小学数学《用倒推法解题》练习题
小学数学《用倒推法解题》练习题(含答案) (1)
![小学数学《用倒推法解题》练习题(含答案) (1)](https://img.taocdn.com/s3/m/e0e9208daaea998fcc220ee1.png)
小学数学《用倒推法解题》练习题(含答案)【例1】小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?分析:(倒推法)把个位上的5看作9,相当于把正确的和多算了4,求正确的和,应把4减去;把十位上的8看作3,相当于把正确的和少算了50,求正确的和,应把50加上去.所以正确的和是123+50- 4=169.即:123+(80-30)- (9-5)=169.【例2】小马虎做一道减法题,把被减数十位上的1看成了7,把减数个位上的3看成了5,结果差为230,那么正确的答案是多少?分析:230-60+2=172,被减数多60所以要减去,减数多减2应再加上.【例3】一群蚂蚁搬家,原存一堆食物。
第一天运出总数的一半少12克。
第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?分析:(倒推法)教师可画线段图帮助学生理解。
如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的一半重量是43-12=3l(克);这样,第一天运出后剩下的重31×2=62(克).那么,一半的重量是62—12=50(克),原有食物50×2=100(克).即 [(43-12)×2-12]×2=100(克).【例4】小亮拿着一包糖,遇见好朋友A分给了他一半少3块,过一会又遇见好朋友B,把剩下的糖的一半分给了他;后来又遇见好朋友C,把这时手中所剩下的糖的一半多5块分给了C,这时他自己手里只有一块了,问在没有分给A以前,小亮那包糖有几块?分析:(逆推法)从最后结果往前倒着推算,小亮最后手里只剩下一块糖,这是分给C一半多5块后所剩的数,则知遇见C之前小亮有糖:(1+5)⨯2=12(块).同理:遇到B之前有糖:12⨯2=24(块)遇到C 之前有糖:(24-3)⨯2=42(块),即:小亮未给小朋友之前,那包糖应有42块.【例5】三棵树上停着24只鸟,如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树上飞5只鸟到第三棵树上去,那么三棵树上小鸟的只数都相等.第二棵树上原来停着多少只鸟?分析:(倒推法)三棵树上的小鸟不管怎样飞来飞去,小鸟的只数都是24只,我们从“那么三棵树上小鸟24÷3=8(只).【例6】甲、乙、丙三个人各有连环画若干本,如果甲给乙5本,乙给丙10本,丙给甲15 本,三人都是35本,原来每人各有几本书?【例7】甲、乙两篮苹果,只数不等,从甲篮里拿出一些苹果放到乙篮里,使乙篮里的苹果增加了一倍,再从乙篮里拿出一些苹果放回到甲篮里,使甲篮里的苹果数也增加了一倍,这时两只篮子里的苹果数都是48只。
小学六年级上奥数教程:第十二讲 倒推法解题--学生版
![小学六年级上奥数教程:第十二讲 倒推法解题--学生版](https://img.taocdn.com/s3/m/6852d03958f5f61fb63666b3.png)
第12讲倒推法解题【解题秘钥】有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
【经典例题】例题1:一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?例题2:筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?例题3:有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1.小华拿出自己的画片的1/5给小强,小强再从自己现有的画片中拿出1/4给小华,这时两人各有画片12张,原来两人各有画片多少张?2.甲、乙两人各有人民币若干元,甲拿出1/5给乙后,乙又拿出1/4给甲,这时他们各有90元,他们原来各有多少元?例题4:甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?练习4:1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
六年级奥数专项用倒推法解题
![六年级奥数专项用倒推法解题](https://img.taocdn.com/s3/m/6bc9d186ce2f0066f433222c.png)
六年级奥数专项用倒推法解题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】用倒推法解题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米模仿练习1:一堆水泥,第一次用去它的12又3吨,第二次用剩下水泥的13又3吨,第三次又用去第二次余下的14又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15运到甲仓库,再将甲仓库此时存粮的14运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27多12个,第二只分到余下的23少4个,第三只分到20个。
