最新人教版高中数学必修2第一章《空间几何体的三视图和直观图》教学设计

合集下载

最新人教A版必修2高中数学 1.2.2空间几何体的三视图教案(精品)

最新人教A版必修2高中数学 1.2.2空间几何体的三视图教案(精品)

《空间几何体的三视图》的教学设计一、教学内容与内容解析本节是人教A版普通高中课程标准实验教科书数学必修2的内容。

前面我们认识了柱体、锥体、台体、球体以及简单的组合体,如何将这些空间几何体画在纸上,并体现立体感呢?我们常用三视图表示空间几何体。

三视图是观察者从三个不同位置观察同一个几何体,画出的平面图形。

三视图在现实生活中有着广泛的应用,同时是培养空间观念的基本素材,因此视图知识进入了高中数学课程.由于教材编写比较简明,针对文科学生特点,因此,在设计时,补充了视图的一些初步知识,便于学生的学习。

二、教学目标与目标解析1、理解并掌握三视图的投影规律,掌握画简单空间几何体的三视图的方法,能画出一些空间几何体的三视图。

2、通过视图的学习,培养学生的空间想象能力和动手操作能力。

三.教学问题诊断分析画空间几何体的三视图是学习立体几何的基本任务之一,也是学好立体几何的基本功,对空间能力的培养有很大帮助.如何画好空间几何体的视图呢?首先要明确视图的一些概念,掌握正投影的规律:掌握三视图的画法规则等,以及画图中的与视线垂直的最宽投影面的确定等注意事项。

画好视图,还要亲自动手画图,不必画很多,但一定要规范,用心体会方法.同时,要适当进行由三视图所表示的立体模型的识别训练,逐步培养空间观念。

四.教学支持条件分析采用模型和多媒体手段向学生直观的展示,使学生能建立初步的空间感,为学习立体几何奠定坚实的基础。

五、教学重点、教学难点分析:重点是画空间几何体的三视图,难点是规范地绘制简单的三视图。

六.教学过程设计教学流程教学内容师生活动设计意图(一)复习提问、引入课题师:同学们,前面我们学习了两种投影,是哪两种?生:中心投影和平行投影。

教师指出中心投影与平行投影的定义和特点。

师:最近有朋友发来两个图片,第一张,看到是恩爱的两人坐再座椅上,从前面看。

生:……所以观察事物不能只看单方面那么该怎样观察物体?师问生答只是回顾提出问题引入课题激发兴趣(二)学习概念、总结知识、复习基础引用苏东坡的诗句:横看成岭侧成峰,远近高低各不同。

高中数学 第一章 第二节《空间几何体的三视图和直观图》(1)教学设计 新人教A版必修2 (2)

高中数学 第一章 第二节《空间几何体的三视图和直观图》(1)教学设计 新人教A版必修2 (2)
(找学生回答)
好,下面请同学们看多媒体:《课件4》内容,你做的和答案一样吗?错误的订正一下,并思考错因。
课堂练习:
学生看书本15页1.2(练习题的1、2)学生独立思考解决,后同桌交流,提问学生并师生一起得出准确答案。
大家看课本15页1.2的(练习题1、2两小题),独立思考后把答案写在书上,一会儿找几个同学分别说出答案。
教学重点
画出简单组合体的三视图.
教学难点
识别三视图所表示的空间几何体
教学方法
自主学习、小组讨论法、师生互动法。
教学准备
导学、课件。
教学步骤
教什么
怎样教
如何组织教学
一、温故
(情境导入)
(5分钟)
投影的概念
新课引入,(出示《课件1》)观察日常生活中一些常见的实物图片,提出问题:什么是投影?
投影的定义
由于光的照射,在不透明的物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体的影子的屏幕叫做投影面.
题目:1.下列几何体各自的三视图中,有且仅有两个视图相同的是(D)
A.①②B.①③C.①④D.②④
☆2.如图,E、F分别为正方体的面 、面 的中心,则四边形 在该正方体的面上的射影可能是_____(2)(3)_____.
接下来,这两个题目有一定难度,考验大家的时候到了,请同学们独立思考完成题目,之后学习小组互相交流,看自己能否得到准确答案。
三视图的概念
学生看书记忆三视图的概念,教师巡回指导,之后各个学习小组选一名学生代表回答几何体的三视图概念及画法,之后老师出示《课件3》。
.三视图
(1)空间几何体的三视图是指几何体的正视图、侧视图、俯视图.
(2)三视图的正视图、俯视图、侧视图分别是从正面、上面、左面观察同一个几何体,画出的空间几何体的图形.

最新必修二1.2.空间几何体的三视图和直观图(教案)

最新必修二1.2.空间几何体的三视图和直观图(教案)

