水平井井眼轨迹控制
吉林油田大情子油田水平井井眼轨迹控制技术研究
吉林油田大情子油田水平井井眼轨迹控制技术研究【摘要】本文主要对吉林油田大情子油田水平井的井眼轨迹控制的难点进行阐述。
通过井眼轨迹优化与钻具组合的优化选择解决了岩屑床堆积和托压等多方面问题,形成了适合该地区水平井施工一整套的技术措施。
【关键词】钻具组合井眼轨迹优化狗腿度控制井眼清洁1 概述该地区水平井井眼轨迹控制技术难点主要有:(1)直井段长,直井段井斜控制难度大;(2)靶前位移短,造斜率高,pdc钻头工具面稳定难度大,造斜率不稳定,造斜率难以保证;(3)由于地面的条件限制,需要靶前扭方位(10°-60°),现场施工难度大,井下风险高;(4)目的层有效厚度2m左右,水平段延伸长(700米)钻遇率要求高(90%),油气层的垂深不确定,构造变化大,井眼轨迹增斜降斜变化不规律,增加了水平段的控制难度;(5)在大斜度段和水平段井眼内摩阻和扭矩大,造成滑动钻进时加压困难;2 针对该地区定向施工中的技术难点采取的技术措施 2.1 钻具组合的优化设计该地区水平井一般设计在1320米左右造斜,井斜控制要求高(500米内<0.5°,至造斜点<1°)。
直井段采用防斜塔式钻具组合,采用高转速(120r/min),低钻压钻进(2t)。
坚持每钻进50米测斜一次,发现井斜超标或者增斜趋势明显及时采取小钻压吊打和提高转速的方法控制井斜,必要时下入动力钻具纠斜。
直径段钻具组合如下:φ228.6mmpdc钻头+φ172mm双母接头+托盘+φ178mm非磁×1+φ178mm钻铤×6+φ165 mm钻铤×8+φ127mm钻杆+133mm×133mm 方钻杆直井段进行通井作业,采取慢下方式休整井壁。
在造斜点以上50米下入mwd,根据实钻直井段的连斜数据在造斜点之前对井眼轨迹进行修正。
造斜段井斜角小于45°的井段采取以下钻具组合:φ215.9mm钻头+172mm马达(1.5°)+箭式浮阀+定向接头(172mm)+φ165mm非磁(mwd)+φ165mm钻铤×6+ 127mm加重钻杆×30+φ127mm钻杆+133mm×133mm方钻杆.该钻具组合增加了钻具的刚性,工具面稳定,造斜率波动变化小。
DP19小井眼欠平衡水平井井眼轨迹控制技术
DP x 眼 欠 平 衡 水 平 井 井 眼 轨 迹 控 制 技 术 井 1d 9
崔 林 曹 生 杨 旭 唐 林 孙 坡 海 树 春 洪 连
( 利 石 油 管理 局 钻 井工 艺研 究 院 , 东 东营 胜 山 271) 5 07
摘要:在 简述 DP 9井储层地质情 况、 身结构和 井身轨迹 剖面的基础上 , 1 井 对井眼轨迹控制技 术难 点进行 了分析 , 阐述 了
Ke r s sm h l;n eb l cddii ; io e a l g oiotlet n h r otl eltjcoycnrl y d :l oe u dra ne rl g nt g n o m;o r na sci ; o zna w l r etr ot wo i a ln r f nh z o i ;a o
段和有效途径。 关键 词 :小井 眼 ;欠 平 衡 ; 气 泡 沫 ; 水 平 段 ;水 平井 ;轨 迹 控 制 氮 长
中图 分 类 号 :T 2 3 E4 文 献 标 识 码 :A
Hoe rjcoycnrleh oo yfr n eb ln e r l g l a tr o totcn lg d r aa cddii t e ou ln
o fDP. 9 si — l rz nt l l 1 l ho eho io a l m we
C 1 ai, A hsegY N hnu T N ogi S N Lap U i C OS uhn ,A GC ux ,A GH nl , U i 0 H l n n n
( ii cnoyR sac si t,h n lP t lu d nsrt nB ra , o g i 5 0 7 C ia Dr lgT h lg eerh n tueS egi e oe mA mii ai ue u D n yn 2 7 1 , hn) ln e I t r t o g
水平井井眼轨迹控制技术探讨
1 井身轨迹控制常规的水平井都由直井段、增斜段和水平段3部分组成。
由直井段末端的造斜段(kop)到钻至靶窗的增斜井段,这一控制过程为着陆控制;在靶体内钻水平段这一控制过程称为水平控制。
水平井的垂直段与常规直井及定向井的直井段控制没有根本区别。
水平井井眼轨道控制的突出特点集中体现在着陆控制和水平控制,设计到一些新的概念指标和特殊的控制方法。
1.1 水平井井眼轨道控制技术的特点水平井钻井技术是定向井技术的延伸和发展。
水平井的井眼轨道控制技术与定向井相比有类似之处,但也有显著差异,体现了水平井轨道控制的突出技术特征。
1.1.1中靶要求高定向井的靶区为目的层上的一个圆形,通称靶圆,靶圆中心称为靶心。
靶心是井身设计轨道中靶的理论位置,而靶圆是考虑到因误差而造成的实钻轨道中靶的允差范围。
一般来说,定向井的目的层越深,其靶圆半径也越大。
例如一口井垂深为1800-2100m的定向井,其靶圆半径通为30-45m,如上所述,水平井的靶体是一个以矩形靶窗为前端面的呈水平或近似水平放置的长方体或与之接近的几何体(拟柱体,棱台等)。
靶窗的高度与油层状况有关,宽度一般是高度的5倍,水平井长度则和水平井的增斜段曲率半径类型有关。
例如,对厚油层,其靶窗高度可达20m,但对薄油层,该高度可小到4m甚至更小。
按我国对石油水平井的规定,水平段井斜角应在86°以上,长、中、短半径3类水平井的水平段长度一般分别不得小于500m,300m,60m 。