这筐桃子共有多少个(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是。
那么,被擦掉的那个自然数是多少模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517。
擦去的数是多少(奥赛初赛A卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
小学奥数:还原问题(一).专项练习及答案解析
![小学奥数:还原问题(一).专项练习及答案解析](https://img.taocdn.com/s3/m/93751784168884868662d66f.png)
6-1-2,还原问题(一)教学目标本讲主要学习还原问题. 通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1 .掌握用倒推法解单个变量的还原问题.2 , 了解用倒推法解多个变量的还原问题.3 .培养学生“倒推”的思想.削磔卑知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号刖值作例题精讲模块一、计算中的还原问题【例1】一个数的四分之一减去5,结果等于5,则这个数等于。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】希望杯,五年级,二试,第3题【解析】方法一:倒推计算知道,一个数的四分之一是10,所以这个数是10 4=40。
1万法二:令这个数为x,则1x 5 5,所以x 40。
4【例2】某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【解析】分析时可以从最后的结果是10逐步倒着推。
这个数没减去2时应该是多少?没除以2时应该是多少?没乘以3时应该是多少?没加上3时应该是多少?这样依次逆推,就可以推出某数。
如果没减去2,此数是:10 2 12 ,如果没除以2,此数是:12 2 24 ,如果没乘以3,此数是:24 3 8 ,如果没加上3,此数是:8 3 5,综合算式10 22 3 3 5,原数是5.【答案】5【巩固】(2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是。
小学六年级奥数 第12讲 倒推法解题~例2
![小学六年级奥数 第12讲 倒推法解题~例2](https://img.taocdn.com/s3/m/01fee6cbd0d233d4b14e69a8.png)
2 7
,还剩500米,这段公路全长多
少米?
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
2 7
,还剩500米,这段公路全长多
少米?
思路导航
从“还剩500米”入手倒着往前推,它占余下的1-2/7= 57,第一天修后还剩500÷5/7=700米,如果第一天正好修 全长的1/5,还余下700+100=800米,这800米占全长的1 -1/5=4/5,这段路全长800÷4/5=1000米。
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
2 7
,还剩500米,这段公路全长多
少米?
第二天没修之前(第一天修后剩下):
500÷(1-
2 7
)=
700(米)
第一天没修之前(原来):
(700+100)÷(1-
1 5
)=
1000(米)
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
知识要点
有些应用题如果按照一般方法,顺着题目的条件一步 一步地列出算式求解,过程比较繁琐。所以,解题时,我 们可以从最后的结果出发,运用加与减、乘与除之间的互 逆关系,从后到前一步一步地推算,这种思考问题的方法 叫倒推法。
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
3、一批水泥,第一天用去了
1 2
多1吨,第二天用去了
余下
1 3
少2吨,还剩下16吨,原来这批水泥有多少吨?
小学六年级奥数 第12讲 倒推法解题~例1
![小学六年级奥数 第12讲 倒推法解题~例1](https://img.taocdn.com/s3/m/da006d5152d380eb62946da8.png)
3 5
,还剩下48页,这本书共有多少页?
经典例题
【例题1】
一本文艺书,小明第一天看了全书的
1 3
,第二天
看了余下的
3 5
,还剩下48页,这本书共有多少页?
思路导航
从“剩下48页”入手倒着往前推,它占余下的1-3/5 =2/5。第一天看后还剩下48÷2/5=120页,这120页占 全书的1-1/3=2/3,这本书共有120÷2/3=180页。
经典例题
【例题1】
一本文艺书,小明第一天看了全书的
1 3
,第二天
看了余下的
3 5
,还剩下48页,这本书共有多少页?
第二天没看之前(第一天看后剩下):
48÷(1-
3 5
)=
120(页)
第一天没看之前(原来):
120÷(1- 13)= 180(页)
经典例题
【例题1】
一本文艺书,小明第一天看了全书的
1 3
,第二天
看了余下的
3 5
,还剩下48页,这本书共有多少页?