1.2 空间几何体的三视图和直观图教案 A第1课时教学内容:1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图教学目标一、知识与技能1.掌握画三视图的基本技能;2.提高学生的空间想象力.二、过程与方法主要通过亲身实践,动手作图,体会三视图的作用.三、情感、态度与价值观感受空间物体的平面作图原理,体会三视图的奥妙.教学重点、难点教学重点:画出简单组合体的三视图.教学难点:识别三视图所表示的空间几何体.教学关键:认识棱柱、棱锥、圆柱、圆锥、棱台、圆台、球及其组合体的结构特征.教学突破方法:使学生理解三视图的概念的基础上,亲自动手画几何体的三视图,体会三视图的画法.在作图前,要先观察几何体的结构特征,再动手作图.教法与学法导航教学方法:问题教学法,讨论法,练习法.通过提出问题,学生思考并体会几何体三视图的画法.学习方法:自主学习,自主探究,互动学习,合作交流,动手实践,观察探究,归纳总结.在学生理解三视图概念的基础上,通过老师的启发诱导,归纳总结出得到三视图的画法.教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案),空间几何体的模型或图片.学生准备:练习本及铅笔橡皮.教学过程详见下页表格.精品文档教学环节教学内容师生互动设计意图创设情境导入新课1.如何将空间几何体画在纸上,用平面图形来表示.2.我们常用三视图和直观图表示空间几何体.三视图:观察者从三个不同位置观察同一空间几何体而画出的图形.直观图:观察者站在某一点观察一个空间几何体面画出的图形.师:要解决这个问题,我们需要将我们看到的画下来,这就取决于我们怎样去看.生1:我们可从前后角度,左右角度,上下角度看.生2:我们也可站在某一点观察.师:总结空间几何体表示方法,点出主题.让学生发现知识源于实践,又可应用于实践,培养学生应用意识,激发学生学习的激情.探索新知教学中心投影与平行投影.中心投影:光由一点向外散射形成的投影.平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.讨论:三角形在平行投影和中心投影后的结果.师:要学习三视图,首先我们要学习两个知识.中心投影与平行投影生1:联想到棱柱的结构特征,无论是正投影还是斜投影,三角形在平行投影后为结果是与原三角形全等的三角形.生2:三角形在中心投影后得到了一个相似的放大了的三角形.以旧带新,提高知识的系统性和思维的严谨性.探索新知教学柱、锥、台、球的三视图:1.定义三视图:正视图:光线从几何体的前面向后面正投影得到的投影图.侧视图:光线从几何体的左面向后面正投影得到的投影图.俯视图:光线从几何体的左面向后面正投影得到的投影图.2.观察长方体的三视图.讨论三视图有何基本特征.师:把一空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形难以把握几何体的全貌.通常,总是选择三种正投影……生:长方体的正视图和侧视图高度一样(等于长方体的高).俯视图与正视图长度一样(等于长方体的和).俯视图和侧视图宽度一样(等于长方体的宽).这个结论可推广到一般简单几何体.我们用“长对正高平齐、宽相等”来概括三视图的基本特征.通过讨论掌握三视图的基本特征,同时通过精炼的语言概括提高学生的记忆效果.精品文档续上表课堂作业1.画出下列空间几何体的三视图.如图1是截去一角的长方体,画出它的三视图.【解析】物体三个视图的构成都是矩形,长方体截角后,截面是一个三角形,在每个视图中反映为不同的三角形,三视图为图2.精品文档2.由5个小立方块搭成的几何体,其三视图分别如下,请画出这个的几何体(正视图)(俯视图)(右视图)【解析】先画出几何体的正面,再侧面,然后结合俯视图完成几何体的轮廓,如图.3.某建筑由相同的若干个房间组成,该楼的三视图如图所示,问:(1)该楼有几层?从前往后最多要走过几个房间?(2)最高一层的房间在什么位置?画出此楼的大致形状.【解析】(1)由主视图与左视图可知,该楼有3层.由俯视图可知,从前往后最多要经过3个房间.(2)由主视图与左视图可知,最高一层的房间在左侧的最后一排的房间.楼房大致形状如右图所示.板书展示1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.情景导入4.三视图2.提出问题5.例题3.平行投影与中心投影的概念俯视图左视图主视图精品文档第2课时教学内容:1.2.3 空间几何体的直观图教学目标一、知识与技能1.掌握斜二测画法画水平设置的平面图形的直观图;2.采用对比的方法了解在平行投影下面空间图形与在中心投影下面空间图形两种方法的各自特点.二、过程与方法通过观察和类比,利用斜二测画法画出空间几何体的直观图.三、情感、态度与价值观1.提高空间想象力与直观感受;2.体会对比在学习中的作用;3.感受几何作图在生产活动中的应用.教学重点、难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:用斜二测画法画空间几何体的直观图.教学关键:掌握斜二测画法及步骤.教学突破方法:本节主要使用启发式和探究式教学.使学生掌握斜二测画法及步骤的基础上,在教师的示例引导下,亲自动手画几何体的直观图,体会斜二测画法.教法与学法导航教学方法:问题教学法,练习法.通过提出问题,学生思考并体会应用斜二测画法画几何体的直观图.在以水平放置的正六边形或正六棱柱为例画直观图,通过多媒体课件具体准确的逐步演示,使学生熟练掌握并归纳斜二测画法去画直棱柱的基本步骤.学习方法:自主探究,自主学习,互动学习,合作交流,动手实践,归纳总结.在学生掌握斜二测画法的基础上,通过实践,熟练掌握应用斜二测画法画几何体的直观图.教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案).学生准备:练习本及铅笔橡皮.教学过程精品文档新课师:这些平面图形既富有立体感又能表达出图形各主要部分的位置关系和度量关系,故称为立体图形的直观图.主题探索新知1.水平放置的平面图形的直观图的画法.(1)例1 用斜二测法画水平放置的正六边形的画法:①如图(1),在正方边开ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O′,使∠x′O′y′ =45°.②在图(2)中,以O′为中点,在x′ 轴上取A′D′=AD,在y′ 轴上取M′ N ′ =12MN.以点N ′为中点,画B′C′ 平行于x′ 轴,并且等于BC;再以M ′为中点,画E′F′平行于x′ 轴,并且等于EF.③连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观A′B′C′D′E′F′(图(3))教师用多媒体课件边演示边讲解.学生观察、思考、归纳师:从以上演示我们可以发现画一个水平放置的平面多边形直观图的关键是什么?生:确定多边形顶点的位置.师:请大家尝试归纳平面多边形直观图的基本步骤.生:①选取恰当的坐标系.②画平行线段,截取长度③依次连结各顶点成图(老师板书)师:有哪些注意事项生1:平行于x轴,y轴的线段在直观图中分别画成平行于x′轴、y′轴.多媒体演示提高上课效率.师生互动,突破重点.探索新知(2)斜二测画法基本步骤.①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或生2:原图中平行于x轴的线段在直观图中保持原长精品文档135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.度不变平行于y 轴的线段长度,为原来的一半.师:在连虚实线的使用等方面予以补充.探索新知2.简单几何体的直观图画法例2 用斜二测画法画长、宽、高分别是4cm,3cm,2cm的长方体ABCD–A′B′C′D′的直观图.画法:(1)画轴.如图,画x轴、y轴、z轴,三轴交于点O,使∠xOy = 45°,∠xOz = 90°.(2)画底面.以点O为中点,在x轴上取线段MN,使MN= 4cm;在y轴上取线段PQ,使PQ =32cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段A′A,B′B,C′C,D′D.(4)成图.顺次连接A,B,C,D,并加以整理(去掉辅助线,将被挡的部分改为虚线),就得长方体的直观图.师:下面我们体会一下,用斜二测画长、宽、高分别为4cm、3cm、2cm的长方体ABCD、A′B′C′D′的直观图的画法.教师边演示边讲解,学生边观察边思考总结.师:请大家归纳一下直棱柱直观图的画法.生:①画轴②画底画③画侧棱④成图师:有什么注意事项吗?生1:竖直方面保持平行关系和长度关系不变.生2:被遮的部分用虚线.多媒体演示提高上课效率.师生互动,突破重点.探索新知3.简单组合体画法例 3 已知几何体的三视图说出它的结构特征,并用斜二测画法画它的直观图.画法:(1)画轴.如图(1),画x轴、z轴,学生讨论然后简答.生1:这个几何体是一个前后联系加强知识精品文档精品文档使∠xOz =90°.(2)画圆柱的下底面. 在x 轴上取A ,B 两点,使AB 的长度等于俯视图中圆的直径,且OA = OB . 选择椭圆模板中适当的椭圆过A ,B 两点,使它为圆柱下底面的作法作出圆柱的下底面.(3)在Oz 上截取点O ′,使OO ′ 等于正视图中OO ′ 的长度,过点O ′作平行于轴Ox 的轴O ′x ′,类似圆柱下底面的作法作出圆柱的上底面.(4)画圆锥的顶点. 在Oz 上截取点P ,使PO ′ 等于正视图中相应的高度.(5)成图. 连接P A ′、PB ′,AA ′,BB ′,整理得到三视图表示的几何体的直观图.(如图(2))简单的组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆柱上底面与圆锥底面相重合. 生2:我们可以先画出上部的圆锥.师:给予肯定然后点拨注意事项.的系统性. 小结1.平面图形斜二测画法. 2.简单几何体斜二测画法. 3.简单组合斜二测画法. 4.注意事项.学生归纳,然后老师补充、完善 小结形成整体思维课堂作业1.用斜二测画法画出水平放置的正五边形的直观图.【分析】先画出正五边形的图形,然后按照斜二测画法的作图步骤进行画图. 【解析】(1)如图1所示,在已知正五边形ABCDE 中,取中心O 为原点,对称轴F A 为y 轴,对点O 与y 轴垂直的是x 轴,分别过B 、E 作GB ∥y 轴,HE ∥y 轴,与x 轴分别交于点G 、H .画对应的轴O′x′、O′y′,使∠x′O′y′ = 45°.(2)如图2所示:以点O ′为中点,在x ′轴上取G′H′ = GH ,分别过G′、H′,在x ′轴的上方,作G′B′∥y ′轴,使G′B′ =12GB ;作H′E′∥y′轴,使H′E′ =12HE ;在y′轴的点正视图O ′ O O O′′ O ′ 侧视图俯视图O′上方取O′A′=1 2OA,在点O′下方取O′F′ =12OF,并且以点F′为中点,画C′D′∥x′轴,且使C′D′ = CD.(3)连接A′B′,B′C′,D′E′,E′A′,所得正五边形A′B′C′D′E′就是正五边形ABCDE的直观图,如图3所示.2.已知一个正四棱台的上底面边长为2cm,下底面边长为6cm,高为4cm.用斜二测画法画出此正四棱台的直观图.【分析】先画出上、下底面正方形的直观图,再画出整个正四棱台的直观图.【解析】(1)画轴.以底面正方形ABCD的中心为坐标原点,画x轴、y轴、z轴,三轴相交于O,使∠xOy = 45°,∠xOz = 90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF = AB = 6cm,在y轴上取线段GH,使得GH=12AB,再过G、H分别作AB∥EF,CD∥EF,且使得CD的中点为H,AB的中点为G,这样就得到了正四棱台的下底面ABCD的直观图.