很显然,水平井的目标(靶体)比定向井的目标(靶圆)要求苛刻,前者是立体(三维),后者是平面(二维),因此中靶要求更高。
对于水平井来说,井眼轨道进入目标窗口(靶窗)还不够,还要防止在钻水平段的过程中钻头穿出靶体造成脱靶,而对定向井来说,只要保证钻入靶圆即为成功。
1.1.2控制难度大由于上述定向井和水平井的目标性质与要求对比可知,水平井轨道控制难度大于定向井。
而且,由于常规定向井的最大井斜角一般在60°以内,不存在因目的层的地质误差造成脱靶的问题。
定向井、水平井井身轨迹控制
第三章定向井、水平井井身轨迹控制技术第一节定向井、水平井井眼轨迹控制理论无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。
但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。
我们在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
我们可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。
水平井水平段轨迹控制课件
应用范围扩大
随着技术的进步和应用的不断扩 大,水平井的应用范围越来越广 泛,已经成为石油、天然气和矿 产开发中的重要技术手段之一。
02 水平井轨迹控制技术
CHAPTER
水平井轨迹控制的基本原理
01
水平井轨迹控制的基本原理是通 过钻具组合的设计和钻进参数的 优化,实现对井眼轨迹的精确控 制。
产数据等。
控制优化
03
根据预测模型,优化控制参数如水平段位置、钻井液排量等,
实现水平段轨迹的精确控制。
基于优化算法的智能控制策略
优化算法控制策略
利用遗传算法、粒子群算法等优 化算法,寻找最优的控制参数组
合。
遗传算法
通过模拟生物进化过程,寻找最优 解。在水平井轨迹控制中,可应用 于寻找最优的钻井液排量、水平段 位置等参数组合。
基于人工智能的自适应控制的水平井轨迹控制实例
基于人工智能的自适应控制是一种新兴的控制方法,通过机器学习等技术对系统进行学习和 自适应。在水平井轨迹控制中,可以使用人工智能技术对地下井眼模型进行学习和自适应, 并制定相应的控制策略。
基于人工智能的自适应控制的优势在于能够自适应地处理复杂的非线性系统,并具有较好的 泛化性能。此外,人工智能技术可以处理大量的数据,并通过数据挖掘等技术提取出有用的 信息。
要点三
测量与导向系统
测量与导向系统是实现水平井轨迹控 制的关键技术之一。目前,该领域仍 存在一些技术瓶颈,如测量精度不高 、导向稳定性不足等。这些问题的解 决需要进一步研究和改进测量与导向 系统技术。
06 结论与展望
CHAPTER
主要结论
水平井水平段轨迹控制技术的发 展趋势是高效、精准、智能化。
• 水平井轨迹控制需要解决防斜打直问题,确保井眼 轨迹的垂直性和稳定性。
第6讲 水平井井眼轨迹控制技术
2. 工具造斜能力误差
» 因受地层、工具面摆放不到位、送钻不均匀及理 论计算误差等影响,工具造斜能力不能准确预测;
3. 轨迹预测误差
» 由于MWD离钻头有一定的距离引起的。
6.2 水平井找油方案
1. 导眼法
» 先打一导眼WD,探知油顶位置和油层厚度, 然后回填至合适高度增斜中靶。
W C
D
A
B
6.2 水平井找油方案
避免、减少井下复杂情况并可在一定程度上加以解除。
» 具体考虑:
• • • 使用“倒装钻柱” ; 为了防止卡钻事故,一般在套管内的钻柱中装震击器; 校核钻机提升能力,并对钻柱强度进行详细校核。
6.4 水平井着陆控制
着陆控制是指从直井段的造斜点开始钻至 油层内的靶窗这一过程。其技术要点有:
1. 工具造斜率的选择“略高勿低”;
第6讲 水平井井眼轨迹控制技术
• 6.1 轨迹控制过程中的误差来源
• 6.2 水平井找油方案 • 6.3 水平井底部钻具组合及钻柱设计 • 6.4 水平井着陆控制 • 6.5 水平井水平段控制
6.1 轨迹控制过程中的误差来源
1. 地质误差
» 地质靶点垂深的误差对水平井着陆控制造成很大 困难,当这种误差较大或在薄油层中钻水平井时 问题更为突出;
2. 应变法
» 以一定的稳斜角探油顶,探知油顶后,直接增 斜中靶,通过稳斜段长短对靶点垂深的补偿作 用消除地质靶点的不确定性
可能油顶位置1 可能油顶位置2 可能油顶位置3
d
opt
t
6.3 水平井底部钻具组合及钻柱设计
1. 底部钻具组合设计
» 水平井底部钻具组合设计的首要原则是造斜率原 则,保证设计组合的造斜率达到设计轨道要求并
涪陵页岩气田三维水平井井眼的轨迹控制技术
控制工作中,工作人员可以结合偏移距离变化和靶前位移变化,控制难度比较大。
1.3 三维眼井摩阻扭矩较大在三维水平井斜井段,需要适当的增斜和扭方位,在下钻和滑动钻钻进过程中,钻具很容易发生屈曲问题,钻具接触井壁之后会产生较大的摩阻扭矩,产生严重的托压问题,不利于向钻头传递钻压,降低了钻井速度,延长了定向钻的周期。
由于上孔的扭转方向增加了全角度变化率和摩擦扭矩,定向工具面无法放置在正确位置,在同一位置反复升降钻具,增加了定向钻进的难度,延长了定向钻进的钻进周期[1]。
2 涪陵页岩气田三维水平井井眼轨迹控制技术思路采用原有的井眼轨迹设计模式,不利于实现三维水平井优化和快速定向钻井。
其工作目标是使摩擦力矩最小。
在实际工作中,有必要对原始井眼轨迹类型进行优化,改进轨迹参数,优化三维井眼轨迹设计技术,以提高定向钻井速度。
