高功率光纤激光器PPT课件
《光纤激光器》PPT课件 (2)
光纤激光器根本原理
光纤激光器和其他激光器一样,由能产生光子的增益介 质,使光子得到反响并在增益介质中进展谐振放大的光 学谐振腔和鼓励光跃迁的泵浦源三局部组成。
光纤激光器的开展
1985年英国南安普敦大学的研究组取得突出成绩。他 们用 MCVD方法制作成功单模光纤激光器 ,此后他们先后 报道了光纤激光器的调Q、锁模、单纵模输出以及光纤放 大方面的研究工作。英国通信研究实验室(BTRL )于 1987 年展示了用各种定向耦合器制作的精巧的光纤激光器装置, 同时在增益和激发态吸收等研究领域中也做了大量的根底 工作,在用氟化锆光纤激光器获得各种波长的激光输出谱线 方面做了开拓性的工作。世界上还有很多研究机构活泼在 这个研究领域 ,如德国汉堡技术大学 ,日本的 NTT、 三菱 , 美国的 贝尔实验室 ,斯坦福大学等。
共振腔还有另一个作用:在共振腔内形成的受激光一 局部通过共振腔端面发射出去成为受激光发射,另外一局 部被端面反射回来,在共振腔内继续激发出受激辐射。所 以,只要在共振腔内的激光材料始终保持粒子数反转条件, 就可以获得连续的受激光发射。
3.功率源
为了使激光器产生激光输出,必须使共振腔中 激光材料的增益到达阈值增益,也就是说要使粒子 数反转到达一·定的程度,称为阈值反转密度。
Er3+(4F13/2—4I15/2)有1.54 m发射谱线,与Nd激光 器一样,用0.514 m的激光泵浦,便可产生振荡,其荧 光光谱有1.534和1.549 m峰,寿命8—12ms。 Er激光 为三能级激光,因此用块状材料实现连续振荡比较困难, 但用纤维激光器,可实现空运连续振荡,阈值30mw左右。 插入衍射光栅,也可在1.53—1.55 m范围内实现波长可
2024年度激光原理及应用PPT课件
激光的相干性比普通光 强很多,可用于精密测 量和全息照相等领域。
激光器组成及工作原理
激光器组成
激光器一般由工作物质、激励源和光学谐振腔三部分组成。
2024/3/24
工作原理
在激励源的作用下,工作物质中的电子被激发到高能级,形 成粒子数反转分布。当这些电子从高能级跃迁到低能级时, 会辐射出与激励源频率相同的光子,并在光学谐振腔内得到 放大和反馈,最终形成稳定的激光输出。
激光雷达
测距、成像、识别等多元化应 用
激光显示
高清晰度、大色域、节能环保
激光制造
高精度、高效率、无接触加工
2024/3/24
10
激光器类型及其特
03
点分析
2024/3/24
11
固体激光器
01
02
03
工作原理
通过激励固体增益介质( 如晶体、玻璃等)中的粒 子,实现粒子数反转并产 生激光。
2024/3/24
根据实际需要,还可选择佩戴耳塞、手套 等个人防护装备,以降低激光对其他部位 的危害。
2024/3/24
24
未来发展趋势预测
06
与挑战分析
2024/3/24
25
新型激光器研发方向探讨
2024/3/24
新型材料激光器
探索新型增益介质,如量子点、二维材料等,提高激光器的性能 。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
1960年,美国物理学家 梅曼制造出第一台红宝 石激光器
现代激光技术突破与创新
光纤激光器
高功率、高效率、光束质量好
量子级联激光器
覆盖中红外到太赫兹波段
2024/3/24
光纤激光器.ppt
3.光纤激光器的泵浦结构
4.光纤激光器和其它激光器比较
和二氧化碳激光器比较 • 有更高峰值功率的脉冲激光,可以加工的材料种类更多; • 使用方便,采用光纤传输可以有更大的扫描范围; • 能量转换效率高,光纤激光器的电光转换效率为25%,而二氧化碳
光纤激光器
• 光纤激光器的发展历程 • 光纤激光器的基本原理 • 光纤激光器与其它激光器比较 • 几种实用的光纤激光器及其应用
1.光纤激光器的发展历程
2.光纤激光器的基本原理
• 工作物质:掺杂光纤; • 谐振腔:光纤环与两个反射镜组成; • 泵浦源:一般采用半导体激光器泵浦。