(3)画上底面.在z轴上截取线段OO1 = 4cm,过O1点作O1x′∥Ox、O1y′∥Oy,使∠x′O1y′ = 45°,建立坐标系x′O1y′,在x′O1y′中重复(2)的步骤画出上底面的直观图A1B1C1D1.(3)再连结AA1、BB1、CC1、DD1,得到的图形即所求的正四棱台的直观图(图2).3.如右图所示,梯形A1B1C1D1是一平面图形ABCD的直观图.若A1D1∥O1y,A1B1∥C1D1,A1B1 =23C1D1 = 2,A1D1精品文档= O′D1 = 1.请画出原来的平面几何图形的形状,并求原图形的面积.【解析】如图,建立直角坐标系xoy,在x轴上截取OD=O′D1=1,OC=O′C1=2.在过点D的y轴的平行线上截取DA=2D1A1=2.在过点A的x轴的平行线上截取AB=A1B1 = 2.连接BC,即得到了原图形.由作法可知,原四边形ABCD是直角梯形,上、下底长度分别为AB = 2,CD = 3,直角腰长度为AD = 2.所以面积2322S+=⨯= 5.板书展示1.2.3 空间几何体的直观图1.情景导入2.斜二测画法的概念3.例题教案B第1课时教学内容:1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图教学目标1.了解中心投影与平行投影的区别;2.能画出简单空间图形的三视图;3.能识别三视图所表示的空间几何体.教学重点、难点教学重点:画出简单组合体的三视图,给出三视图还原或想象出原实际图的结构特征.教学难点:识别三视图所表示的几何体.教学过程:一、课前准备(预习教材,找出疑惑之处)复习1:圆柱、圆锥、圆台、球分别是_______绕着________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的.复习2:简单组合体构成的方式:________________和__________________.二、新课教学探索新知探究1:中心投影和平行投影的有关概念问题:中午在太阳的直射下,地上会有我们的影子;晚上我们走在路灯旁身后也会留下长长的影子,你知道这是什么现象吗?为什么影子有长有短?新知1:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中光线叫投影线,留下物体影子的屏幕叫投影面.光由一点向外散精品文档精品文档射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,否则叫斜投影.思考:中午太阳的直射是什么投影?路灯、蜡烛的照射是什么投影?试试:在下图中,分别作出圆在中心投影和平行投影中正投影的影子.结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同的.探究2:柱、锥、台、球的三视图问题:我们学过的几何体(柱、锥、台、球),为了研究的需要,常常要在纸上把它们表示出来,该怎么画呢?能否用平行投影的方法呢?新知2:为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.1. 长方体的三视图.2. 球的三视图(见下页)3.圆柱的三视图4.圆锥的三视图5.组合体的三视图思考:仔细观察上图的三视图,你能得出同一几何体的三视图在形状、大小方面的关系吗?能归纳三视图的画法吗?小结:1.正视图反映物体的长度和高度,俯视图反映长度和宽度,侧视图反映宽度和高精品文档度;2. 正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3. 三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位.探究3:简单组合体的三视图问题:下图是个组合体,你能画出它的三视图吗?小结:画简单组合体的三视图,要先观察它的结构,是由哪几个基本几何体生成的,然后画出对应几何体的三视图,最后组合在一起.注意线的虚实.典型例题例1画出下列几何体的三视图.【分析】画三视图之前,应把几何体的结构弄清楚,选择一个合适的主视方向.一般先画主视图,其次画俯视图,最后画左视图.画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线.物体上每一组成部分的三视图都应符合三条投影规律.【解析】这两个几何体的三视图如下练习:画出下列几何体的三视图.精品文档回顾与反思:通过师生共同画图,学生独立画图,让学生充分掌握画三视图的画法规则和一般步骤,认识到空间图形与其三视图间的对应关系,进而提高学生的空间想象能力.例2 如图,设所给的方向为物体的正前方,试画出它的三视图(单位:cm).【分析】该几何体结构较复杂,可先出示其实物模型,引导学生从三个不同角度观察,找出其轮廓线,进而画出其三视图.在画三视图时,可按相应比例来画.练习:如图,E、F分别为正方形的面ADD1A1、BCC1B1的中心,则四边形BFD1E 在该正方体的面上的正投影不可能为回顾与反思:在完成例2较复杂图形的三视图后,给出的上述练习,实质上是三视图的一个应用.只要从主视图、俯视图和左视图三个方面来着手,就不难解决问题了.例3 某物体的三视图如下,试判断该几何体的形状.【分析】三视图是从三个不同的方向看同一物体得到的三个视图.主视图反映物体精品文档的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和主视图共同反映物体的长要相等.左视图和俯视图共同反映物体的宽要相等.据此就不难得出该几何体的形状.【解析】该几何体为一个正四棱锥.练习:根据物体的三视图(右图)试判断该物体的形状.回顾与反思:在已基本掌握空间几何体的三视图画法后,由三视图来想象其对应空间几何体,旨在进一步提高学生空间想象能力.思考:某建筑由相同的若干个房间组成,该楼三视图如右下图所示,试问:(1)该楼有几层;(2)最高一层的房间在什么位置;(3)该楼可以有多少个房间?三、课堂小结1. 平行投影和中心投影的有关概念;2. 三视图的概念以及空间物体的三视图的画法规则;3. 如何由物体的三视图判断物体的形状.四、课后作业P20.习题1.2 A组1,2,3.第2课时教学内容:1.2.3 空间几何体的直观图教学目标1.掌握斜二测画法及其步骤;2.能用斜二测画法画空间几何体的直观图.教学重点、难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:直观图和三视图的互化.精品文档精品文档教学过程:一、课前准备(预习教材,找出疑惑之处) 复习1:中心投影的投影线_________;平行投影的投影线_______.平行投影又分___投影和____投影.复习2:物体在正投影下的三视图是_____、______、_____;画三视图的要点是_____ 、_____ 、______.引入:空间几何体除了用三视图表示外,更多的是用直观图来表示.用来表示空间图形的平面图叫空间图形的直观图.要画空间几何体的直观图,先要学会水平放置的平面图形的画法.我们将学习用斜二测画法来画出它们.你知道怎么画吗?二、新课导学 探索新知探究1:水平放置的平面图形的直观图画法问题:一个水平放置的正六边形,你看过去视觉效果是什么样子的?每条边还相等吗?该怎样把这种效果表示出来呢?上面的直观图就是用斜二测画法画出来的. 典型例题例1 用斜二测画法画水平放置的正六边形的直观图. (师生共练,注意取点、变与不变→小结:画法步骤)画法:① 如图(1),在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴相交于点O .在图(2)中,画相应的x′ 轴与y′ 轴,两轴相交于点O′,使∠X′O′Y′=45°.② 在图(2)中,以O ′为中点,在x′轴上取A′D′=AD ,在y′轴上取M′N′=21MN .以点N′为中点,画B′C′平行于x′轴,并且等于BC ;再以M′为中点,画E′F′平行于x′轴,并且等于EF .③ 连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF 水平放置的直观图A′B′C′D′E′F′(图(3)).新知1:斜二测画法的基本步骤:①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O′X′,O’Y′,使'''=45°(或135°),它们确定的平面表示水平平面;X OY③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X′ 轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y′ 轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线).练习:用斜二测画法画水平放置的正五边形.讨论:把一个圆水平放置,看起来像个什么图形?它的直观图如何画?结论:水平放置的圆的直观图是个椭圆,通常用椭圆模板来画.探究2:空间几何体的直观图画法问题:斜二测画法也能画空间几何体的直观图,和平面图形比较,空间几何体多了一个“高”,你知道画图时该怎么处理吗?例2用斜二测画法画长4cm、宽3cm、高2cm的长方体ABCD-A’B’C’D’的直观图.画法:①画轴.如上图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.精品文档②画底面.以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=23cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.③画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别取2cm 长的线段AA′,BB′,CC′,DD′.④成图.顺次连接A′,B′,C′,D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.(2)思考:如何根据三视图,用斜二测画法画它的直观图?新知2:用斜二测画法画空间几何体的直观图时,通常要建立三条轴:x轴,y轴,z轴;它们相交于点O,且45xOy∠=°,90xOz∠=°;空间几何体的底面作图与水平放置的平面图形作法一样,即图形中平行于x轴的线段保持长度不变,平行于y轴的线段长度为原来的一半,但空间几何体的“高”,即平行于z轴的线段,保持长度不变.例3如下图,已知几何体的三视图(见下页左图),用斜二测画法画出它的直观图.【分析】由几何体的三视图知道,这个几何体是一个简单组合体.它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.画法:①画轴.如上图(1),画x轴、z轴,使∠xOz=90°.②画圆柱的下底面.在x轴上取A,B两点,使AB的长度等于俯视图中圆的直径,且OA=OB.选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面.③在Oz上截取点O′,使OO′等于正视图中OO′的长度,过点O′作平行于轴Ox的轴O′x′,类似圆柱下底面的作法作出圆柱的上底面.④画圆锥的顶点.在Oz上截取点P,使PO′等于正视图中相应的高度.⑤成图.连接P A′,PB′,AA′,BB′,整理得到三视图表示的几何体的直观图(图⑵).强调:用斜二测画法画图,注意正确把握图形尺寸大小的关系.精品文档。

