七年级数学几何图形的初步认识知识点
七年级数学几何图形初步认识知识点
七年级数学几何图形初步认识知识点七年级数学几何图形初步认识知识点一、认识几何图形几何图形是数学中重要的一部分,它们是通过点、线、面等基本元素构成的抽象概念。
在七年级数学中,我们将会学习如何分类、识别以及求解各种几何图形。
二、几何图形的分类1、直线型:包括线段、射线、直线。
线段是指两点之间的距离,射线是线段的一个延伸,直线则是线段的两端无限延伸。
2、平面型:包括圆形、三角形、四边形等。
圆形是指所有到定点(圆心)的距离相等的点的集合,三角形是由三个不在同一直线上的点连接而成的图形,四边形则是有四条线段围成的图形。
3、立体型:包括长方体、正方体、圆柱等。
长方体是有六个面、八个顶点和十二条边的立体图形,正方体是长方体的特例,圆柱则是一个旋转的矩形。
三、几何图形的特征和性质1、线段:有两个端点,有一定的长度。
两点之间线段最短。
2、射线:有一个端点,可以向一端无限延伸。
3、直线:没有端点,可以向两端无限延伸。
4、圆形:到定点(圆心)的距离相等的点的集合。
有无数条半径和直径。
5、三角形:具有稳定性,三条边长确定后,形状就不能再改变。
6、四边形:容易变形,四边长度确定后,形状固定。
7、长方体:有六个面,每个面都是矩形。
8、正方体:是长方体的特例,六个面都是正方形。
9、圆柱:上下两个底面是圆,侧面展开后是一个矩形。
四、几何图形的计算1、计算长度:对于线段、弧长、面积等计算,我们通常会用到一些基本的公式。
例如,对于线段,我们可以用尺子直接测量;对于弧长,可以用弧长公式计算;对于面积,可以用面积公式计算。
2、计算角度:对于角度的计算,我们可以用量角器或者三角函数。
例如,对于一个直角三角形,我们可以利用勾股定理来计算角度。
3、计算体积和面积:对于立体图形,我们通常会计算它们的体积和表面积。
例如,对于一个长方体,我们可以利用它的长、宽、高来计算体积和表面积。
五、几何图形的应用几何图形在日常生活中有着广泛的应用。
例如,我们可以用三角形来稳定物品,用圆形来设计优美的曲线,用长方体和正方体来构建房屋和家具。
人教版七年级上册数学第四章知识点总结与复习课件
应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如
数学上册知识点:几何图形初步知识点
数学上册知识点:几何图形初步知识点数学上册知识点:几何图形初步知识点初一数学上册知识点:几何图形初步知识点本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。
通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。
在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
一、目标与要求1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
二、知识框架三、重点从现实物体中抽象出几何图形,把立体图形转化为平面图形是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
七年级数学上册第四章几何图形初步认识4
D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:
七年级数学第四章图形的初步认识(知识点归纳+达标检测)
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
七年级数学几何图形初步讲义
几何图形初步【知识梳理】一、几何图形1、立体图形:各部分(顶点,棱边)不都在同一个平面内。
2、平面图形:各部分(顶点,边长)都在同一个平面内。
3、展开图:立体图形表面剪开之后展开的平面图形。
4、不同方向观察立体图形:正面、左面、上面。
5、点、线、面、体的认识。
二、直线、射线、线段1、直线、射线、线段的区别和表示名称 端点个数 延伸情况 长度 表示方法 直线 0 向两方无限延伸 不确定,不可度量 直线l 或直线AB 射线 1 一端固定,一端无限延伸不确定,不可度量 射线l 或射线OA 线段2两段固定,不延伸确定,可以度量线段a 或线段AB方位角点、线、面、体立体图形从不同的方向看物体---三视图展开立体图形平面图形直线、射线、线段直线的性质线段的有关性质几何图形比较大小两点之间线段最短 线段的中点 角角的度量及分类角的比较与运算,角平分线余角和补角余角和补角的性质作图: (尺规)画一条线段等于已知线段 画一个角等于已知角2、基本定理(1)经过两点有一条直线,并且只有一条直线。
(两点确定一条直线)(2)两点的所有线段中,线段最短,(两点之间线段最短)。
又称为两点之间的距离。
3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的大小比较方法 (1)度量法 (2)叠合法5、中点、三等分点、四等分点:将线段分别分成相等的2、3、4段。
三、角1、角:由有公共端点的两条射线所组成的图形叫做角.2、角的表示法(3种):.1∠∠∠、、αAOB3、角的度量单位及换算:度(°)、分(′)、秒(″) 1°=60′;1′=60″。
1周角=360°;1平角=180°;4、角的分类∠β 锐角(小于90°)、 直角(等于90°)、 钝角(大于90°)、 平角(等于180) 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360° 5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分7、画一个角等于已知角 (1)确定公共顶点和一条边(2)借助量角器能画出给定度数的角. 8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.9、余角和补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)余(补)角的性质:等角的补(余)角相等.【例题精讲】1. 常见几何体例1:将下列图形绕其一边所在的直线旋转一周能得到圆柱的几何体是()。
七年级数学上册《图形的初步认识》知识点思维导图与考点梳理
七年级数学上册《图形的初步认识》知识点思维导图与考点梳理1. 我们把实物中抽象的各种图形统称为几何图形。
2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。
