目标:
1.通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.
2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.
3.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用.
二、学习重点与难点:
学习重点:利用散点图直观认识变量间的相关关系.
学习难点:理解变量间的相关关系.
三、课堂过程:
1.创设情境,揭示课题
客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说,事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度,所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.
生活中存在着许多相关关系的问题:
问题1:商品销售收入与广告支出之间的关系.
问题2:粮食产量和施肥量之间的关系.
问题3:人体内的脂肪含量与年龄之间的关系.
由上述问题我们知道,两个变量之间的关系,可能是确定关系或非确定关系.当自变量取值一定时,因变量的取值带有一定的随机性时,两个变量之间的关系称为相关关系.相关关系是一种非确定性关系,函数关系是一种确定性的关系.
2.两个变量的线性相关
学生活动:为了了解人体的脂肪含量和年龄大致关系,我们以横坐标x表示年龄,纵坐标y表示人体的脂肪含量,建立直角坐标系,将表中数据构成的14个数对所表示的点在坐标系内标出,得到下图,今后我们称这样的图为散点图(scatterplot).
, 图中点的趋势表问题5:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气
根据上述数据,气温与热茶销售量之间的有怎样的关系?
为了了解热茶销量与气温的大致关系,我们以横坐标x表示气温,纵坐标y表示热茶销量,建立直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到下图:
从散点图可以看出,各散点在从左上角到右下角的区域里,因此,随着气温的升高, 热茶销售量逐步减少,图中点的趋势表明两个变量之间存在一定的关系.这种相关关系称为负相关.
3. 两个变量的线性相关性的判断
例1 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,说明理由.
4.练习:
1.下列两个变量之间的关系哪个不是函数关系()
A.角度和它的余弦值 B.正方形边长和面积C.正n边形的边数和它的内角和 D.人的年龄和身高2.
5. 课外作业:P85练习.