高中数学必修2教案:1-2空间几何体的三视图和直观图

高中数学必修2教案:1-2空间几何体的三视图和直观图

高一数学必修二教案下图中的手影游戏,你玩过吗?光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.思考1:不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?一、中心投影与平行投影思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?思考3:用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?思考4:用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?思考5:在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影.一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?投影的分类:把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:正视图:光线从几何体的前面向后面正投影,得到的投影图.侧视图:光线从几何体的左面向右面正投影,得到的投影图.俯视图:光线从几何体的上面向下面正投影,得到的投影图.几何体的正视图、侧视图和俯视图,统称为几何体的三视图.思考1:正视图、侧视图、俯视图分别是从几何体的哪三个角度观察得到的几何体的正投影图?它们都是平面图形还是空间图形?思考3:圆柱、圆锥、圆台的三视图分别是什么?思考5:球的三视图是什么?下列三视图表示一个什么几何体?例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同.1.空间几何体的三视图:正视图、侧视图、俯视图;2.三视图的特点:一个几何体的侧视图和正视图高度一样,俯视图和正视图长度一样,侧视图和俯视图宽度一样;高一数学必修二教案思考1:在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎么处理?思考2:如图所示,将一个长方体截去一部分,这个几何体的三视图是什么?思考4:如图,桌子上放着一个长方体和一个圆柱,若把它们看作一个整体,你能画出它们的三视图吗?一个空间几何体都对应一组三视图,若已知一个几何体的三视图,思考2:下列两图分别是两个简单组合体的三视图,想象它们表示的组合体的结构特征,并作适当描述.例2:将一个长方体挖去两个小长方体后剩余的部分如图所示,试画出这个组合体的三视图.例3:说出下面的三视图表示的几何体的结构特征.画出下面几何体的三视图2.画出左下图几何体的三视图.3.画出者个组合体的三视图本节我们主要学习了1、画简单组合体的三视图2、根据三视图还原几何体高一数学必修二教案空间几何体的直观图通常是在平行投影下画出的空间图形.思考1:把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?思考2:把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?思考4:你能用上述方法画水平放置的正六边形的直观图吗?思考5:上述画水平放置的平面图形的直观图的方法叫做斜二测画法,对于水平放置的多边形,常用斜二测画法画它们的直观图.斜二测画法是一种特殊的平行投影画法.你能概括出斜二测画法的基本步骤和规则吗?思考6:斜二测画法可以画任意多边形水平放置的直观图,如果把一个圆水平思考1:对于柱、锥、台等几何体的直观图,可用斜二测画法或椭圆模板画出思考2:怎样画长、宽、高分别为4cm、3cm、2cm的长方体ABCD-A′B′C′D′的直观图?思考3:怎样画底面是正三角形,且顶点在底面上的投影是底面中心的三棱锥?思考4:画棱柱、棱锥的直观图大致可分几个步骤进行?思考5:已知一个几何体的三视图如下,这个几何体的结构特征如何?试用斜二测画法画出它的直观图.例1:如图,一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它的底角为45°,两腰和上底边长均为1,求这个平面图形的面积.空间几何体的直观图的作法:1.斜二测画法:画多边形2.正等测画法:画圆形空间几何体的直观图的特点:3、保持平行关系和竖直关系不变.。

高中数学必修2《空间几何体的三视图和直观图》教案

高中数学必修2《空间几何体的三视图和直观图》教案

高中数学必修2《空间几何体的三视图和直观图》教案高中数学必修2《空间几何体的三视图和直观图》教案一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力. 视图是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为正视图,自左向右投影所得的投影图称为侧视图,自上向下投影所得的投影图称为俯视图.用这三种视图即可刻画空间物体的几何结构,这种图称之为三视图.教科书从复习初中学过的正方体、长方体的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过思考提出了由三视图想象几何体的学习任务.进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点.三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成.因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容.教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用.对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图.教材中的探究可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流.值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成.另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.二、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

高中数学 1.2 空间几何体的三视图和直观图(3,4课时)教学案 新人教A版必修2

高中数学 1.2 空间几何体的三视图和直观图(3,4课时)教学案 新人教A版必修2

1.2空间几何体的三视图和直观图(3,4课时)【学习目标】画出简单组合体的三视图,用斜二测画法画出空间几何体的直观图。

【教学重难点】识别三视图所表示的空间几何体。

【课前导学】阅读教材第12—21页,完成下列学习一、中心投影与平行投影1.中心投影:,叫做中心投影。

2.平行投影:,叫做平行投影。

二、空间几何体的三视图1.柱、锥、台、球的三视图:叫做几何体的正视图;叫做几何体的侧视图;叫做几何体的俯视图;统称为几何体的三视图。

2.简单几何体的三视图三、空间几何体的直观图示范1.用斜二测画法画水平放置的正六边形的直观图示范2.用斜二测画法画长方体的直观图【预习自测】1. 画出下图的三视图(1)正三棱柱(2)2. 已知某物体的三视图如图所示,那么这个物体的形状是( )A.正六棱柱 B.正四棱柱 C.圆柱 D.正五棱柱3. 利用斜二测画法画直观图时:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是【典型例题】例1.如图,直三棱柱ABC-A1B1C1的侧棱长为2,底面是边长为2的正三角形,正视图是边长为2的正方形,则其侧视图的面积为例2.已知几何体的三视图,用斜二测画法画它的直观图例3.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面( ) A.至多只能有一个是直角三角形B.至多只能有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形例4. 用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7 C.6 D.5例5.一个水平放置的正方形的面积是4, 按斜二测画法所得的直观图是一个四边形, 这个四边形的面积是________________.45,腰和上底长例6.一个水平放置的平面图形的直观图(按斜二测画法所得)是一个底角为均为1的等腰梯形,则该平面图形的面积等于。

人教版高中必修21.2空间几何体的三视图和直观图课程设计

人教版高中必修21.2空间几何体的三视图和直观图课程设计

人教版高中必修21.2空间几何体的三视图和直观图课程设计I. 课程概述本课程旨在帮助学生掌握空间几何体的三视图和直观图的绘制方法,了解各类空间几何体的特点和应用。

通过理论讲解和实践练习,培养学生运用几何知识进行解决实际问题的能力,提高学生的空间想象力和图形概念。

II. 教学目标1.了解空间几何体的三视图和直观图的定义和绘制方法。

2.掌握正交投影下的不同视图之间的对应关系。

3.能够独立完成包括柱体、圆锥、圆台、棱锥、棱台等几何体的三视图和直观图的绘制。

4.掌握空间几何体在实际生活和工作中的应用,培养解决实际问题的能力。

5.提高空间想象力和图形概念,为后续的三维几何体的学习打下基础。

III. 教学内容1. 空间几何体的定义和性质1.1 空间几何体的定义空间几何体是由平面图形绕轴线、母线或截痕旋转、平移、缩放等运动变化形成的三维图形。

常见的空间几何体包括:圆柱、圆锥、圆台、棱柱、棱锥、棱台等。

1.2 空间几何体的特点和性质•具有三维形状和大小•由平面图形绕轴线或母线旋转、平移、缩放而成•各面之间存在一定的关系和对称性•具有表面积和体积等性质2. 空间几何体的三视图和直观图的绘制方法2.1 空间几何体的三视图定义和性质在三维平面中,将空间几何体分别投影到三个坐标面上,得到的正交投影图,称为空间几何体的三视图。