2.1 双包层稀土掺杂光纤
• redPOWERTM 紧凑激 光模块 (2W-10W)
• 最大输出可达10W, 波长1μm
5.2 大功率双掺杂光纤激光器 2
• IPG公司的大功率光纤 激光器YLR-SM Series
• 100W to 1.5kW output Optical Power
• 1060 to 1080nm Wavelength Range
5.8 高速短脉冲光纤激光器
美国Calmar公司10G皮 秒光纤激光器 PSL-10XX
• 波 长 范 围 : 1530-1565 nm可调或范围内固定
• 重复频率:5-11G可调或 10G固定,脉宽:1-10ps 可调或范围内固定,平 均输出功率:>20mW
• 高速短脉冲光源对于光 时分复用系统,光学取 样技术等有重要的意义,
DBR型窄线宽光纤激光器
5.6 窄线宽光纤激光器 1
• NP Photonics 公司的窄 线宽光纤激光器
• Very narrow linewidth (long coherent length) <3 kHz
激光器介绍PPT课件
S
iT
AmpA. /V
Sig. Lock-in Amp. Ref.
D Vds
检测 信号
场
太
效
➢ I-V
赫
应
基
➢ 电导
本 特
➢ 跨导
性
测
试
兹 检 测 特 性 测 试
➢ ITHz-Vg ➢ 响应度 ➢ 等效噪声功率 ➢ 响应频谱 ➢ 响应速度 ➢ 偏振特性
第8页/共74页
测试及优化_无特意设计天线结
构
circuits integrated)
5.3 mA/W or 150 V/W @ 650 GHz
NEP ~ 0.5 nW/Hz0.5
Self-mixing
Panasonic Corp. ( Tohoku University,
Japan (2010))
68th Device Research Conference
2nd step: :三极子蝶形共振天线器件对比
Photocurrent (nA) Photocurrent (nA)
三极子蝶形共电振学天特线性 +纳米栅
三极子蝶形共光振学天特线性+纳米栅+滤波器
1.8
s1o.6urce
drain
1.8
so1u.6rce
drain
1.4
1.4
1.2
Ohmic
1.0
dG/dV (a.u.) g
0.6
1.2
0.5
G (300 K)
0.4
G (77 K) 0.8
dG/dV (300 K)
0.3
g
dG/dV (77 K)
g
0.2
光纤激光器ppt
Resonant Fiber Laser光纤激光器BY 12046210目录概述原理特性光纤激光器优势光纤激光器关键技术总结光纤激光器概述自从光纤激光器问世后,高功率光纤激光器成为激光领域最为活跃的研究方向之一。
随着新型泵浦技术的采用和大功率半导体激光器制造工业的进一步发展成熟,光纤激光器得到了飞速发展。
光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。
从原理上来讲光纤激光器和传统的固体、气体激光器一样,光纤激光器也是由泵浦源、增益介质、谐振腔三个基本要素组成。
泵浦源一般采用高功率半导体激光器,增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。
泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发发射。
所产生的自发发射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。
以稀土掺杂光纤激光器为例,掺有稀土离子的光纤芯作为增益介质,掺杂光纤固定在两个反射镜间构成谐振腔,泵浦光从M1入射到光纤中,从M2输出激光。
当泵浦光通过光纤时,光纤中的稀土离子吸收泵浦光,其电子被激励到较高的激发能级上,实现了离子数反转。
反转后的粒子以辐射形成从高能级转移到基态,输出激光。