48÷(1-
3 5
)÷(1-
1 3
)=
1一反三练习
1、某班少先队员参加劳动,其中
3 7
的人打扫礼堂,
剩下队员中的
5 8
打扫操场,还剩12人打扫教室,这个
班共有多少名少先队员?
12÷(1-
5 8
)÷(1-
3 7
1 6
,乙
拿走了余下的
2 5
,丙拿走这时所剩的
3 4
,丁拿走最后
剩下的15个,这堆苹果共有多少个?
15÷(1-
3 4
)÷(1-
2 5
)÷(1-
(完整)倒推法解题专题训练2
![(完整)倒推法解题专题训练2](https://img.taocdn.com/s3/m/2cddf2304028915f814dc2df.png)
倒推法解题专题训练知识梳理1、用倒推法解题就是根据题目的叙述过程,从最后的结果入手,采用倒推的方法,逐步找到题目的答案。
2、用倒推法解题时,要采用逆向思维和运算方式,原来加的用减,乘的用除。
例题精讲:1、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是多少?解析:从最后的结果往前逆推,结果是691,这是一个数的3倍减5得到的,这个数应该是(691+5)÷3=232,这是经过3次后的结果;同样可知,经过2次后的结果为(232+5)÷ 3=79;经过1次后的结果为(79+5) ÷3=28;因此,原数为(28+5)÷3==11。
2、一只猴子偷吃一棵桃树上的桃子.第一天偷吃了,以后八天分别偷吃了当天现有桃子的…,最后树上还剩下10个桃子.树上原桃子多少个?解析:可以从最后树上的10个桃子依次向前倒推:10(1—)(1—)(1-)(1-)(1—)(1—)(1-)(1—)(1-)=10=100(个)3、李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李教师原来拿了几本书?解析:最后李老师还剩2本书,因此,他到第36位同学家之前应有(2-1)×2=2本书;同样,他到35位同学家之前应有(2—1)×2=2本书;…;由上此可知,他到每位同学家之前都有2本书,故李老师原来拿了2本书。
专题特训:1、小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年多少岁?2、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?3、一块冰,每小时失去其质量的一半,八小时之后其质量为千克,那么一开始这块冰的质量是多少千克?4、修一段公路,第一天修了全路的多2千米,第二天修了余下的少1千米,这时还剩下20米没有修,这条公路有多长?5、甲、乙两人各有钱若干元,甲拿出给乙后,乙又拿出给甲,这时他们各有240元,两人原来各有多少钱?6、一瓶盐水,第一次倒出后又倒回瓶中50千克,第二次倒出瓶中剩下盐水的,第三次倒出150克,这时瓶中还剩下120克盐水,原来瓶子中有多少千克盐水?7、小明和小聪共有小球200个,如果小明取出给小聪,然后小聪又从现有球中取出给小明,这时小明和小聪的小球一样多.原来小明和小聪各有小球多少个。
四年级奥数-教师版-第五讲倒推法的应用题
![四年级奥数-教师版-第五讲倒推法的应用题](https://img.taocdn.com/s3/m/6a3f7a89a1c7aa00b52acb83.png)
第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。
小学数学解题方法——倒推法
![小学数学解题方法——倒推法](https://img.taocdn.com/s3/m/1306da06fad6195f302ba60e.png)
方法点一运用逆运算倒推例1在下面各题的□里填上适当的数,使等式成立。
(1)□×9-99=0(2)45×2+□÷3=45×5方法指导(1)根据算式□×9-99=0各部分数量之间的关系进行逆运算。
图示逆推过程:(2)根据算式45×2+□÷3=45×5各部分数量之间的关系进行逆运算。
图示逆推过程:正确解答(1)□=(0+99)÷9=11(2)□=(45×5-45×2)×3=405例2李军问奶奶的年龄是多少,奶奶说:“把我的年龄加17,然后除以4,减15,再用10乘,恰巧是100岁。
”李军奶奶的年龄是多少?方法指导100岁是通过加、除、减、乘后得到的,通过它们的逆运算方法,倒推回去,就能求出李军奶奶的实际年龄。
图示逆推过程:正确解答100÷10=10(岁)10+15=25(岁)25 × 4=100(岁)100-17=83(岁)答:李军奶奶的年龄是83岁。
例3小明在做一道加法算式题,由于粗心,将其中一个加数个位上的5看作9,十位上的8看作3,结果所得的和是123。
正确的结果是多少?方法指导思路一要求正确的结果,就要知道两个正确的加数。
看错的加数是39,因此得到错误的和是123。
根据逆运算可得到一个没看错的加数是123-39=84,题中已知一个正确的加数是85,所以正确的和是85+84=169。
图示倒推过程:思路二把个位上的5看作9,相当于把正确的结果多算了4,求正确的结果应把4减去;把十位上的8看作3,相当于把正确的结果少算了50,求正确的结果应把50加上。
这样,正确的结果是123+50-4=169。
图示倒推过程:正确解答解法一123-39+85=84+85=169解法二9-5=480-30=50123+50-4=169答:正确的结果是169。
方法点二画图倒推例4花园要铺一条甬路,第一天铺了一半,第二天又铺了余下的一半,还剩8米。
小学数学《用倒推法解题》练习题(含答案)
![小学数学《用倒推法解题》练习题(含答案)](https://img.taocdn.com/s3/m/5d2225880722192e4536f6e0.png)