三视图具有以下性质: - 三视图中的同一点在三个视图中的投影位置可以唯一确定。

- 各视图之间有一定的对应关系。

2.2 空间几何体的三视图的绘制方法1.确定空间几何体在三个坐标轴上的投影和正交轮廓。

2.在每个视图中画出所有轮廓线和投影点。

3.根据对应关系,连接相应的点和线,得到三视图。

2.3 空间几何体的直观图定义和性质在平面上,按照与视线平行的方向可见部分的形状,画出空间几何体的正面图、侧面图和俯视图,称为空间几何体的直观图。

2.4 空间几何体的直观图的绘制方法1.确定空间几何体的展开图形。

2.根据直观图的定义,在展开图上按照各俯视投影的形状,画出正面图、侧面图和俯视图。

人教A版高中数学必修二第一章空间几何体的三视图教案新

人教A版高中数学必修二第一章空间几何体的三视图教案新

1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

数学必修2人教新课标版1-2空间几何体的三视图和直观图1教案

数学必修2人教新课标版1-2空间几何体的三视图和直观图1教案
引导学生归纳总结画三视图时的注意点,并对学生的归纳加以评价。(可以下载三视图动画浏览:.
cn/move/002,利用多媒体投影给学生展示)
从以上的作图过程中总结归纳出画三视图的注意点,并表达自己的观点。
(4)画出下图中三视图。
掌握棱柱、棱锥、棱台的三视图的画法,进一步巩固画三视图的基本规则。
2.培养学生的空间想象能力和空间思维能力;
3.体会立体图形和平面图形的转化关系,渗透应用数学的意识。
Ⅱ.教学内容剖析
1.教学重点:三视图的画法,及简单物体的三视图;
2.教学难点:识别三视图所表示的空间几何体。
Ⅲ.教学思路设计
模型演示和尝试相结合。
Ⅳ.教学准备
正方体、长方体、圆柱、球的模型和简单组合体实物、多媒体投影。
(2)三视图动画浏览.
cn/move1002,刚才演示的图形所利用的投影和我们所看的电影所利用的投影有何不同?
引出中心投影和平行投影的概念,投影线交于一点的投影为中心投影。投影线相互平行的投影称为平行投影。
引导学生观察发现两种投影的区别,并让学生简述平行投影与中心投影的概念。
引导学生从不同位置观察模型或实物,画出它们的三视图,给予评价。并提醒学生:遮挡线应画成虚线。
观察模型画出它们的三视图,并说出它们的正视图、侧视图、俯视图各是什么图形?
(5)观察教科书第15页图1.2-6中三视图表示的几何体是什么?
使学生掌握由视体到立体图型的方法,培养空间想象能力。
引导学生由三视图的特征,结合柱、锥、台、球的三视图逆推。
a.0 b.1 c.2 d.3
通过练习巩固中心投影与平行投影的概念,并让学生掌握中心投影与平行投影的应用。
引导学生思考,动手做题,并对学生的回答做出评价。最后给出正确答案。

高中数学《1.2空间几何体的三视图和直观图》教案新人教A版必修(含五篇)

高中数学《1.2空间几何体的三视图和直观图》教案新人教A版必修(含五篇)

高中数学《1.2空间几何体的三视图和直观图》教案新人教A版必修(含五篇)第一篇:高中数学《1.2空间几何体的三视图和直观图》教案新人教A版必修高中数学《1.2 空间几何体的三视图和直观图》教案新人教A版必修2一、二、三、教学目标:1知识与技能:了解中心投影与平行投影;能画出简单几何体的三视图;能识别三视图所表示的空间几何体。

2过程与方法:通过学生自己的亲身实践,动手作图来完成“观察、思考”栏目中提出的问题。

3情感态度与价值观:培养学生空间想象能力和动手实践能力,激发学习兴趣。

二、教学重点:画出简单组合体的三视图三、教学难点:识别三视图所表示的空间几何体四、教学过程:(一)、新课导入:问题1:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

” 对于我们所学几何体,常用三视图和直观图来画在纸上.三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.(二)、讲授新课: 1.中心投影与平行投影:① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。

人们将这种自然现象加以的抽象,总结其中的规律,提出了投影的方法。

② 中心投影:光由一点向外散射形成的投影。

其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.③平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.讨论:点、线、三角形在平行投影后的结果.2.柱、锥、台、球的三视图:① 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上到下)② 讨论:几何体三视图在形状、大小方面的关系?→ 画出长方体的三视图,并讨论所反应的长、宽、高的关系,得出结论:正俯一样长,俯侧一样宽,正侧一样高。