光纤激光器作为第三代激光技术的代表,具备很多优势(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势;(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故;(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以转换效率较高,激光阈值低;(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多;(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。
新激光第六章激光器模式选择技术PPT课件
实现模式匹配需要对激光器的结构参数进行调整,如改变反射镜的曲率半径、调整激光介 质的折射率分布等。同时,还需要对激光器的工作条件进行优化,如控制泵浦源的功率、 调整冷却水的温度等。
模式稳定性分析
01
模式稳定性定义
模式稳定性是指激光器在长时间运行过程中,输出光束模式的稳定性和
一致性。
02 03
80%
法布里-珀罗标准具
一种具有极高光谱分辨率的光学 滤波器,可用于精确选择特定波 长的纵模。
100%
光纤光栅
利用光纤光栅的波长选择性反射 特性,实现特定波长的纵模选择 。
80%
声光调制器
通过声光效应改变谐振腔内光场 的分布,从而控制特定纵模的增 益或损耗。
03
激光器横模选择技术
横模产生原因及影响
采取隔离措施,如使用隔震平 台、减少外部振动对激光器的 影响,以及降低环境温度波动 等,可以提高激光器的模式稳 定性。
采用自适应控制技术
通过自适应控制技术,如自适 应光学系统或电子控制系统, 可以实时监测并调整激光器的 输出光束模式,以保持其稳定 性和一致性。
05
新型激光器模式选择技术探讨
微纳激光器模式选择技术
纵模影响
多个纵模同时存在会导致激光输 出光谱展宽、功率不稳定、光束 质量下降等问题。
纵模选择方法
被动选择法
利用谐振腔的自然选模特性,通过调 整腔长、反射镜反射率等参数实现纵 模选择。
主动选择法
在谐振腔内引入额外的光学元件或非 线性效应,主动控制特定纵模的增益 或损耗,实现纵模选择。
典型纵模选择器件
量子点模式选择
01
通过控制量子点的尺寸、形状和组成,实现量子点激光器的模
《光纤激光器》课件 (2)
输出接口
将激光光束引导到需 要的位置,如切割头、 焊接头等。
光纤激光器的工作原理
1
2. 激发能量转换
2
输入的激发能量经由光纤进行传递并被
稀土离等材料吸收,转化为激光能量。
3
4. 激光输出
4
激光通过输出接口输出,可以被用于切 割、打标等领域。
1. 激发能量输入
在光纤激光器中,激发能量是由外部光 源、电极等设备输入的。
优点
激光光束的输出可以控制和精确调节, 光束质量高,较为稳定。
缺点
成本较高。
结合实例进行讲解
车间焊接
光纤激光器可以通过传输光纤 将激光光束送到需要加工的位 置,节省了装备的空间占用。
3D 打印
通过光纤激光器对粉末进行加 热熔融,在粉床的顶部拉出整 体车轮、工件,实现3D打印。
医疗美容
经过优化的光纤激光器可以用 于皮肤表层的脱脂、磨皮等一 系列操作。
光纤激光器
激光器是一种高度集成的光电设备,是现代工业制造中不可或缺的一部分。 其中,光纤激光器由于其高可靠性、高光束质量、小体积等特点,在各个领 域都备受青睐。
激光概述
1 定义
2 应用
3 优势
激光是指产生的光是单色、 相干、方向性高的光。
激光可以用于通信、医疗、 制造等领域,具有非常广 泛的应用前景。
3. 激光放大
激光能量被反馈回路反复放大,光线被 不断聚焦,直至达到足够强度放出。
光纤激光器的应用范围
制造业
可用于精密切割、钣金焊接、3D 打印等。
通信领域
可用于光纤通信、隔离器件、放大器等。
医疗美容
可用于皮肤美容、皮肤松弛、痘印等。
科学研究
可用于激光对物质分析、试验、测试等。
IPG高功率光纤激光器结构图
2021/10/10