因为三维井眼轨迹控制工作具有较大的难度,为了保障钻井的安全性,提高现场定向施工的便利性,需要利用精细控制措施,严格控制井段井眼轨迹,优化涪陵页岩气田三维水平井井眼轨迹控制技术,降低整体施工难度。
面临三维井眼摩阻扭矩较大的问题,工作人员可以利用降摩减扭工具,避免发生托压问题,利用三维井眼降摩减阻技术,高效控制三维井眼轨迹。
要想优化三维井眼轨道,工作人员需要合理选择三维井眼轨道,把握入窗时机,提高施工现场的操作性。
利用预目标位移,尽可能调整倾斜点,缩短稳定段长度,有效缩短钻进周期。
为了降低整体工作量,要在稳斜段改变方位。
结合降摩减扭的工作理念,优化轨道全角的变化率,控制稳斜段的井斜角[3]。
在实际应用中,将三维水平井轨迹分为六段。
在纠偏井段的井眼内设置二维增斜段,以保证增斜效果。
在稳斜边变方位井段,施工人员需要全力扭方位,有效减少工作量。
在边增斜边调整方位井段,应合理调整调整工具面,合理调整方位角。
在着陆段利用增斜入窗,合理调整参数。
3 涪陵页岩气田三维水平井井眼轨迹控制关键技术三维水平井偏移距比较大,同时也会增加变方位工作量,在大斜度井段调整方位难度较大,定向钻工作周期比较长,井眼轨迹缺乏圆滑性,将会影响到后续井下作业的安全性。
北布扎奇水平井井眼轨迹控制工艺——以NB6165-2H水平井为例
西部 探矿工 程
.
8 5
O 5 5 船
O
5 3 9 2
驵
∞
∞ ∞ ∞
趴
北 布 扎 奇 水 平 井 井 眼 轨 迹 控 制 工 艺 以 NB 5 H 水 平 井 为 例 6 6 —2 1
— —
陈水新 , 因平 , 蒋 马宗军
( 西部钻探 定 向井技 术服 务公 司 , 新疆 克拉玛依 84 0) 3 00
* 收稿 日期 :0 11—2 2 1 —22
第一作者简介 : 陈水 新(9 4) 男( 17 一 , 汉族 )湖北天门人 , , 工程 师。 现从事定 向井钻井技术服务工作。
8 6
西部探 矿 工程
21 0 2年第 8期
斜能力高于设计造斜率 , 有利于对轨迹 的调整, 二开完 钻前 轨迹 点位置 超前予设 计线 , 超前 量要满 足三 开轨迹 控制要求 。三开选用』 10 m1 7。 2 2m . 5单弯螺杆钻具 , 『 从 前期 水平井 施工 看 , 螺杆 造 斜 率 为 ( 1~ 1。/0 该 1。 3)3m, 预计 三开 以单 圆弧 方 式 人靶 , 造斜 率 1。3 m, 靶 点 2/0 入 选择在 上靶 窗 顶点 , 靶井 斜 在 8 。 右 , 入 水 平 段 人 2左 进 以后 , 在靶 区范 围 内把 井斜 调整 到 设计 范 围 , 靶井 斜 人 不可选 择过 小 , 则会在 调整井斜 过 程 中实 钻轨迹 线穿 否 出下靶 框 , 10 2mm25单弯螺 杆钻具 作 为救急螺 杆 。 .。 3 3 2 二 开造斜段 (3  ̄ 4 4 .. 2 0 ,3 m) 选 用 如 下 钻 具 组 合 : 2 2 2 mm 牙 轮 钻 头 + 2. 5 』 12 m单 弯螺杆 钻具 (. 5) 2 7r 『 a 17。 + 12 7 mm 单 流 阀 十 M W D+ 1 9 5 mm 无 磁 钻 铤 ×1根 + 1 7 2mm 斜 坡 钻 杆× 1 2根 + j 1 7 2 2 mm 斜 坡 加 重 钻 杆 × 1 『 1根 十 19 5mm随钻 震 击 器 + 17 2mm 斜 坡 加 重 钻 杆 ×3 根 + 1 7 斜坡钻 杆 +13 方钻 杆 。 2 mm 3mm 钻井参 数 : 压 4 t排量 2 ̄3 I s 钻 ~8, 8 2 。 / 早 扭方位 , 井斜较 小 的时候 方位 到 位 。实 钻井 眼轨 迹尽量控制在设 计线 附近 之上运 行 , 离太 大 会造 成全 偏 角变化率过大 , 容易 引起后 期作 业 通井 、 下技 套 困难 , 也 增加 了轨迹控 制难 度 。轨迹偏上 时 , 造斜率应 小于设 计 ,
钻井工程:第五章 井眼轨道设计与轨迹控制
第五章井眼轨道设计与轨迹控制1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08答:井眼轨迹基本参数包括:井深、井斜角、井斜方位角。
这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。
2.方位与方向的区别何在?请举例说明。
井斜方位角有哪两种表示方法?二者之间如何换算?答:方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。
方位角表示方法:真方位角、象限角。
3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别?答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。
水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影.在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。
视平移是水平位移在设计方位上的投影长度.4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角).狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。