最新人教版高中数学必修2第一章《空间几何体的三视图和直观图》教案2

最新人教版高中数学必修2第一章《空间几何体的三视图和直观图》教案2

1.2.3 空间几何体的直观图整体设计教学分析“空间几何体的直观图”只介绍了最常用的、直观性好的斜二测画法.用斜二测画法画直观图,关键是掌握水平放置的平面图形直观图的画法,这是画空间几何体直观图的基础.因此,教科书安排了两个例题,用以说明画水平放置的平面图形直观图的方法和步骤.在教学中,要引导学生体会画水平放置的多边形的直观图的关键是确定多边形顶点的位置.因为多边形顶点的位置一旦确定,依次连接这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.而在平面上确定点的位置,可以借助于平面直角坐标系,确定了点的坐标就可以确定点的位置.因此,画水平放置的平面直角坐标系应当是学生首先要掌握的方法.值得注意的是直观图的教学应注意引导学生正确把握图形尺寸大小之间的关系;另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.三维目标通过用斜二测画法画水平放置的平面图形和空间几何体的直观图,提高学生识图和画图的能力,培养探究精神和意识,以及转化与化归的数学思想方法.重点难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:直观图和三视图的互化.课时安排1课时教学过程导入新课思路1.画几何体时,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系,怎样画呢?教师指出课题:直观图.思路2.正投影主要用于绘制三视图,在工程制图中被广泛采用,但三视图的直观性较差,因此绘制物体的直观图一般采用斜投影或中心投影.中心投影虽然可以显示空间图形的直观形象,但作图方法比较复杂,又不易度量,因此在立体几何中通常采用斜投影的方法来画空间图形的直观图.把空间图形画在纸上,是用一个平面图形来表示空间图形,这样表达的不是空间图形的真实形状,而是它的直观图.推进新课新知探究提出问题①如何用斜二测画法画水平放置的正六边形的直观图?②上述画直观图的方法称为斜二测画法,请总结其步骤.③探求空间几何体的直观图的画法.用斜二测画法画长、宽、高分别是4cm、3 cm、2 cm的长方体ABCD—A′B′C′D′的直观图.④用斜二测画法画水平放置的平面图形和几何体的直观图有什么不同?并总结画几何体的直观图的步骤.活动:①和③教师首先示范画法,并让学生思考斜二测画法的关键步骤,让学生发表自己的见解,教师及时给予点评.②根据上述画法来归纳.③让学生比较两种画法的步骤.讨论结果:①画法:1°如图1(1),在正六边形ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O.在图1(2)中,画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.2°在图1(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N′=MN.以点N′为中点画B′C′平行于x′轴,并且等于BC;再以M′为中点画E′F′平行于x′轴,并且等于EF.3°连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′〔图1(3)〕.图1②步骤是:1°在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.2°已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.3°已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.③画法:1°画轴.如图2,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.图22°画底面.以点O为中点,在x轴上取线段MN,使MN=4 cm;在y轴上取线段PQ,使PQ=cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A、B、C、D,四边形ABCD就是长方体的底面ABCD.3°画侧棱.过A、B、C、D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段AA′、BB′、CC′、DD′.4°成图.顺次连接A′、B′、C′、D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.点评:画几何体的直观图时,如果不作严格要求,图形尺寸可以适当选取,用斜二测画法画图的角度也可以自定,但是要求图形具有一定的立体感.④画几何体的直观图时还要建立三条轴,实际是建立了空间直角坐标系,而画水平放置平面图形的直观图实际上建立的是平面直角坐标系.画几何体的直观图的步骤是:1°在已知图形所在的空间中取水平平面,作互相垂直的轴Ox、Oy,再作Oz 轴,使∠xOy=90°,∠yOz=90°.2°画出与Ox、Oy、Oz对应的轴O′x′、O′y′、O′z′,使∠x′O′y′=45°,∠y′O′z′=90°,x′O′y′所确定的平面表示水平平面.3°已知图形中,平行于x轴、y轴和z轴的线段,在直观图中分别画成平行于x′轴、y′轴和z′轴的线段,并使它们在所画坐标轴中的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.4°已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.5°擦除作为辅助线的坐标轴,就得到了空间图形的直观图.斜二测画法的作图技巧:1°在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线为坐标轴或图形的对称直线为坐标轴或图形的对称点为原点或利用原有垂直正交的直线为坐标轴等.2°在原图中与x轴或y轴平行的线段在直观图中依然与x′轴或y′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,画端点时作坐标轴的平行线为辅助线.原图中的曲线段可以通过取一些关键点,利用上述方法作出直观图中的相应点后,用平滑的曲线连接而画出.3°在画一个水平放置的平面时,由于平面是无限延展的,通常我们只画出它的一部分表示平面,一般地,用平行四边形表示空间一个水平平面的直观图.应用示例思路1例1 用斜二测画法画水平放置的圆的直观图.活动:学生回顾讨论斜二测画法的步骤,自己画出来后再互相交流.教师适当点评.解:(1)如图3(1),在⊙O上取互相垂直的直径AB、CD,分别以它们所在的直线为x轴与y轴,将线段AB n等分.过各分点分别作y轴的平行线,交⊙O于E,F,G,H,…,画对应的x′轴和y′轴,使∠x′O′y′=45°.图3(2)如图3(2),以O′为中点,在x′轴上取A′B′=AB,在y′轴上取C′D′=CD,将A′B′ n等分,分别以这些分点为中点,画与y′轴平行的线段E′F′,G′H′,…,使E′F′=,G′H′=,….(3)用光滑曲线顺次连接A′,D′,F′,H′,…,B′,G′,E′,C′,A′并擦去辅助线,得到圆的水平放置的直观图〔图3(3)〕.点评:本题主要考查用斜二测画法画水平放置的平面图形的直观图.变式训练1.画水平放置的等边三角形的直观图.答案:略.2.关于“斜二测画法”,下列说法不正确的是()A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′也可以是135°,所以C不正确.答案:C例2 如图4,已知几何体的三视图,用斜二测画法画出它的直观图.图4活动:让学生由三视图还原为实物图,并判断该几何体的结构特征.教师分析:由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.解:画法:(1)画轴.如图5(1),画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.(1) (2)图5(2)画圆柱的两底面,仿照例2画法,画出底面⊙O.在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出底面⊙O′(与画⊙O一样).(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图〔图5(2)〕.点评:空间几何体的三视图与直观图有着密切的联系,我们能够由空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.变式训练图6所示是一个奖杯的三视图,你能想象出它的几何结构,并画出它的直观图吗?图6答案:奖杯的几何结构是最上面是一个球,中间是一个四棱柱,最下面是一个棱台拼接成的简单组合体.其直观图略.思路2例1 如图7所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.图7活动:利用斜二测画法作该梯形的直观图,要注意在斜二测画法中,要有一些平行于原坐标轴的线段才好按部就班地作图,所以先在原坐标系中过D作出该点在x轴的垂足,则对应地可以作出线段DE的直观图,进而作出整个梯形的直观图.解:步骤是:(1)如图8所示,在梯形ABCD中,以边AB所在的直线为x轴,点A为原点,建立平面直角坐标系xOy.如图9所示,画出对应的x′轴,y′轴,使∠x′A′y′=45°.(2)如图8所示,过D点作DE⊥x轴,垂足为E.在x′轴上取A′B′=AB=4 cm,A′E′=AE=cm ≈2.598 cm;过E′作E′D′∥y′轴,使E′D′=,再过点D′作D′C′∥x′轴,且使D′C′=CD=2 cm.。

人教版高中必修(2)1.2空间几何体的三视图和直观图教案(3)

人教版高中必修(2)1.2空间几何体的三视图和直观图教案(3)

1.2.2 空间几何体的三视图教学目标(1)了解投影、中心投影和平行投影的概念;(2)能画出简单几何体的三视图,能识别三视图所表示的立体模型;教学重点画出简单几何体的三视图.教学难点画出简单几何体的三视图,识别三视图所表示的立体模型.教学过程一、中心投影和平行投影1.介绍投影的概念.问题:下列投影有什么不同?学生讨论,归纳不同之处:点光源,平行光线;或:投射线交于一点,投射线相互平行.2.中心投影的概念:投射线交于一点的投影称为中心投影.结合图1-1-20介绍中心投影的有关概念.说明中心投影的优、缺点.3.平行投影的概念:投射线相互平行的投影称为平行投影,平行投影按投射方向是否正对着投影面,可分为斜投影和正投影两种(如图1-1-21).二、三视图的有关概念1.视图是指将物体按正投影向投影面投射所得到的图形.光线自物体的前面向后投射所得的投影成为主视图,自上向下的投影成为俯视图,自左向右的投影成为左视图,用这三种视图刻画空间物体的结构,我们称之为三视图.2.画三视图的注意事项:长对正,高平齐,宽相等.三、数学运用1.例题:例1.画出下列几何体的三视图.讲解时应注意:(1)分析几何体的结构,弄清它是由哪些简单几何体组成的;(2)被遮挡的轮廓线应画成虚线;(3)选择不同的视角,所画的三视图可能不同.2.练习:教材第17页练习第1、2、3题.四、回顾小结:1.本节课学习中心投影、平行投影和三视图的有关概念,以及三视图的画法;2.画三视图应注意:长对正,高平齐,宽相等,被遮挡的轮廓线应画成虚线.五、课外作业:课本第22页习题1.2 A组第1、2题.。

空间几何体的三视图和直观图第一课时教学设计教学内容

空间几何体的三视图和直观图第一课时教学设计教学内容

1.2空间几何体的三视图和直观图(第一课时)教学设计一、教学内容分析(一)教材地位和作用三视图是立体几何的基础之一,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间观念的基础和训练学生几何直观能力的有效手段。

在近几年的高考考查中,利用三视图求直观图体积或表面积的题型屡见不鲜,这种题型的本质即为由三视图还原直观图,所以要求学生掌握由三视图还原直观图这部分内容显得尤其重要。

三视图对部分对学生的逻辑思维能力和空间想象能力提出了较高的要求,使学生谈“图”色变。

本节课是普通高中新课程人教版《必修2》第一章第二节第一课时的内容,是在学习空间几何体的结构特征之后,直观图之前,尚未学习点、直线、平面位置关系的情况下教学的。

学生在义务教育阶段,已经初步接触了正方体、长方体的几何特征以及简单几何体的表面积、体积的计算,会从不同的方向看物体得到不同的视图的方法。

与初中教学内容相比较,本节增加学习了台体的有关内容,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。

通过本节知识的学习,为下一章点、直线、平面之间的位置关系学习打下基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣,体会数学的实用价值。

(二)教学内容及结构本章的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。

从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性;通过三视图和直观图的学习,进一步认识空间几何体的结构。

本节课教材从了解中心投影和平行投影出发介绍三视图是利用三个正投影来表示空间几何体的的方法,并给出三视图的概念及作图规则。

要求学生能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型。

在此基础上,学习画出简单组合体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并识别三视图所表示的简单组合体。