1
IPG光纤激光器泵浦源—单芯结半导体模块
- 超高的功率 - 超高的亮度 - 极高的效率 - 无冷却运行
2021/10/10
2
IPG光纤激光器模块组
+
LDM#
LDM#
LDM#
有源光纤
+
LDM#
LDM#
LDM#
LDM#
LDM#
LDM#
-
光纤模组
全光纤激光模块组
LDM#
LDM#
LDM#
-
体积小巧,高度集成的全光纤设计 并联单芯结二极管激光模块组合 侧面泵浦 坚固的机械结构,耐冲击稳定性及强 超高的温度稳定性
2021/10/10
3
IPG高功率光纤
+
+
+
+ = xxx kW 激光器模块组
UART
InterBus
主
控
Eithernet
制
器
43 kW
2021/10/10
MCU P=500W MCU P=500W
MCU P=500W MCU P=500W 电源
合束器
光闸
Length 200 m 10 kW 10 kW
4
IPG高功率光纤激光器配备外部光闸进行激光加工
Feeding Fiber Length up to 200m
Process Fiber Length up to 200m
• 远距离的光传输 • 安装简易 • 节省费用 • 操作安全
2021/10/10
5
IPG高功率光纤激光器内部水循环系统
《激光原理》PPT课件
2024/1/28
28
前沿动态及发展趋势预测
超快激光技术
实现飞秒、皮秒级超短脉冲输出,用 于精密加工、生物医学等领域。
高功率激光技术
发展高能量、高效率的激光器,应用 于国防、能源等领域。
2024/1/28
激光显示技术
利用激光作为光源的显示技术,具有 色域广、亮度高等优点,是未来显示 技术的重要发展方向。
概述光纤激光器的工作原理、 优势及在通信、传感等领域的 应用前景。
其他典型固体激光器
简要介绍其他类型的固体激光 器,如半导体激光器、拉曼激
光器等。
10
03
气体激光器原理与技术
2024/1/28
11
气体放电过程及发光机制
01
02
03
气体放电基本概念
电子与气体原子或分子碰 撞,引发电离和激发过程 ,产生带电粒子和光子。
液体染料激光器技术特点பைடு நூலகம்
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
16
半导体材料发光机制及器件结构
2024/1/28
利用半导体材料的特性实现受激辐射,具有 体积小、效率高、寿命长等优点,广泛应用 于通信、显示等领域。
2024/1/28
6
02
固体激光器原理与技术
2024/1/28
7
固体激光材料及其发光机制
2024/1/28
固体激光材料种类与特性
01
包括晶体、玻璃、陶瓷等,具有不同的发光特性和应用场景。
光纤激光器讲义课件
五、激光焊的优点
图7-21 深熔焊小孔示意图
5
7.3 激光打孔
一、激光打孔原理
激光打孔机的基本结构包括激光器、加工头、冷却系统、数控装置和操作面盘 (图7-13)。
图7-13 激光打孔机的基本结构示意图
二、激光打孔工艺参数的影响
※ 脉冲宽度对打孔的影响 :脉冲宽度对打孔深度、孔径、孔形的影响较大。窄 脉冲能够得到较深而且较大的孔;宽脉冲不仅使孔深度、孔径变小,而且使孔的 表面粗糙度变大,尺寸精度下降。
7.1 激光加工的一般原理
2)材料的反射、吸收和导热性
※激光正入射,在光点中央的温度上升值ΔT与被吸收的光功率、导热系
数之间的关系
T
P
' 0
K
2.激光加工举例 1)激光焊接 2)激光打孔 3)激光切割
1
7.2 激光焊接
一、激光焊接是一种材料连接,主要是金属材料之间连接的技术。 其优点:
1)用激光很容易对一些普通焊接技术难以加工的如脆性大、硬度高或柔软性强 的材料实施焊接。 2)在激光焊接过程中无机械接触,易保证焊接部位不因热压缩而发生变形 3)激光束易于控制的特点使得焊接工作能够更方便的实现自动化和智能化。
四、激光深熔焊