小学数学《用倒推法解题》练习题(含答案)【例1】阿呆做了这样一道题:某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?小朋友,你知道答案吗?分析:(倒推法)我们可以从最后的结果6倒着往前推。
最后是“除以6,结果还是6”,如果没有除以6,那被除数应是6×6=36;再看倒数第2步,“减去6”得36,如果没有减去6,那被减数应是36+6=42;然后看倒数第3步,“乘以6”得42,如果没有乘以6时,另一个因数应是42÷6=7;最后看第1步,“某数加上6”得7,如果没有加上时,某数是7-6=1.即原数为:(6×6+6)÷6-6=1.建议:让学生验算一遍,确保答案正确.【例2】牛老师带着37名同学到野外春游。
休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数。
”聪明的你知道牛老师今年多少岁吗?分析:(倒推法)我们可以从最后的结果“参加活动的总人数”即38倒着往前推.这个数没加上8时应是多少?没除以2时应是多少 ? 没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出牛老师今年的岁数.没加上8时应是:38-8=30;没除以2时应是:30×2=60;没减去16时应是:60+16=76;没乘以2时应是:76÷2=38,即[(38-8)×2+16]÷ 2=38(岁).说明:解这种还原问题的关键是从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘。
列式时还要注意运算顺序,正确使用括号.【例3】小超人去超市买东西,用去了口袋里钱的一半,于是他又去自动取款机上取出1000元,买了一套衣服花掉袋中钱的一半,还剩下780元。
问小超人最初口袋中有多少钱?分析:(倒推法)即780×2-1000=560(元)……第一次用后余下的钱560×2=1120(元)……原有的钱【例4】一群蚂蚁搬家,原存一堆食物。
奥数专题 倒推法
![奥数专题 倒推法](https://img.taocdn.com/s3/m/aaa6e5cfab00b52acfc789eb172ded630b1c9823.png)
奥数专题倒推法奥数专题-倒推法练习一(反向法)a组一.一个数字加1,乘以8,减去8,结果仍然是8。
这个号码是。
2、某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120要点。
小强这次考试的分数是多少。
3、甲乙丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数取出25并将其添加到数字A中。
此时,三个数字正好是160。
所以a的数量是。
4、三堆苹果各有若干个。
先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第从第二堆中取出与第三堆数字相同的苹果,放入第三堆。
最后,从第三堆中取出与第一堆数字相同的苹果,放入第一堆。
此时,三堆苹果正好是16个。
第一堆苹果里有一个。
5、三个盒子里的珠宝数不等,第一次从甲盒里拿出一些珠宝放入乙丙两盒内,使乙丙两盒每件首饰的数量增加一倍;第二次,从B盒中取出一些珠宝,放入a盒和C盒,将a盒和C盒中的珠宝数量分别增加一倍;第三次,从盒子C中取出一些珠宝,放入盒子a和盒子B,将盒子a和盒子B中的珠宝数量分别增加一倍。
当时,这三个盒子都是48颗珠宝。
起初,盒子里有一颗宝石。
6、甲乙丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给了乙丙,使乙丙的铜板人数翻了一番。
后来,乙方取出部分铜板,交给甲方和丙方,使甲方和丙方的铜板数量翻倍。
最后,丙方也取出部分铜板,交给甲方和乙方,使甲方和乙方的铜板数量翻倍。
此时,三人的铜板数量为8块。
事实证明,最少的人有一块铜板。
7、现有排成一列的七个数,从第三个数起,每个数都是它前面两个数的乘积。
如果最后两如果数字分别为16和64,则第一个数字为。
8、池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天它可以覆盖整个池塘。
然后需要几天才能覆盖一半的池塘。
9、一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖。
(吉林金翼杯小学数学竞赛试题)10、一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万一然后需要几个小时才能增加到250000。
六年级奥数分册第12周 倒推法解题-名校版
![六年级奥数分册第12周 倒推法解题-名校版](https://img.taocdn.com/s3/m/562c48630b4e767f5acfced2.png)
第十二周 倒推法解题专题简析:有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
例题1。
一本文艺书,小明第一天看了全书的13 ,第二天看了余下的35,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35 =25。
第一天看后还剩下48÷25 =120页,这120页占全书的1-13 =23 ,这本书共有120÷23=180页。
即48÷(1-35 )÷(1-13 )=180(页)答:这本书共有180页。
练习11. 某班少先队员参加劳动,其中37 的人打扫礼堂,剩下队员中的58打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2. 一辆汽车从甲地出发,第一天走了全程的38 ,第二天走了余下的23,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米? 3. 把一堆苹果分给四个人,甲拿走了其中的16 ,乙拿走了余下的25,丙拿走这时所剩的34 ,丁拿走最后剩下的15个,这堆苹果共有多少个?例题2。