(三)教学重难点1、重点:(1)画出空间几何体及简单组合体的三视图,(2)给出三视图,还原或想象出原实际图的结构特征,体会三视图的作用。

高中数学 第一章 第二节《空间几何体的三视图和直观图》(3)教学设计 新人教A版必修2

高中数学 第一章 第二节《空间几何体的三视图和直观图》(3)教学设计 新人教A版必修2
首先,要审好题,弄清楚直观图上的长度与实际图形上长度的关系。
好,请同学们看多媒体:《课件4》内容:
你做的对吗?不对的话,错在哪里,注意订正。
课堂练习:
学生看书本19页1.2(练习题的1、2、3)
学生独立思考解决,后同桌交流,提问学生并师生一起得出准确答案。
大家看课本本19页1.2(练习题的1、2、3),独立思考后把答案写在书上,一会儿找几个同学分别说出答观图.
详细步骤及答案参见教材16页图1.2-10
2.用斜二测画法画出长为4cm,宽为3cm,高为2cm的长方体的直观图.
详细步骤及答案参见教材17页图1.2-12
同学们,看书16、17页后在演草纸上画出正六边形和长方体的直观图,之后,请把你画的图形交给同桌交流确定最终的图形。
很好!
三、总结
(归纳总结课堂检测)
(4分钟)
总结、布置作业
学习总结:提醒学生对本节课所学内容进行总结,(1)对学生出现的问题进行点拨;(2)强调本节课的重难点。对学习过程中出现的问题做好整理反思,教师出示《课件5》使全体学生记忆校对自己的总结.利用斜二测画法画空间图形的直观图应遵循的基本原则:
(4)我们把既富有立体感又能表达出图形各主要部分的位置关系和度量关系的
图形叫做直观图
同学们,前边我们学习了空间几何体的三视图,请回答什么是正视图、左视图、俯视图呢?
好,回答很好请看课件1
现在,思考一个问题,由三视图得到几何体的实际图形,事实上就是要画出几何体的直观图,直观图怎么画呢?请看多媒体,出示《课件1》
二、知新
(自主学习合作探究展示能力)
(35分钟)
斜二测画法的概念
1、学生看书2分钟后,老师提问学生什么是斜二测画法法?之后老师出示《课件2》,学生记忆概念

人教版高中必修(2)1.2空间几何体的三视图和直观图教案(11)

人教版高中必修(2)1.2空间几何体的三视图和直观图教案(11)

&1.2.1中心投影与平行投影& 1.2.2空间几何体的三视图知识与技能:中心投影与平行投影的概念、性质、区别、用途;理解空间几何体的三视图的概念,能画出简单几何体的三视图;能识别三视图所表示的空间几何体.过程与方法:通过课件展示让学生明确视图的形成过程。

情感态度价值观:通过观察让学生感受现实世界的伟大,以及将复杂的问题简单化的数学思想方法。

教学重点:能画出简单空间几何体的三视图;识别三视图所表示的空间几何体.教学难点:画出简单空间几何体的三视图。

教学过程:一、新课导入:有古诗:“横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中”,即从不同的角度看庐山,能看到不同的景观,同时侧面告诉我们,要看到庐山的真面目,必须走出庐山,从多角度、多方位去看。

二、讲授新课:预习课本内容,填写下面的知识要点:1.中心投影:(1)中心投影的概念:(2)中心投影的性质:(3)中心投影的用途:2.平行投影:(1)平行投影的概念:(2)平行投影的性质:(3)平行投影的用途:3.视图:4.三视图:(1)正视图:(2)侧视图:(3)俯视图:注:空间几何体的三视图是在投影下得到的投影图。

题型一:画出简单空间几何体的三视图:要求:(1)位置要求:三个视图的位置要按照如下的位置关系:正视图侧视图俯视图(2)尺寸要求:长对正:即正视图和俯视图的长要相等;宽相等:即俯视图和俯视图的宽要相等;高平齐:即正视图和侧视图的高要相等.(3)线条要求:看的见的轮廓线画成实线;看不见的轮廓线要画成虚线. 例1:练习:画出下列几何体的三视图:(1)(2)正视图侧视图俯视图P思考:正视图的形状和大小与PAB 一样吗?如果不一样,那和哪个三角形是一样的?为什么?题型二:能通过几何体的三视图识别几何体: 例2:说出下面的三视图表示的是什么几何体.练习:说出下列三视图表示的是什么几何体. (1) (2)小结:作业:习题1.2 A 组 1,2。

高中数学必修二《空间几何体的三视图》教学设计

高中数学必修二《空间几何体的三视图》教学设计

1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图一、教材分析本节课是高中数学必修二第一章的第二节的第一课时。

在上一个部分学生认识了空间几何体的结构,在此基础上,本节课学习空间几何体的表示形式,能进一步提高对空间几何体结构特征的认识。

主要内容有:投影的概念、空间几何体的三视图的读和画。

画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力。

本节课是立体几何的基础之一,教学中应当给以充分的重视。

教材从了解中心投影和平行投影出发,介绍了利用三个正投影来表示空间几何体的方法——三视图,并给出三视图的概念及作图规则。

要求学生能画出简单空间图形的三视图,能识别给定三视图所表示的几何体。

并在此基础上,学习画出与识别简单组合体的三视图。

通过本节知识的学习,为下一章点、直线、平面之间的位置关系学习打下基础,培养学生的逻辑思维能力和空间想象能力,并了解数学在实际生产、生活中的应用。

二、教学目标1.知识与技能(1)掌握平行投影和中心投影;(2)能画出简单组合体的三视图;(3)能识别三视图表示的简单组合体,从而进行几何体与其三视图之间的相互转化。