3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。
4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.几何体简称为体。
6.包围着体的是面,面有平的面和曲的面两种。
7.面与面相交的地方形成线,线和线相交的地方是点。
8.点动成面,面动成线,线动成体。
9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。
12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
(公理)13.连接两点间的线段的长度,叫做这两点的距离。
14.角∠也是一种基本的几何图形。
15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
19.等角的补角相等,等角的余角相等。
七年级上册几何初步知识点
七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。
在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。
本文旨在介绍七年级上册几何初步知识点,供学生参考。
一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。
线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。
面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。
1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。
四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。
多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。
多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。
二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。
一个角包含两个部分,即顶点和两条边。
角可以分为锐角、直角、钝角等。
2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。
线段是由两个端点和这两个端点之间的线段组成的线。
射线是由一个端点和一个方向组成的线段。
直线图形具有平移不变性、旋转不变性、翻转不变性等特点。
线段与射线也具有相似的性质。
2.3 物体的转动物体的转动分为旋转和翻折。
旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。
翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。
三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。
坐标系原点是两条直线的交点。
3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。
初一数学几何知识点梳理
初一数学几何知识点梳理七年级上册数学第四章几何图形初步知识点一、几何图形初步认识1、几何图形:把从实物中抽象出来的各种图形的统称。
(长方体、圆柱、球、长方形、正方形、圆、线段、点、以及小学学过的三角形、四边形等,都是从形形色色的物体中外形中得出的,都是几何图形。
)2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
(如线段、角、三角形、长方形、圆等)3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
(长方体、正方体、圆柱、圆锥、球等)4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、点,线,面,体包围着体的是面,面有平的面和曲的面两种。
面和面相交的地方形成线,线和线相交的地方是点。
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线1、线段:线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
3、直线:将线段的两端无限延长就形成了直线。
直线没有端点。
4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5、相交:两条不同的直线有一个公共点时,称这两条直线相交。
6、两条直线相交有一个公共点,这个公共点叫交点。
7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8、线段的性质:两点的所有连线中,线段最短。
(两点之间,线段最短)9、距离:连接两点间的线段的长度,叫做这两点的距离。
三、角1、角:有公共端点的两条射线组成的图形叫做角。
角有顶点和两条边。
2、角的度量单位:度、分、秒。
3、角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
两条射线叫做角的两条边。
②一度的1/60是一分,一分的1/60是一秒。
角的度、分、秒是60进制。
2024年新人教版七年级数学上册《第6章6.1.2 点、线、面、体》教学课件
2. 请把下图中的平面图形与其绕轴旋转一周后得到 的立体图形连接起来.
3. ( 东营期末改编) 小翼跟妈妈到银行办理业务,她发 现银行大堂的旋转门内部是由三块宽为 2 m、高为 3 m 的玻璃隔板组成的,此情此景,她提出了以下问题:
(1) 将此旋转门旋转一周,能形成的几何体是_圆__柱___. (2) 这能说明的事实是___C___(选择正确的一项填入).
不同吗?
结论:线和线相交形成点. 点只代表位置,没有大小,所以点都是相同的.
想一想
立体图形的组成的元素包括什么?
面 相交
体线 相交
点
典例精析
例1 如图所示的立体图形是由____3____个平面和 _____1_____个曲面组成的,面与面相交形成 _____4_____条直线和___2____条曲线.
合作探究 探究1 (1) 你知道这些几何体是由什么围成的吗? (2) 下图中的图形分别有哪些面?这些面有什么不同吗?