筑路队修一段路,第一天修了全长的15 又100米,第二天修了余下的27,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27 =57,第一天修后还剩500÷57 =700米,如果第一天正好修全长的15,还余下700+100=800米,这800米占全长的1-15 =45 ,这段路全长800÷45 =1000米。
列式为:【500÷(1-27 )+100】÷(1-15 )=1000米答:这段公路全长1000米。
练习21. 一堆煤,上午运走27 ,下午运的比余下的13还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨? 2. 用拖拉机耕一块地,第一天耕了这块地的13 又2公顷,第二天耕的比余下的12多3公顷,还剩下35公顷,这块地共有多少公顷?3. 一批水泥,第一天用去了12 多1吨,第二天用去了余下13少2吨,还剩下16吨,原来这批水泥有多少吨?例题3。
小升初数学拔高之倒推法解题
![小升初数学拔高之倒推法解题](https://img.taocdn.com/s3/m/53b6502ebed5b9f3f90f1cdf.png)
1、一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?2、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?3、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?4、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?5、筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?6、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?7、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?8、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?9、有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?10、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?11、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?12、甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?13、甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。
小学奥数训练第12周倒退法解题
![小学奥数训练第12周倒退法解题](https://img.taocdn.com/s3/m/86fde24df705cc17552709db.png)
第12周倒退法解题专题简析倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。
适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体的过程。
王牌例题1筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7,还剩500米。
这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1 一 2/7=5/7,第一天修路后还剩=700(米如果第一天正好修全长的1/5,还余下700+ 100 = 800 (米),这800米占全长的,这段公路全长是=1000(米).列式为:=1000(米)答:这段公路全长1000米。
举一反三11. 一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走.这堆煤原有多少吨?2. 用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷没有耕。
这块地共有多少公顷?3一批水泥,第一天用去1/2多1吨,第_用去余下的1/3少2 吨,还剩下16吨。
原来这批水泥有多少吨?王牌例题2王大伯屋后有一棵桃树。
他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的1/10,以后8天分别摘下暂矢树上现有桃子的,摘了9天,树上还留下10个桃子,树上原来有多少个桃子?【思路导航】从树上还留下10个桃子人手倒着往前推,它占第8天后余下的,第8天后余下=20(个),这20个占第7天后余下的,第7天后余下= 30(个)。
依此类推:=100(个)答:树上原来有100个桃子。
举一反三21. 把一根绳子对半剪开,再取其中羞段对半剪开,这样剪了四次,剩下的正好是1米。
这根绳子原来长多少米?2. 《九章算术》中有一道题今有人持米出三关,外关云而取一,中关五而取一,内关七而取一,余米五斗。
五年级奥数倒推法KKKK(肖翠君)
![五年级奥数倒推法KKKK(肖翠君)](https://img.taocdn.com/s3/m/387b64aaf121dd36a32d8270.png)
例4 篮子里有一些梨.小刚取走总数的一半 多一个.小明取走余下的一半多1个.小军取 走了小明取走后剩下一半多一个.这时篮子 里还剩梨1个.问:篮子里原有梨多少个? 分析 依题意,画图进行分析.