5.垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图.6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办?答:7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系?答:测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角).轨迹计算时,必须首先算出每个测段的坐标增量,然后才能求得测点的坐标值。
井眼轨迹设计与控制方法
井眼轨迹设计与控制方法井眼轨迹设计与控制方法是指在石油工程领域中,为了实现最佳的钻井效果,需要设计合适的井眼轨迹,并通过控制方法来实施钻进操作。
井眼轨迹设计和控制方法的目的是确保井眼能够贯穿目标层,并达到钻井目标。
以下是井眼轨迹设计和控制方法的一般步骤和原则。
1.收集地质和地下信息:了解地质和地下条件对井眼轨迹设计的影响,包括地层构造、断层、岩性、陷落带等信息。
通过地质勘探技术,如地震勘探、测井等方法获得地下信息。
2.考虑钻进目标:确定钻井目标并制定井眼轨迹设计的目标,包括垂直井、平曲井、S型井、水平井等。
3.选择合适的钻头和井壁稳定措施:根据地层岩性和井眼设计目标,选择适当的钻头和井壁稳定措施,以减少钻井风险。
4.采用合适的井眼轨迹设计软件:使用井眼轨迹设计软件,根据地质和目标要求,进行井眼轨迹设计。
软件可以根据用户的输入参数,提供最佳的井眼轨迹设计方案。
5.优化井眼轨迹设计:根据设计的井眼轨迹,进行优化,以满足目标要求、降低钻井风险和成本。
6.完善设计:进行设计审查并完善井眼轨迹设计。
井眼轨迹控制方法的原则如下:1.根据地质情况进行实时调整:在钻井过程中,根据地质情况和实时测井数据,适时调整井眼轨迹设计。
控制方法可以包括调整钻头类型、调整钻井液密度等。
2.使用工具进行测量和记录:使用相关测量工具,如测井仪器、鱼雷测井等,对井眼轨迹进行实时测量和记录。
这些测量数据可用于分析地层情况和优化井眼轨迹设计。
3.采用适当的工具和技术:选择合适的工具和技术,如导航仪器和测量工具,帮助实施井眼轨迹控制。
这些工具可以提供准确的测量数据和实时导航。
4.数据分析和反馈:通过分析测量数据和井斜数据,对当前井眼轨迹进行评估和反馈。
根据评估结果,进行必要的调整和控制。
5.培训和提高技能:培训钻井工程师和工人,提高其井眼轨迹设计和控制的技能水平。
这样可以确保钻井操作的安全和高效。
总之,井眼轨迹设计和控制方法是确保钻井工程顺利进行的重要环节。
侧钻水平井井眼轨迹控制技术
空 间 测量 、 算 机 软 件 和决 策论 等 诸 多 学科 , 一 门 计 是
典 型 的多学 科综 合技 术 。 在 1 97 m 套管 内开 窗侧 3 .m 钻 中半 径水 平井 , 由于井 眼 尺寸 小 、 具 刚度 低 , 迹 钻 轨
211靶 区 设 计 原 则 ..
钻 井 进 尺 2 81 4 3 m、 均 造 斜 率 ( .。 1 .。/ 4 .— 3 . 平 2 8 ~ 62 ) 4
3 m、 平 段长 5 .~ 4 . 各 项 技 术 指标 全 部达 到 0 水 2 133 0 m, 设计 要求 ( 主要 技术 指标 如表 1 示1 所 。经过 6年 多 的 理 论研 究 与 现 场实 践 . 噶 尔盆 地 砾 岩 油藏 、 准 裂缝 性 油 藏侧钻 水 平井 钻井 工艺 技术 已趋 成熟 .侧 钻 工具 、 测 量仪器 与计 算软 件也 基本配 套 。 随着注 水老 油 田剩 余 油分 布研 究 的进一 步深 入及 侧钻 水平 井 钻井 、 井 完 与 采油技 术 的进 一步 发展 , 侧钻 水 平井 将成 为 注水 老
眼轨 迹 设 计 、 具 组 合 设 计 与 井 眼轨 迹控 制施 工 工 艺 , 钻 包括 初 始 造 斜 侧 钻 、 井眼 轨 迹 测 量 、 眼 轨迹 控 制 软 件 及 造 斜 段 、 平段 轨 迹 井 水
控制方案。
关键 词
侧 钻 水 平 井 轨 迹 设 计 轨 迹 控 制 钻 具 组 合 螺 杆 钻 具
影 响 , 入 水波 及 不 到造 成一 些 死 油 区 , 些剩 余 油 注 这
水平井井眼轨迹
⽔平井井眼轨迹⽔平井井眼轨迹控制技术⽔平井井眼轨迹控制⼯艺技术是⽔平井钻井中的关键,是将⽔平井钻井理论、钻井⼯具仪器和施⼯作业紧密结合在⼀起的综合技术,是⽔平井钻井技术中的难点,原因是影响井眼轨迹因素很多,⽔平井井眼轨迹的主要难点是:1.⼯具造斜能⼒的不确定性,不同的区块、不同的地层,⼯具造斜能⼒相差较⼤2.江苏油⽥为⼩断块油藏,油层薄,区块⼩,⼀⽅⾯对靶区要求⾼,另⼀⽅⾯增加了⽬的层垂深的不确定性。
3.测量系统信息滞后,井底预测困难。
根据以上技术难点,需要解决三个技术关键:1、提⾼⼯具造斜率的预测精度。
2、必须准确探明油层顶层深度,为⼊窗和轨迹控制提供可靠依据。
3、做好已钻井眼和待钻井眼的预测,提⾼井眼轨迹预测精度。
动⼒钻具选择⼀、影响弯壳体动⼒钻具造斜能⼒的主要因素影响弯壳体动⼒钻具的造斜能⼒的主要因素有造斜能⼒钻具结构因素和地层因素及操作因素三⼤类。
其中主要的是结构因素,其次是地层因素。
(⼀)动⼒钻具结构因素影响1.弯壳体⾓度对⼯具造斜率的影响单双弯体弯⾓是影响造斜⼯具造斜能⼒的主要因素。
在井径⼀定情况下,弯壳体的弯⾓对造斜率的影响很⼤,随着弯壳体⾓度的增⼤,造斜率呈⾮线性急剧增⼤。
2.弯壳体近钻头稳定器对⼯具造斜率的影响。
弯壳体近钻头稳定器的有⽆,对⼯具造斜率影响很⼤。
如Φ165mm1°15′有近钻头稳定器平均造斜率达到30°/100⽶,⽆近钻头稳定器平均造斜率仅为20°/100⽶左右,相差近50%。