1)激光深熔焊的原理 当激光功率密度达到106—107W/cm2时,功率输入远大于热传导、对流及辐射 散热的速率,材料表面发生汽化而形成小孔(图7-21),孔内金属蒸汽压力与四 周液体的静力和表面张力形成动态平衡,激光可以通过孔中直射到孔底。
2)激光深熔焊工艺参数 ※ 临界功率密度:深熔焊时,功率密度必须大于某 一数值,才能引起小孔效应。这一数值,称为临界 功率密度 ※ 激光深熔焊的熔深 :激光深熔焊熔深与激光输出 功率密度密切相关,也是功率和光斑直径的函数。
高功率光纤激光器及其散热技术
三.高功率光纤激光器的常用散热技术
喷雾冷却
喷雾冷却是将冷却介质雾化后直接喷射到发热物体表面通过 液膜蒸发、强迫对流、核态沸腾和“二次成核”等机理带走热 量的一种冷却方式。
中国科学技术大学,王亚青等,Spray公司的TG0.3机械雾化 圆锥实心喷嘴,对大功率激光器的散热实验结果:
光纤激光器的工作原理 3.光纤激光模块的构成(以IPG公司YLR-6000为例)
大功率多模LD
激光输出
全光纤设计 并联单芯节二极管激光模块组合 侧面、并行、双向泵浦技术
光纤激光器的工作原理 4.千瓦、万瓦级功率的实现——光纤合束
二.高功率光纤激光器发热机理分析
1.光纤激光器热源
电源:大功率电源发热
高功率光纤激光器及其散热技术
报告提纲
光纤激光器的工作原理 高功率光纤激光器发热机理分析
高功率光纤激光器的常用散热技术
一.光纤激光器的工作原理
LASER:Light Amplification by Stimulated Emission of Radiation 即“受激辐射光放大”。
增益介质 —掺杂光纤( Er3+、 Nd3+ 、 Tm3+、 Yb3+ )
到冷凝器放热冷凝成液体,借助取热器微槽群的毛细力和液体重
力回流到与大功率电力电子器件紧贴的取热器,从而实现无外加
动力的闭式散热循环。
超导热能力:导热系数大于 106 W/(m·℃),铜为400 W/(m·℃)
冷却能力超强:取热热流密度 可达400W/cm2
无功耗冷却:被动式冷却,无冷 却能耗
三.高功率光纤激光器的常用散热技术
激光技术ppt课件
光子晶体与光子集成电路
光子晶体是指具有光子带隙的人工微结构材料,能够控制光子在特定频率范围内 的传播。光子集成电路则是指将光子器件集成在一块芯片上,实现光子器件之间 的相互作用和光子信号的处理。
光动力治疗
利用特定波长的激光激活 光敏剂,产生光化学反应 ,杀伤病变细胞,常用于 治疗肿瘤等疾病。
激光美容
利用激光的能量对皮肤进 行美白、祛斑、除皱等治 疗,具有无创、无痛、无 副作用等优点。
激光雷达
激光雷达测距
利用激光对目标进行测距,具有精度 高、响应速度快等优点,常用于地形 测绘、无人驾驶等领域。
光器。
激光器的性能参数
输出功率
表示激光器的输出能量,单位 为瓦特。
光束质量
表示激光束的发散角、光束直 径和光束质量因子等参数。
波长与光谱宽度
表示激光的频率范围和光谱宽 度。
稳定性与可靠性
表示激光器的稳定性和可靠性 ,包括温度稳定性、寿命和故
障率等参数。
03 激光技术的基本特性
激光的相干性
相干性定义
相干性描述了光波之间的相互影响和关联程度。在激光中,相干性 是指光波在时间和空间上的有序性和规则性。
相干性的重要性
相干性决定了激光的干涉和衍射现象,是实现激光高精度、高效率 加工的关键因素。
相干性的应用
利用激光的相干性,可以实现干涉测量、光学通信、全息成像等技 术。
激光的偏振性
偏振性的定义
偏振性是指光波的电矢量或磁矢 量在传播方向上的振动特性。在 激光中,偏振态是指光波电矢量
光纤通信第5版第6章-光源和光放大器(2)PPT课件
❖ 好的激光器应具备的条件:低的阈值电流、 高的输出功率及单模工作。
❖ 气体激光器 ❖ 固体激光器 ❖ 半导体激光器
38
LD工作原理
电流注入
hv
P型
有源区
光
N型
解理面
(a)半导体激Biblioteka 器22双异质结: ①阻止有源层的 空穴进入n区和其 电子进入P区; ②有源层两边的 折射率低于有源 层,对光场具有 很好的约束。
23
SLED