解:列综合算式: {[(1+1)×2+1]×2+1}×2 =22(个) 答:篮子里原有梨22个.
例5 甲乙两个油桶各装了15千克油. 售货员卖了14千克.后来,售货员从 剩下较多油的甲桶倒一部分给乙桶 使乙桶油增加一倍;然后从乙桶倒 一部分给甲桶,使甲桶油也增加一 倍,这时甲桶油恰好是乙桶油的3倍. 问:售货员从两个桶里各卖了多少 千克油?
2、甲、乙两桶油各有若干千克,如果要从甲桶中倒出和
乙桶同样多的油放入乙桶,再从乙桶中倒和甲桶剩下的 同样多的油放入甲桶。这时两桶油恰好都是36千克。问 两桶油原来各有多少千克?
分析:此题可以从最后的两桶油都是36千克往前推:第二次倒入: 乙桶倒出和甲桶同样多的油放入甲桶得到甲桶是36千克,则36千克 是甲桶原有油的2倍;所以没倒入之前甲桶有油36÷2=18千克,则 乙桶此时是36+18=54千克,即第一次倒入之后甲桶是18千克,乙桶 是54千克;而乙桶的54千克,是第一次倒入时,从甲桶倒入了和它 原来同样多的油得到的,所以乙桶原来有油:54÷2=27千克,则甲 原来有油18+27=45千克. 36÷2=18(千克)36-18=18(千克)乙36+18=54(千克); 第一次甲桶倒入乙桶的油为:54÷2=27(千克), 所以原来乙桶有油:27千克 甲桶有油:18+27=45(千克),
甲乙丙各有棋子若干个.甲先给乙、丙一些棋子,使乙、 丙每人的棋子数各增加一倍.然后乙也把自己的一些 棋子给甲、丙使每人的棋子数各增加一倍;最后丙也 按甲和乙的棋子数分别给甲、乙一些棋子,此时三人 都各有16个棋子.开始时三人各有多少个棋子? 甲 乙 丙
六年级下册数学小升初倒推法解题人教版 人教版
![六年级下册数学小升初倒推法解题人教版 人教版](https://img.taocdn.com/s3/m/6808c8ea1ed9ad51f01df2ce.png)
甲没送乙、丙故事书之前:乙有56÷2=28 (本),丙有32÷2=16(本),甲有 8答+:2原8+来1甲6有=5522本(故本事)书,乙有28本故事书,丙有16本故事书。
4
情境 激 趣 1、路线倒推
学校→黄鹤楼→长江大桥→归元寺→动物园
返回路线是怎样的呢? 2、翻牌倒推 出示三张牌:先第一张和第二张交换位置,再将第二张和 第三张交换位置
知道原来这三张牌是怎样摆放的吗?
思
例1:蔬菜市场运来一批白菜,第一天卖出总数
维
的一半多3吨,第二天卖出剩下的一半多5吨,
探
这时还剩下6吨白菜。蔬菜市场运来多少吨白菜?