结论:1. 包围着的体是面. 2. 面分为平的面和曲的面.
合作探究 探究2 面和面相交的地方形成了什么?它们有什么
不同吗?
结论: 面和面相交的地方形成线,线有直线和曲线之分.
合作探究 探究3 线和线相交处又形成了什么?它们有什么
的事实.
新课导入 观察下图的长方体,思考:它有几个面?面和面相 交形成了几条棱?棱和棱相交形成了几个顶点?
6 个面、12 条棱、8 个顶点
相交
相交
围成
8 个顶点
12 条棱
6 个面
长方体
知识点1: 图形的构成元素
同学们,观察教室,哪些物体可以抽 象成你熟悉的立体图形?
长方体
三棱柱
圆柱
定义总结
七年级数学上册 第四章 《几何图形初步》知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
2024新人编版七年级数学上册《第六章6.1.1第1课时认识立体图形和平面图形》教学课件
三棱柱
四棱锥 …
探究新知
知识点 3 平面图形 说一说下面这些几何图形又有什么共同特点?
这些几何图形的各部分都在同一平面内,它们是平面图形.
探究新知
下面各图中包含哪些简单的平面图形?请再举出一 些平面图形的例子.
巩固练习
画一画 用两个圆、两个三角形和两条直线为条件,画出一 个独特且具有意义的图形,并命名.
义务教育(2024年)新人教版 七年级数学上册
第6章 几何图形初步 课件
第六章 几何图形初步
6.1 几何图形 6.1.1 立体图形与平面图形 第1课时 认识立体图形和平面图形
学习目标
1.能从具体事物中抽象出几何图形,并用几何图形 描述一些现实生活中的物体.
2. 能分清立体图形和平面图形,并了解它们之间的
解:可能,如图,做成正三棱锥的图形.
课堂小结
几何图形
立体图形 平面图形
柱体
球体
锥体
多边形 圆
线段 角 …
圆柱 棱柱
圆锥 棱锥
三棱柱 四棱柱 五棱柱
…
三棱锥 四棱锥 五棱锥
…
课后作业
完成课后练习题.
吊灯
路灯
落日余晖
眼镜
当堂训练
1. 下列图形不是立体图形的是 ( D ) A. 球 B. 圆柱 C. 圆锥 D. 圆
2. 长方体属于 ( B ) A. 棱锥 C. 圆柱
B. 棱柱 D. 以上都不对
当堂训练
3. 下列几何体中属于棱锥的是 ( B )
A. ①⑤②
B. ①
C. ①⑤⑥
D. ⑤⑥
4. 月球、西瓜、易拉罐、篮球、热水瓶胆、书本等物体中,
探究新知
类似地观察罐头,足球或篮球的外形,可以得到圆柱、球、圆 等.长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小 学学过的三角形、四边形等,都是从物体外形中得出的,它们都是 几何图形.
人教版七年级上册数学第4章 几何图形初步 点、线、面、体
你能从下面几何体中找出点、线、面吗?
知2-讲
思考:体是由什么围成的?它们有什么不同? 体是由面组成 面与面相交成线 线与线相交成点
知2-讲
物体的运动会留下运动轨迹,这些运动轨迹往往也能 抽象成几何图形.如果把笔尖看成一个点,这个点在 纸上运动时,形成的图形是什么?动手试一试.
归纳结论: 点动成线.
知2-练
3如图所示的几何体是由哪个图形绕虚线旋转一 周形成的( )A
1.谈一谈你认识到的点、线、面、体及它们之间的 关系. 2.说一说通过今天的学习你对周围环境有了哪些新 的认识. 3.想一想在获得一个结论的过程中,我们都经历哪 几个环节,这对你将来探索新知识有何帮助?
完成教材P120练习T1,T2, P122习题4.1T5
4.1几何图形
第四章几何图形初步
第5课时点、线、面、体
1 课堂讲解 图形的构成元素及关系
曲面几何的形成方法
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
问题:物体的构成往往包含多种元素,几何图形也是如 此.观察长方体模型,它有几个面?面与面相交的地方 形成了几条线?线与线相交成几个点,三棱柱呢?