有源层:发光区域 有源层中产生的光发射穿过衬底耦合入光纤。 凹坑:由于衬底材料的光吸收很大,用选择腐蚀的办
法形成凹坑。 接触电极:限定有源层中有源区的面积,大小与纤芯24
6
PN结形成过程动画演示
PN结偏置 PN结正向偏置—— 当外加直流电压使PN结P型半 导体的一端的电位高于N型半导体一端的电位时, 称PN结正向偏置,简称正偏。 PN结反向偏置—— 当外加直流电压使PN结N型半 导体的一端的电位高于P型半导体一端的电位时, 称PN结反向偏置,简称反偏。
8
PN结正偏动画演示
第6章 光源和光放大器
❖
6.1 发光二极管及其工作特性 6.2 半导体激光器及其工作特性 6.3 窄谱宽和可调谐半导体激光器 6.4 光放大器 6.5 光纤激光器 ❖ 6.5 垂直腔面发射激光器
1
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
光源要求:
多子进行扩散, PN结呈现低阻、导通状态,
内电场被削弱,PN结变窄
9
PN结反偏动画演示
10
发光二极管工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/29
12
光纤激光器基本结构示意图
Sketch of fiber laser
泵浦光970nm
泵浦光970nm
光纤光栅100%反射
光纤光栅10%反射
2020/9/29
13
几种泵浦方式
1
2020/9/29
14
多模、包层泵浦示意图 Multi-mode,cladding pumping
包层cladding
*可在恶劣的环境下工作(由于其共振腔置于光纤内部,
即使在高冲击,高震动,高湿度,有灰尘的条件下皆可正常运转,而环境
温度范围允许在-20 C至+70 C之间);
*无论是连续或脉冲的运转方式皆无需庞大的水冷或风冷系统.
只需一般的散热体或简便的风冷即可,
*其外型紧凑体积小(光纤激光器模块的体积大约有一本字典的
光纤激光器输出的连续激光功率从百毫瓦量级 上升到百瓦的量级,千瓦量级,乃至万瓦量级。
2020/9/29
6
高功率光纤激光器的主要优点
2002年1月,美国一公司推出一种掺镱的高功率光纤激光器,其连续出功率 高达700瓦 (波长为1.06m), 这种激光器的特点是:
*转换效率高(可高达20%);
*寿命长(平均无故障工作时间在10万小时以上);
2020/9/29
9
高功率光纤激光器的工作原理-3
内包层
掺Yb单模纤芯 外包层
专利设计双包层泵浦光纤之截面图 光纤光栅
掺镱双包层泵浦光纤 低折射率的外包层光纤 输出端
2020/9/29
10
高功率光纤激光器的工作原理-4
特殊耦合器
2020/9/29
多模Diode Pnmp
5m纤芯纤材料中掺杂铒(Er),铥(Tm),镨(Pr), 镱(Yb)等不同的稀土元素便会使光纤激光器有 多种不同的输出波长;
由于双包层泵浦技术
(Double Cladding Pumped Technology) 的发 明与特殊工艺的融合便诞生了高功率的光纤激 光器;
目前光纤激光器波长范围可以从蓝、绿、红可 见波长到2000nm;
高功率光纤激光器及其应用
High Power Fiber Laser & Its Application
2020/9/29
1
次目
摘要 引言 高功率光纤激光器的工作原理 高功率光纤激光器的特性及其应用展望
2020/9/29
2
摘要
1,概要地描述高功率光纤激光器的基本工作原 理和关键技术; 2,介绍目前国际市场上刚出现的几种新颖的高 功率光纤激光器,并介绍它们的特征; 3,对高功率光纤激光器在一些领域中的应用进 行了展望。
一般是采用光纤光栅构成光纤激光器的谐振腔。
2020/9/29
8
高功率光纤激光器的工作原理-2
高功率光纤激光器的关键技术:
用于泵浦的宽面、多模大功率激光二极管; 截面为梅花瓣形的内包层或多孔的双包层光纤; 单模掺镱纤芯; 锥形捆扎或树叉形双包层光纤泵浦光导入口; 特殊耦合技术; 光纤光栅谐振腔.