索
原来?吨
总数的一半
多3吨
剩下
剩下的一半 多5吨 剩6吨
第一天剩下:(6+5)×2=22(吨) 原有白菜:(22+3)×2=50(吨)
答:蔬菜市场运来50吨白菜。
即 学
小明的书包里有若干个巧克力,他每次拿出其中一半再放 回去一个,一共这样5次,书包里还有3个,小明书包里原
即 来有多少个巧克力?
练
第4次剩下:(3-1)×2=4(个)
答:至少有25个苹果。
从结果出发,根据加、减、乘、除互逆运算, 由后往前一步一步推出原数的方法(即倒过 来算的的方法)叫倒推法。
基本策略:综合法、分析法。 常用策略:摘录、列表、画图等。
即 冬冬在整理书柜时,先从上层取出与中层同样多的书放 学 到中层,再从中层取出与下层同样多的书放到下层,这 即 时三层所放的书都是48本.原来上层有多少本书?
五年级奥数练习倒推法解题
![五年级奥数练习倒推法解题](https://img.taocdn.com/s3/m/5fb7ae74aef8941ea66e053b.png)
倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。
第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。
即48÷(1-3/5)÷(1-1/3)=180(页)答:这本书共有180页。
练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。
列式为:【500÷(1-2/7)+100】÷(1-1/5)=1000米答:这段公路全长1000米。
练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《用倒推法解题》练习题
【例1】牛老师带着37名同学到野外春游。
休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数。
”聪明的你知道牛老师今年多少岁吗?
【例2】一群蚂蚁搬家,原存一堆食物。
第一天运出总数的一半少12克。
第二天运出剩下的一半少12克,结果窝里还剩下43克。
问蚂蚁家原有食物多少克?
【例3】小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?
【例4】大虎做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,这题的正确答案应该是多少?
【例5】竹篮内有若干李子,将它的一半又一个给小朋友甲,把剩下的一半又两个给小朋友乙,最后取剩
余的一半又三个给小朋友丙,这时竹篮里的李子恰好发完。
问竹篮内原来有多少个李子?
【例6】三棵树上停着24只鸟,如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树上飞5只鸟到第三棵树上去,那么三棵树上小鸟的只数都相等.第二棵树上原来停着多少只鸟?
【例7】小红、小芳、小明三人分苹果,小红得的比总数的一半多1个,小芳得的比剩下的一半多1个,小明得8个。
问原来共有苹果多少个?
【例8】甲、乙两篮苹果,只数不等,从甲篮里拿出一些苹果放到乙篮里,使乙篮里的苹果增加了一倍,再从乙篮里拿出一些苹果放回到甲篮里,使甲篮里的苹果数也增加了一倍,这时两只篮子里的苹果数都是48只。
问原来甲、乙两篮各有多少只苹果?
1.阿瓜做了这样一个题目:一个数减16加上24,再除以7得36,求这个数。
你知道这个数是几吗?
2.太上老君把他今年的年龄加上16,用5除,再减去10,最后乘l0,恰巧100岁,你知道太上老君今年多少岁吗?
3.芳芳、宁宁和玲玲三人分铅笔,芳芳得的比总数的一半多1支,宁宁得的比剩下的一半多1支,玲玲得6支。
问原来共有铅笔多少支?
4.淘气在做一道减法时,把减数个位上的9看成了3,把十位上的4看成了7,得到的结果是164,请你帮淘气算算正确的答案应该是多少呢?
5.山顶上有棵桃数,一只猴子偷吃桃子,第一天偷吃了总数的一半多2个,第二天又偷吃了剩下的一半多2个,这时还剩1个,问:树上原来有多少个桃子?
6. 甲、乙、丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给乙、丙,使乙、丙的铜板数各增加了1倍;乙把自己的铜板拿出一部分给甲、丙,使甲、丙的铜板数各增加了1倍;丙把自己的铜板拿出一部分给乙、甲,使乙、甲的铜板数各增加了1倍,这时三人铜板数都是8枚,原来每人各有几枚?。