如陈3平3井使1°30′Φ172mm不带稳定器单弯螺杆平均造斜率为25°/100⽶,井⾝轨迹控制要求,复合钻进后,滑动钻进,造斜率仅为16-20°/100⽶。
3.改变近钻头稳定器到下弯肘点之距离对⼯具造斜率的影响通过移动下稳定器位置可以改变近钻头稳定器⾄下肘点之距离。
上移近钻头稳定器可⼤⼤提⾼⼯具的造斜能⼒,并且在井径扩⼤程度较⼤的情况下,造斜能⼒的上升幅度⽐井径扩⼤较⼩时要⼤。
井眼轨迹控制技术讲义
井眼轨迹控制技术 (1)三、海洋定向井直井防斜技术 (12)四、海洋定向井预斜技术 (14)上图为某平台表层预斜轨迹与内排井直井段轨迹对比图 (15)五、造斜段、稳斜段、降斜段轨迹控制 (15)井眼轨迹控制技术井眼轨迹控制指:按照设计要求(地质设计、钻井工程设计、定向井设计等),利用定向井工艺、技术,完成定向井、水平井、水平分枝井等轨迹控制的过程。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、预斜段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术。
目前海洋定向井轨迹控制使用的是导向钻具,而在陆地油田有的还是用常规钻具组合(增斜、降斜、稳斜、降斜)实现井眼轨迹的控制。
定向井井眼轨迹控制考虑的因素及工作内容包括:1.造斜点的选择(1).选择地层均一,可钻性好的地层(2).KOP在前一层套管鞋以下50米,套以免损坏套管鞋(3).初始造斜的准确性非常重要(4).大于25度的定向井方位易控制2.造斜率选择(1).大斜度大位移定向井:2~3度/30米(2).一般丛式井3 ~5度/30米(3).造斜率要均匀3.降斜率(1).对于“S”井眼,通常降斜率1~2度/30米(2).如降斜后仍然要钻长的井段,降斜率还要小,以免键槽卡钻4.预测井眼轨迹要考虑的方面(1).底部钻具组合的受力分析(2).地层的因素:岩性、均匀性、走向、倾向、倾角(3).钻头结构、形状(4).侧向切削模型和轴向切削模型,确定侧向力5.钻具组合影响轨迹:底部钻具组合表现不同的效果,是由于不同的钻具有各自的力学特性,产生钻头侧向力的方向和大小不同。
(1).1#STB和2#STB的距离(2).(刚度)钻铤内外径、材料(3).扶正器尺寸(4).钻头类型和冠部形状6.井眼方向控制内容:(1).井斜角的控制:增斜、降斜、稳斜;(2).井斜方位角控制:增方位、降方位、稳方位;7.定向井轨迹控制的主要做法1)第一阶段:打好垂直井段(1).垂直井段打不好,将给造斜带来很大的困难。
浅谈水平井井眼轨迹控制技术
1以转 盘钻 为主 的水平 井 井 眼轨迹 控 轨迹的有效控制 。
段。
一
该井段 。 二 是定 向造斜 段 的施 工用 常规 动力 钻
具、 弯接头 或弯套动力 钻具 的方 式进行 。应 选择合 适的弯接头 或弯壳体度 数 , 使实 际造 斜率尽 可能地 接近设 计造 斜率。 井斜 角应 达 到1 0 - . 1 5  ̄  ̄ 转盘钻进 , 以利 于待钻井段增 斜
一
制
三是对 地质 设计 靶区垂 深误 差要 求在 5 - l O m、而平 面误 差大于 5 m的水 平探 井和 水平开发井 , 以转 盘钻钻具组 合为 主要 钻进 方式 , 可采 用大排 量来 提高携 岩能 力 , 以两 套 转盘钻钻具组 合用二至 三趟钻钻完 5 0 0 m 左 右的水平井段 。 四是对地 质设 计靶 区垂 深误 差要求 在 5 m之 内 、而平面误差也小 于 5 m的水平井 , 采用 1 。 左右 的单 弯动力钻具 或 D T U导 向钻 具与 转盘钻 钻具 组合 相结合 的方 式钻水 平
是长 半径水 平井 使用 常规 定 向井工 1 . 1以转盘钻为 主的水平井井 眼轨迹 控 具 , 用 转盘钻方式进 行增斜井 段 的井 眼轨迹 制 主要 思路 控制, 通过精 心设 计钻 具组合 , 合理 调整 钻 在 以转盘 钻为 主 的水 平井 井 眼轨迹 控 井 参数 , 可 以实现 有控 制地 强增斜 、 微增 斜 制中, 采 用两层 技术 套管 的井 身结构 , 对 于 以及 比较稳定 的增斜 率 , 调整 钻井参数 的核 井下 的安全有 了充 分的保 障 , 但是 在经济 上 心是钻压 。 却处 到劣势 。通过 总结实践经 验 , 逐渐认 识 二 是在  ̄ 5 4 4 4 . 5 m m 井 眼 中 , 采 用 到: 采用 这种井眼轨迹 控制模 式应 当简化 井 d  ̄ 2 2 8 . 6 m m和  ̄ 2 0 3 . 2 m m钻铤组成 的增斜钻 身结 构 , 整个增 斜井段 采用单 一的 中3 1 1 a r m 具 组合 ,能够 获得 4 . 5  ̄0 m的 比较稳 定 的 井 眼尺寸。在此基础上 , 将 这种模式定型为 : 增 斜率。 但若用柔性更 强的组 合来实现更高 是充分 利用 成功 的高压 打直 技术 , 严格 的将造 斜点前 的直井段井 眼 斜 率 曾达到 1 1 . 3  ̄ / 3 0 m,而 且 因转盘 扭矩 过 轨迹 控制在允许范 围之 内 , 快速 优质地钻 完 大 , 极易造成钻具事 故。
浅层阶梯水平井井眼轨迹控制技术
深 18 . 5 垂深 678 m, 504 m, 9. 9 造斜点为 43 2m。本井 2 .1 有 两个 目的层 F 5和 F7 F5顶 的垂 深 为 6 3 实 际 I I, I 5m, 有效 厚 度 为 2 F 7顶 的 垂 深 为 6 4 5 有 效 厚 度 为 m, I 8. m, 2 两个层之间的垂深差接近 3m。所以它可以算是 m, 0
困难 。 2 2 优化 过 程 .