11
高功率光纤激光器的工作原理-5
7 MM Fiber 0.16 NA
Single mode output
Bundles with all MM ports for coupling to Yb-doped fiber
Multi-Mode input fiber
1,多模大功率激光二极管泵浦; 2,专门的耦合设计.
掺杂稀土元素的单模纤芯
Rare earth doped single mode core
多模泵浦光 Multi-mode pump light
特殊设计的树杈形包层光纤
Cladding fiber in “the fork of a tree”shape
单模输出 Laser output Single-mode
在单模纤芯内被镱原子吸收的多模泵浦光
Multi-mode pump light is absorbed by ytterbium atoms in the single-mode core
2020/9/29
15
掺稀土元素硅光纤的制作
使用MCVD (Modified Chemical Vapor Deposition)设 备
2020/9/29
3
引言
光纤激光器是当前激光技术研究领域中的前沿课题,它 的研究与应用亦日趋活跃。
国家自然科学基金委和“863”分别将其列入2002年的 重大研究课题和攻关项目。
随着激光二极管及其泵浦技术、光纤材料和工艺研究的 进展,适合多种不同应用目的的光纤激光器亦缤呈异彩 地涌现于世。
其应用领域也已从目前最为成熟的光纤通讯网络方面迅 速地向其他更为广阔的激光应用领域扩展。
2020/9/29
4
高功率光纤激光器的应用领域
金属和非金属材料的加工与处理; 激光雕刻; 激光产品打标; 激光焊接,焊缝清理; 精密打孔; 激光检测和测量; 激光图形艺术成像; 激光雷达系统,污染控制; 传感技术和空间技术; 激光医学等等。
2020/9/29
5
高功率光纤激光器的主要特性
稀土元素溶液的掺杂
低折射率镀层制做双 包层光纤
超声成型
2020/9/29
16
高功率光纤激光器的工作原理- 6
若在包层光纤材料中掺杂不同 的稀土元素,例如掺杂铒(Er), 铥(Tm),镨(Pr),镱(Yb)等不同 的稀土元素即会使得光纤激光器 有多种不同的激光波长输出。
如果用多个多模激光二极管同 时耦合至双包层光纤上,就可以 获得高功率的激光输出。
大小);
*方便光纤导出;
*易于系统集成;
*无有体积庞大的电源系统。
2020/9/29
7
高功率光纤激光器的工作原理-1
光纤激光器是在光纤放大器的基础上而发展起来 的。
它是利用掺杂稀土元素的光纤,再加上一个恰当 的反馈机制便形成了光纤激光器。
掺杂稀土元素的光纤就充当了光纤激光器的增益 介质。
在光纤激光器中有一根非常细的光纤纤芯,由于 外泵浦光的作用,在光纤内便很容易形成高功率 密度,从而引起激光工作物质能级的粒子数反转。
这就是被称之为双包层、多模、 并行泵浦技术。
2020/9/29
17
Yb3+离子能级图
F2 5/2 能级
激发态子能级e
980nm泵浦
F2 7/2能级
2020/9/29
基态子能级a
无辐射跃迁
亚稳态能级d