知2-讲
点 点动成线
线
线动成面
面
面动成体
体
线与线相交形成点
面与面相交形成线 包围着体的部分是面
知2-讲
例2笔尖在纸上快速滑动写出了一个又一个字,这 说明了______点__动_;成车线轮旋转时,看起来像一个 整体的圆面,这说明了_______线__动_;成直面角三角 形绕它的一条直角边所在的直线旋转一周,形 成了一个圆锥,这说明了______面__动_.成体 导引:构成图形的要素是点、线、面,其中点是构 成图形的最基本元素,判断图形构成情况时, 有三种情况:点动成线,线动成面,面动成 体,通过实际情景,逐一分析便可得结果.
七年级上册几何知识点总结
七年级上册几何知识点总结几何是数学中非常重要的一部分,它帮助我们理解和描述周围世界的形状和空间关系。
在七年级上册的数学学习中,我们接触到了一些基础的几何知识,下面就让我们一起来回顾一下。
一、线段、射线和直线线段是指直线上两点间的有限部分,有两个端点,可以测量其长度。
比如一根铅笔的长度、课本的一条边的长度等。
射线是指由线段的一端无限延长所形成的直的线,它有一个端点,另一端无限延伸。
像手电筒射出的光线就可以近似地看作射线。
直线则是两端都没有端点,可以向两端无限延伸,不可测量长度。
它们之间的区别主要在于端点的数量和能否测量长度。
二、角角是由两条有公共端点的射线组成的几何图形。
这两条射线叫做角的边,它们的公共端点叫做角的顶点。
角的表示方法有多种,比如可以用三个大写字母表示,中间的字母是顶点,两边的字母是角的两条边;也可以用一个大写字母表示,但要注意顶点处只有一个角时才能这样表示;还可以用一个数字或一个希腊字母来表示。
角按照大小可以分为锐角(小于 90 度)、直角(等于 90 度)、钝角(大于 90 度小于 180 度)、平角(等于 180 度)和周角(等于 360 度)。
角的度量单位是度、分、秒,1 度= 60 分,1 分= 60 秒。
我们可以通过量角器来测量角的度数。
三、相交线两条直线相交会形成四个角。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。
对顶角相等。
邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角。
邻补角互补,即相加等于 180 度。
垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
人教版(2024)数学七年级上册 第六章 几何图形初步+6.1 几何图形 第1课时 认识几何图形
同一平面 内,它们是平面图形.
分层精练
知识点1 认识立体图形
1.下列图形不是立体图形的是( D )
A.球
B.圆柱
C.圆锥
D.圆
2.如图所示是我国航天载人火箭的实物图,可以看成的立体图形为
( B)
A.棱锥与棱柱的组合体 B.圆锥与圆柱的组合体
C.棱锥与圆柱的组合体 D.圆锥与棱柱的组合体
知识点2 认识平面图形 3.下列各组图形中都是平面图形的是( D ) A.线段、圆、圆锥、球 B.角、三角形、长方形、圆柱 C.长方体、圆柱、棱锥、球 D.角、三角形、正方形、圆 4.下列图形:①线段;②角;③三角形;④球;⑤长方体.其中 ①②③ 是 平面图形(填序号).
第六章 几何图形初步
6.1 几何图形 6.1.1 立体图形与平面图形
第1课时 认识几何图形
栏目导航
自主导学 分层精练
自主导学
1.几何图形 物体的 形状 、 大小 和 位置关系 是几何中研究的内容. 从实物中抽象出的各种图形称为 几何图形 . 2.立体图形 有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分都不 在 同一平面 内,它们是立体图形. 3.平面图形 有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在
Hale Waihona Puke 5.(2024北京顺义区期末)下列物体中,给我们以“圆柱”形象的是 ( C)
6.指出如图所示的立体图形中的柱体、锥体、球(填序号).
柱体: ①②⑤⑦⑧ ; 锥体: ④⑥ ; 球体: ③ .
7.如图所示,一个长方形的长是36 cm,剪去一个最大的正方形,剩下的 周长是 72 cm.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中年级(上册)导学案班级小组姓名
第二章几何图形的初步认识
2.1从生活中认识几何图形
知识点:
一、认识几何图形
平面图形
圆柱
几何图形
立体图形柱体
锥体
球体
台体
棱柱
二、几何图形的构成
1、面与面相交成_____ ,线与线相交成 _______ 。
2、点动成_____ , ______ 动成面,面动成 ______ 。
3、 ____ 、_____ 、_____ 是构成几何图形的基本要素,体是由________ 围成的。
4、面有 _____ 面和______ 面,线有 ______ 线和 _____ 线。
引申探讨:n棱柱有几个顶点、几条棱、几个面
初中 年级
(上册)导学案班级
小组 姓名
2.2点和线
知识点:
1、点的表示: A ° B * 用一个大写的字母,例如:点A 点B
2
、线段的表示: A
B I
I
■
C1
I
方法一:用表示端点的两个大写字母(没有次序).例如:线段AB 、线段BA. 方法二:用 一个小写 字母.例如线段a.