划 眼力 度 , 个 单 根 打 完 后 划 眼 两 次 , 井 身 质 量 达 每 使
为 了顺 利施 工这 口大 位移 浅层 阶梯水 平井 , 在实 钻 过程 经研究 后对 以下几个 方 面做 了优化 。 22 1 井 身剖 面 的优化 ..
从设计不难看出有些数据 相对于现场施工是不合 理的, 为了优化井眼轨迹和顺利下套管对本井做出一些 调整 。由于 B C C 、 2以及 D靶 点 的设 计 靶 窗高 、 、 1C 5 所 以利 用这 一优势 进 行调整 。 m, () 着陆后 走 油层 上 部 , 1在 在钻 到 B靶 点 时走 靶 窗 的下 部 , 样 就可 以提 前 降 斜 力 争 在 出 B靶 点 时 井 斜 这 降到 8 。 右 , 必须确 保第 一水 平段 的ቤተ መጻሕፍቲ ባይዱ 遇率 。 5左 但 () 2在从 B到 C时先降斜 以 8 。 2的角度稳斜 1~8。
* 收 稿 日期 :000 -2 2 1-82
第一 作者简 介: 宋程 ( 93) 男( 18 一 , 汉族) 黑龙江大庆人 , , 助理 工程师 , 现从事水平井技术服务工作 。
5 2
西 部探矿 工程
21 0 1年第 7期
备 老化 , 砂量 较高 , 以给定 向施 工 带 来 了 相 当大 的 含 所
页岩气长水平段水平井井眼轨迹控制技术
81涪陵焦石坝构造页岩气完井200余口,平均水平段1500m左右,完钻水平段最长的焦页2-5HF水平段长为3065m;长宁页岩气田YS108井区和宁201井区平均水平段长度为1429m,昭通YS113H1-7井水平段长达到2512m。
北美Haynesville页岩气开发井,2012年之前水平段长1263m,2014—2015年水平段长2408m,增长94.6%,水平段每米成本降低73%,如图1所示。
利用长水平段水平井提高单井产量是页岩气开发的发展趋势,涪陵页岩气田开发调整阶段将超长水平井作为增产提效的主要措施之一[1-4]。
图1 1Haynesville区块水平井技术发展趋势随着水平段长度的增加,页岩气水平井井眼轨迹控制所面临的技术挑战进一步加剧,如长裸眼水平段延伸极限预测难度大、井筒净化困难、摩阻扭矩大。
为此,本文从极限延伸能力模型预测、井眼轨道优化设计、钻具组合优配、降摩减阻和井眼净化等方面开展了技术攻关,以期为我国页岩气长水平段水平井高效成井提供技术支撑[5-6]。
1 技术难点1.1 水平井延伸极限能力不明确精确预测长水平段水平井的延伸极限能力,对提高页岩气开发的经济效益和规避钻井风险具有重要意义。
但由于影响水平井延伸极限的因素众多,模型计算精度受限,主控因素不明确,目前未针对涪陵页岩气田长水平段水平井开展系统的评价分析。
1.2 井眼轨道剖面优化及轨迹控制难度大[5]常规的“直-增-稳-增-平”轨道剖面,井眼曲率高,难以满足长水平段水平井低造斜率的轨道剖面要求,轨迹控制难度高。
目前针对长水平段水平井三开造斜+水平段的技术方案为全程使用国外进口旋转导向,钻井成本昂贵,仪器供应保障难;而采用常规导向钻井轨迹控制难度大,钻具组合配置方案需进一步优化。
1.3 井筒净化困难、摩阻扭矩大井筒净化困难,易形成岩屑床,造成复杂。
如涪陵工区某井,水平段长1835m时,因岩屑造成卡钻,处理时间达17d。
随着水平段增加,摩阻扭矩呈类指数增加。
海上油田水平井加密钻井中的防碰轨迹控制技术
海上油田水平井加密钻井中的防碰轨迹控制技术摘要:受地质因素、施工条件、施工平台、施工工艺等多方面因素影响,海上油田部分加密水平井在钻井过程中钻井表层轨迹与周围井缠绕、穿插,井眼防碰压力、轨迹控制难度很高,导致海上油田水平井加密开发钻井过程中井眼防碰问题极为突出,严重影响了钻井效益。
为有效实现水平井加密钻井中的防碰轨迹控制,文章以该平台某水平井轨迹控制为例,通过合理槽口选择、井身结构优化、控制井段预留、出现井眼碰撞后的反应操作、侧钻轨迹设计等技术,解决了本井表层出现严重井眼碰撞问题后的钻井问题。
关键词:水平井加密钻井;防碰撞轨迹控制;海上油田1井眼碰撞问题的出现渤海油田AHF-1井与BHF-1为同一批实施井(AHF-1井于BHF-1井之前实施),AHF-1井为锤入隔水导管,表层批钻结束后,陀螺测量井眼轨迹显示AHF-1井隔水导管偏斜严重,导致其轨迹在132 m时与本井设计轨迹最近距离仅有O.07 m。
2初期应对措施2.1合理确定一开并深针对上述情况,BHF-1井一开作业前决定通过在满足工程条件要求的情况下减少隔水管下入长度(渤海油田要求隔水导管入泥40 m以上),为后续绕障留够较长井段。
最终本井一开φ762 mm井眼钻进至112.45 m中完,φ609.6mm隔水导管下至112.35 m。
2.2轨迹绕障设计二开φ444.5 mm井眼使用1.75°弯角马达(渤海表层常用1.5°弯角马达)配合牙轮钻头,钻穿隔水管鞋之后便开始绕障,绕障设计见表1。
表1 BHF-1井270°方位防碰绕障轨迹设计3井眼碰撞的现场判断及应对措施二开φ444.5 mm井眼下入如下钻具组合:φ444.5 mm铣齿牙轮钻头+φ244.5 mm泥浆马达(1.75°,φ438mm直翼扶正套)+φ203.2 mm浮阀接头+φ311.2 mm扶正器+φ203.2 mm短元磁钻铤+φ203.2 mm MWD+φ203.2 mm短无磁钻铤+φ203.2 mm定向接头+φ203.2 mm随钻震击器+变扣接头+φ127mm加重钻杆×14根[1]。