用表示端点的大写字母和其余任一点的字母 (表示端点的大写字母必须写在前).
例如:射线AB
A B
a
4、 直线的表示: ---------- J --------- ■ --------- ----------------------------------
方法一:
用表示任两点的 两个大写 字母(没有次序).例如:直线AB 直线BA.
方法二: 用一个小写 字母•例如直线a.
5、 线段、射线、直线的比较:
6、 直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)
7、 点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)
引申探讨:1、一条直线上有n 个点,会有几条线段?
2 、握手问题、票价问题、车票问题。
2.3线段的长短
知识点:
1、线段长短的比较方法:(两种)
(1)度量法:是从数量的角度来比较
(2)叠合法:是从图形的角度来比较
另外了解估测法:依据已有的经验来判断
2、线段的画法:
3、线段的性质:两点之间的所有连线中,线段最短。
(简记为:两点之间,线段最短。
)
引申探讨:蚂蚁爬行问题
2.4线段的和与差
知识点:
一、线段的和与差的概念及作图方法
二、线段的和与差的计算
三、线段的中点
几何图形初步
一、本节学习指导
本节知识点比较简单,都是基础,当看书应该就能理解。
二、知识要点
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
比如:
正方体、长方体、圆柱等
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
比如:三
角形、长方形、圆等
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
圆枉
棱柱:三棱柱、匹棱柱(长方体、正方体五棱柱、
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是
长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形, 五边形,六
边形。
数轴与相反数
一、本节学习指导
本节学习数轴与相反数,这两个知识点非常重要,同时也是比较容易理解不深的知识,细节比较多,希望同学们认真学习。
二、知识要点
1、数轴【重点】
(1)、用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:
-2 -1 ∪ 1 2 3
①在直线上任取一个点表示数0,这个点叫做原点;
②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负
方向;
③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,
依次表示1,2,3,;从原点向左,用类似的方法依次表示-1,-2,- 3,
(2)、数轴的三要素:原点、正方向、单位长度。
(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在
上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表
示有理数。
(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
2、相反数
(1)、只有符号不同的两个数叫做互为相反数。
① 注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
②相反数的商为-1;
③相反数的绝对值相等。
(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。
(3)、a和-a互为相反数。
O的相反数是0,正数的相反数是负数,负数的相反数是
正数。
相反数是它本身的数只有0.
(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。
(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=O,则a、b互
为相反数。
(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-”的个数为奇数,化简结果为负数。
比如:-2× 4× -3× -1 × -5,首先由4个负
号,所以最终结果是正数,再算数字相乘得到^^120
绝对值
一、 本节学习指导
学习本节我们要掌握好绝对值的定义, 其次要掌握正数、负数、O 的绝对 值特
征。
本节并不难,相信同学们都能掌握好的。
二、 知识要点
(1) 、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的
绝对值记作∣a∣.
(2) 、正数的绝对值等于它本身;O 的绝对值是O (或者说O 的绝对值是它本身, 或者说O 的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的 意义是数轴上表示某数的点离开原点的距离;)。
O 是绝对值最小的数。
a (a > O)
r
a
≡o (□=0)或h∙
-a (a <(y ) ■
∖a
a
(4)Λ
=
>0J —=Too<0;
a
6f
(5)、任何数的绝对值总是非负数(非负数是正数或 O ),即Ial ≥ O.
(6)、互为相反数的两个数的绝对值相等。
绝对值相等的两个数可能是互为相反数 或者相等。
(7)、有理数比大小:
① 正数比O 大,O 大于负数,正数大于负数; ② 两个负数比较,绝对值大的反而小;
(5).绝对值可表示为’
③数轴上的两个数,右边的数总比左边的数大;
(8)、比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。
三、经验之谈
绝对值表示的是数轴上的点到数轴原点O的距离,既然是距离,就不可能有负的情况,因此绝对值后的结果一定是大于等于O的数。
这里注意:当a v O时,∣a∣=-a,部分同学可能会认为绝对值后是-a ,咋看是负数呢,注意前提条件a v 0,所以-a >0,仍然是正数。