浅层水平井钻井轨迹控制技术
浅层水平井钻井轨迹控制技术摘要:针对浅层水平井在钻井过程中的轨迹控制问题,结合目前我国浅层水平井的应用现状,首先对轨迹控制过程中的难点问题进行系统分析,然后从多个角度分别提出多项有效措施,为浅层水平井在钻井过程中轨迹控制技术的发展奠定基础。
研究表明:由于水平井的直井段长度相对较短,且浅层地层较为松软,所以在轨迹控制过程中会出现各种问题,因此,石油单位应从钻具优化组合、造斜率合理选择、提高着陆控制技术以及加强轨迹监控预测四方面入手,分别采取多项措施,提高浅层水平井钻井过程中的轨迹控制水平。
关键词:浅层水平井;轨迹控制;难点;措施;工艺1 浅层水平井钻井轨迹控制难点对于浅层水平井而言,在进行钻井作业的过程中轨迹控制困难的原因主要有七方面:①对于水平井而言,其直井段的长度相对较短,在进行造斜作业的过程中,地层较为松软,因此油气井的实际造斜率难以得到有效的控制,这就要求提高井身的剖面调整性,从而使得造斜率的误差可以得到一定程度的调整,因此,使得鉆井作业过程中的轨迹控制难度加大;②在造斜点位置处,浅层水平井钻井所使用的钻柱质量相对较轻,在钻井过程中会产生较大的水平位移,而实际中要求钻井轨迹必须保持平滑,不得出现波动,这使得轨迹控制十分困难;③在进行钻井作业的过程中,测量点的位置与井底的位置相对较远,约为15m左右,这使得在进行钻井作业时如何判断着陆点的位置成为了一项重大问题;④地层中油气资源储层的分布十分不规律,且存在储层不稳定的情况,钻井作业设计的目的层与实际进行钻井过程中遇到的地层情况存在差异,这也使得浅层水平井的轨迹控制十分困难;⑤对于水平井段而言,在进行钻井作业的过程中,钻具将直接与井壁相接触,两者之间的接触面积相对较大,钻井过程中的摩阻将会大大提高,钻具的扭矩也会得到一定程度的提高,从而使得钻井难度增大,轨迹控制难度也将提高;⑥对于浅层水平井而言,在进行钻井作业的过程中对钻井液的要求相对较高,不但要求其自身具有一定的携砂能力,还要求具有一定的润滑性,从而使得在钻井作业的过程中安全可以得到有效的保障,间接使得轨迹控制难度提高;⑦在水平段位置处,位垂比相对较大,当水平段的长度延伸的过程中,起钻的摩阻也会随着增加,尤其是对于泥岩段而言,间接使得轨迹控制难度加大。
浅层水平井钻井轨迹控制技术
浅层水平井钻井轨迹控制技术随着石油资源的逐渐枯竭,开采技术不断向更深更复杂的地层发展,传统的垂直井钻井已经无法满足对石油和天然气的需求。
水平井钻井技术逐渐成为了石油工业的一个重要分支。
浅层水平井在提高采油率,延长油田寿命,降低钻井和生产成本等方面具有重要意义。
浅层水平井钻井轨迹控制技术作为浅层水平井钻井中的重要环节,对于提高钻井效率和保障钻井安全具有重要的意义。
浅层水平井一般指储层埋藏深度小于2000米的水平井,因地质条件相对简单、适合水平井开采,具有大规模开发、绿色环保等特点,因此得到了广泛关注。
在浅层水平井的钻井过程中,钻井轨迹控制技术的质量将直接影响到钻井井眼的完整性和天然气产量等方面。
浅层水平井钻井轨迹控制技术的研究和应用对于提高油气井开采效率、降低生产成本、保障井眼完整性等方面具有重要意义。
在传统的垂直井钻井中,井眼质量一般由下列因素决定:钻头功率、钻井液密度和粘度、钻头类型和污染率等。
而在水平井钻井中,钻井井眼的质量除了受到上述因素的影响外,还会受到地层性质及钻井液压力和流量等多方面的影响。
浅层水平井钻井中,钻井井眼的质量和钻井效率受到很多因素的影响,因而对钻井设备和技术提出了更高的要求。
浅层水平井钻井轨迹控制技术具有以下几个特点:1. 高精度需求:在浅层水平井的钻井过程中,由于井深较浅、地层条件相对简单,往往需要达到更高的井眼质量和钻井轨迹的精度。
需要铺设更为严格的管控标准和程序,对钻井设备和工艺要求更高。
2. 多层次的控制需求:由于地层条件的不均匀性,浅层水平井钻井需要在更多的地质参数下进行较为复杂的控制,钻井工程师需要结合多种工艺来满足不同的控制需求。
井壁稳定性、动力传递、井眼密实度等因素的多层次交互需要钻井工程师综合考虑。
3. 钻井现场环境复杂:浅层水平井钻井现场常常面临地形、地质、气候等多种挑战。
这些挑战会增加钻井设备与管控系统的不稳定性,因而需要有更为稳定和可靠的硬件设备和软件系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平井井眼轨道控制
班级:采油60901
学号:200962276
序号:4
姓名:蒋凯
指导老师:卢林祝
在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念
地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:
井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素
对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算
和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。
实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中或滞后。
实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是:
①实钻轨迹点的位置超前,相当于缩短了靶前位移。
此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。
②轨迹点位置适中,若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。
但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。
③轨迹点的位置滞后,相当于加长靶前位移。
此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。
实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。
点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。
实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。
在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新
概念和实钻轨迹点的位置、点的井斜角大小对待钻井眼轨迹中靶的影响规律,将造斜井段井眼轨迹的控制程度限定在有利于入靶点矢量中靶的范围内。
也就是说,在轨迹预测计算结果表明有余地、并有后备工具条件时,应当充分发挥动力钻具的一次造斜能力,以提高工作效率,减少起下钻次数。
三、井身剖面的特点及广义调整井段的概念
根据长、中半径水平井常用井身剖面曲线的特点,剖面类型大致可分为单圆弧增斜剖面、具有稳斜调整段的剖面和多段增斜剖面(或分段造斜剖面)几种类型,不同的剖面类型在轨迹控制上有不同的特点,待钻井眼轨迹的预测和现场设计方法也有所不同。
(一)水平井常用井身剖面曲线的特点
1、单圆弧增斜剖面
单圆弧增斜剖面是最简单的剖面,它从造斜点开始,以不变的造斜率钻达目标,胜利油田的樊13- 平1 井采用了这种剖面。
这种剖面要求靶区范围足够宽,以满足钻具造斜率偏差的要求,除非能够准确地控制钻具的造斜性能,否则需要花较大的工作量随时调整和控制造斜率,因而一般很少采用这种剖面。
2、具有切线调整段的剖面
具有切线调整段的剖面,它又可分为:
(1)单曲率—切线剖面:具有造斜率相等的两个造斜段,中间以稳斜段调整。
(2)变曲率—切线剖面:由两个(或两个以上)造斜率不相等
的造斜段组成,中间用一个(或一个以上)稳斜段来调整。
如永35—平1 井、草20—平1 井、草20—平2 井等就属于这种剖面。
这是最常用的剖面类型,因为多数造斜钻具的造斜特性不可能保持非常稳定,常常产生一定程度的偏差,这就需要在造斜井段之间增加一斜直井段来调节补偿这种偏差。
单曲率—切线剖面后一段的造斜率可以在钻第一造斜段的过程中比较精确地预测出来,然后及时计算修改稳斜段的长度,以补偿第一段造斜率与设计的偏差,使井眼轨迹准确地钻达目标点的垂深。
3、多造斜率剖面
多造斜率剖面(或分段造斜剖面),造斜曲线由两个以上不同造斜率的造斜段组成,是一种比较复杂的井身剖面。
在水平4 井攻关和试验过程中,•我们根据胜利油田地质地层特点,采用了三段增斜方法设计水平井井眼轨道,在实钻过程中可以充分发挥动力钻具和转盘钻具各自的优势,提高钻井速度。
将常规设计的稳斜井段改为第二增斜段,通过调整该段的造斜率和段长,同样可以弥补钻具造斜能力的偏差,而且还可以实现用一套钻具组合完成第一造斜段的通井和第二造斜段的钻进,并减少了起下钻次数。
转盘增斜钻具组合与稳斜的刚性钻具组合比较,其刚性小,摩阻力小,不易出新井眼,有利于井下安全。
采用转盘钻具钻进可以使用较大的钻压以提高机械钻速,缩短钻井周期。
(二)广义的调整井段概念
据国外水平井资料介绍,在多数水平井设计中习惯采用具有稳斜
调整段的剖面,用稳斜段作为轨迹控制的调整井段。
通过实践我们认识到,水平井的调整井段还有更为广泛的含义。
首先,我们知道,目的层入靶点位置的准确性和目的层厚度是影响水平井中靶的重要因素之一。
如何利用稳斜调整井段来提高中靶精度,对目的层是薄产层的水平井尤为重要。
由于在井斜角较大时,增斜率的偏差主要影响水平位移,而对垂深的影响很小,可以在大井斜角度下提高垂深的精度。
因此,在入靶前的大井斜角井段增加一稳斜调整段,既可调整垂深精度,又有助于及时辨别地质标准层,以便及时准确地确定目的层入靶点的相对位置。
其次,由于目前的硬件条件不十分完善,在钻中半径水平井的两趟动力钻具组合井段之间选择一调整井段,采用柔性的转盘增斜钻具组合来钻进,不仅可以钻出较小的造斜率井段以缓解第一和第三段造斜率,满足对井眼轨迹控制的需要,而且对改变井眼的清洁状况、防止出新眼都具有十分重要的作用。
因此,调整井段的广义概念不仅是调整井眼轨迹,同时可以调整钻井过程中井眼的清洁净化状况;不仅调整井眼轨迹的中靶精度,还可根据地质要求及时调整目的层入靶点的相对位置;不仅可以是稳斜井段,还可以是适当造斜率的增斜井段。