2.过程与方法通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

3.情感、态度与价值观(1)体会三视图在生产、生活中的作用;(2)提高学生识图和画图的能力,培养其探究精神和意识。

三、重点难点重点:画出简单组合体的三视图,给出三视图能还原或想象出原实际图的结构特征。

难点:识别三视图所表示的几何体。

四、学情分析本节首先简单介绍中心投影和平行投影,然后本节重点教学空间几何体的三视图的作图与识图。

在日常生活中,中心投影和平行投影是最常见的两种投影形式,学生具有这方面的直接经验和基础,并且学生在初中和通用技术课已经对三视图有一定的了解,但对三视图与几何体之间的量关系还不清楚,对三视图的具体画法还处于模糊的感知阶段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计1.2.3空间几何体的直观图整体设计教学分析“空间几何体的直观图”只介绍了最常用的、直观性好的斜二测画法.用斜二测画法画直观图,关键是掌握水平放置的平面图形直观图的画法,这是画空间几何体直观图的基础.因此,教科书安排了两个例题,用以说明画水平放置的平面图形直观图的方法和步骤.在教学中,要引导学生体会画水平放置的多边形的直观图的关键是确定多边形顶点的位置.因为多边形顶点的位置一旦确定,依次连接这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.而在平面上确定点的位置,可以借助于平面直角坐标系,确定了点的坐标就可以确定点的位置.因此,画水平放置的平面直角坐标系应当是学生首先要掌握的方法.值得注意的是直观图的教学应注意引导学生正确把握图形尺寸大小之间的关系;另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.三维目标通过用斜二测画法画水平放置的平面图形和空间几何体的直观图,提高学生识图和画图的能力,培养探究精神和意识,以及转化与化归的数学思想方法.重点难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:直观图和三视图的互化.课时安排1课时教学过程导入新课思路1.画几何体时,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系,怎样画呢?教师指出课题:直观图.思路2.正投影主要用于绘制三视图,在工程制图中被广泛采用,但三视图的直观性较差,因此绘制物体的直观图一般采用斜投影或中心投影.中心投影虽然可以显示空间图形的直观形象,但作图方法比较复杂,又不易度量,因此在立体几何中通常采用斜投影的方法来画空间图形的直观图.把空间图形画在纸上,是用一个平面图形来表示空间图形,这样表达的不是空间图形的真实形状,而是它的直观图.推进新课新知探究提出问题①如何用斜二测画法画水平放置的正六边形的直观图?②上述画直观图的方法称为斜二测画法棳请 总结其步骤.③探求空间几何体的直观图的画法棶用 斜二测画法画长宽,高,分别是4cm,3cm,2cm 的长方体 ABCD A'B'C'D'的直观图.④用斜二测画法画水平放置的平面图形和几何体的直观图有什么不同椏 并总结画几何体的直观图的步骤.活动:①和③教师首先示范画法,并让学生思考斜二测画法的关键步骤,让学生发表自己的见解,教师及时给予点评.②根据上述画法来归纳.③让学生比较两种画法的步骤.讨论结果:①画法:1°如图1(1),在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴相交于点O .在图1(2)中,画相应的x ′轴与y ′轴,两轴相交于点O ′,使∠x ′O ′y ′=45°.2°在图1(2)中,以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN .以点N ′为中点画B ′C ′平行于x ′轴,并且等于BC ;再以M ′为中点画E ′F ′平行于x ′轴,并且等于EF .3°连接A ′B ′,C ′D ′,D ′E ′,F ′A ′,并擦去辅助线x ′轴和y ′轴,便获得正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′〔图1(3)〕.图1②步骤是:1°在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O .画直观图时,把它们画成对应的x ′轴与y ′轴,两轴交于点O ′,且使∠x ′O ′y ′=45°(或135°),它们确定的平面表示水平面.2°已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴或y ′轴的线段.3°已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半.③画法:1°画轴.如图2,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.图22°画底面.以点O 为中点,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A 、B 、C 、D ,四边形ABCD 就是长方体的底面ABCD .3°画侧棱.过A 、B 、C 、D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′、BB ′、CC ′、DD ′.4°成图.顺次连接A ′、B ′、C ′、D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.点评:画几何体的直观图时,如果不作严格要求,图形尺寸可以适当选取,用斜二测画法画图的角度也可以自定,但是要求图形具有一定的立体感.④画几何体的直观图时还要建立三条轴,实际是建立了空间直角坐标系,而画水平放置的平面图形的直观图实际上建立的是平面直角坐标系.画几何体的直观图的步骤是:1°在已知图形所在的空间中取水平平面,作互相垂直的轴Ox 、Oy ,再作Oz 轴,使∠xOy =90°,∠yOz =90°.2°画出与Ox 、Oy 、Oz 对应的轴O ′x ′、O ′y ′、O ′z ′,使∠x ′O ′y ′=45°,∠y ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.3°已知图形中,平行于x 轴、y 轴和z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴和z ′轴的线段,并使它们在所画坐标系中的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.4°已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的一半.5°擦除作为辅助线的坐标轴,就得到了空间图形的直观图.斜二测画法的作图技巧:1°在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线为坐标轴或图形的对称直线为坐标轴或图形的对称点为原点或利用原有垂直正交的直线为坐标轴等.2°在原图中与x 轴或y 轴平行的线段在直观图中依然与x ′轴或y ′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,画端点时作坐标轴的平行线为辅助线.原图中的曲线段可以通过取一些关键点,利用上述方法作出直观图中的相应点后,用平滑的曲线连接而画出.3°在画一个水平放置的平面时,由于平面是无限延展的,通常我们只画出它的一部分表示平面,一般地,用平行四边形表示空间一个水平平面的直观图.应用示例思路11用斜二测画法画水平放置的圆的直观图.活动:学生回顾讨论斜二测画法的步骤,自己画出来后再互相交流.教师适当点评. 解:画法:(1)如图3(1),在⊙O 上取互相垂直的直径AB 、CD ,分别以它们所在的直线为x 轴与y 轴,将线段AB n 等分.过各分点分别作y 轴的平行线,交⊙O 于E ,F ,G ,H ,…,画对应的x ′轴和y ′轴,使∠x ′O ′y ′=45°.图3(2)如图3(2),以O ′为中点,在x ′轴上取A ′B ′=AB ,在y ′轴上取C ′D ′=12CD ,将A ′B ′ n 等分,分别以这些分点为中点,画与y ′轴平行的线段E ′F ′,G ′H ′,…,使E ′F ′=12EF ,G ′H ′=12GH ,…. (3)用光滑的曲线顺次连接A ′,D ′,F ′,H ′,…,B ′,G ′,E ′,C ′,A ′并擦去辅助线,得到圆的水平放置的直观图〔图3(3)〕.点评:本题主要考查用斜二测画法画水平放置的平面图形的直观图.2如图4图4活动:让学生由三视图还原为实物图,并判断该几何体的结构特征.教师分析:由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.解:画法:(1)画轴.如图5(1),画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.(1)(2)图5(2)画圆柱的两底面,仿照例2画法,画出底面⊙O.在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出底面⊙O′(与画⊙O一样).(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.(4)成图.连接P A′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图〔图5(2)〕.点评:空间几何体的三视图与直观图有着密切的联系,我们能够由空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.图6奖杯的几何结构是最上面是一个球,中间是一个四棱柱,最下面是一个棱台拼接成的简单组合体.其直1如图7所示,梯形ABCD 中,AB ∥CD ,AB =4 cm ,CD =2 cm ,∠DAB =30°,AD =3 cm ,试画出它的直观图.图7活动:利用斜二测画法作该梯形的直观图,要注意在斜二测画法中,要有一些平行于原坐标轴的线段才好按部就班地作图,所以先在原坐标系中过D 作出该点在x 轴的垂足,则对应地可以作出线段DE 的直观图,进而作出整个梯形的直观图.解:步骤是:(1)如图8所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xAy .如图9所示,画出对应的x ′轴,y ′轴,使∠x ′A ′y ′=45°.(2)如图8所示,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =32 3 cm ≈2.598 cm ;过E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=CD =2 cm.图8 图9 图10(3)连接A ′D ′、B ′C ′、C ′D ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图10所示,则四边形A ′B ′C ′D ′就是所求作的直观图.点评:本题考查利用斜二测画法画空间图形的直观图.在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使得平面多边形尽可能多的顶点在坐标轴上,便于画点;原图中的共线点,在直观图中仍是共线点;原图中的共点线,在直观图中仍是共点线;原图中的平行线,在直观图中仍是平行线.本题中,关键在于点D′位置的确定,这里我们采用作垂线的方法,先找到垂足E′,再去确定D′的位置.1.利用斜二测画法画直观图时:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是__________.分析:斜二测画法保持平行性和相交性不变,即平行直线的直观图还是平行直线,相交直线的直观图还是相交直线,故①②正确;但是斜二测画法中平行于y轴的线段,在直观图中长度为原来的一半,则正方形的直观图不是正方形,菱形的直观图不是菱形,所以③④错.答案:①②2.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是()A.2 6 B.4 6 C. 3 D.都不对分析:根据斜二测画法的规则,正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的22倍,而正三角形的高是3,所以原三角形的高为26,于是其面积为1 2×2×26=2 6.答案:A拓展提升问题:如图11所示,已知几何体的三视图,用斜二测画法画出它的直观图.图11探究:由这个三视图可以看出,该几何体是由一个长方体和一个以长方体的上底面为底面的四棱锥拼接而成.图12解:步骤是:(1)作出长方体的直观图ABCD-A1B1C1D1,如图12(1)所示.(2)再以上底面A1B1C1D1的对角线交点为原点建立空间直角坐标系,如图12(2)所示,在z′上取点V′,使得V′O′的长度为棱锥的高,连接V′A1、V′B1、V′C1、V′D1得到四棱锥的直观图,如图12(2).(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图12(3).课堂小结本节课学习了:1.直观图的概念.2.直观图的画法.3.直观图和三视图的关系.4.规律总结:(1)三视图的排列规则是:先画正视图,俯视图安排在正视图的正下方,长度与正视图一样,侧视图安排在正视图的正右方,高度与正视图一样.正视图反映物体的主要形状特征,是三视图中最重要的视图,俯视图与侧视图共同反映物体的宽度要相等.正视图又称为主视图,侧视图又称为左视图.(2)画三视图时,要遵循“长对正,高平齐,宽相等”的原则.若相邻两个几何体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见的轮廓线用虚线画出.(3)用斜二测画法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放置的平面图形的关键是确定多边形的顶点.因为多边形顶点的位置一旦确定,依次连接这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法就可归结为确定点的位置的画法.(4)如果同一个空间图形摆放的位置不同,那么画出的三视图会有所不同,画出的直观图也是会有所不同.作业习题1.2A组第5、6题.设计感想由于直观图的画法可以灵活多变,尺寸不作严格要求.因此本节教学设计中没有设计过多地严格按步骤画直观图的题目,这要引起我们的注意.特别是高考中很少见直接考查画直观图的题目,并且高考试题关于立体几何的解答题其直观图通常直接给出,因此本节主要是通过画直观图培养学生的空间想象能力,以及画图和识图的能力.备课资料备选例题【例】若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原来三角形面积的()A.24倍B.2倍 C.22倍 D.2倍分析:直观图也是三角形,并且有一条公共边,但是这条公共边上的高发生变化.直观图中公共边上的高是原三角形中公共边上高的24,则直观图的面积是原来三角形面积的24倍.答案:A知识拓展直观图的概念与分类按平行投影法,把空间图形在纸上或黑板上画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系(主要是长、宽、高三个方面的),我们把这种投影图叫做直观图.用平行投影法把物体连同直角坐标系一起投影到一个投影面上所得的投影图,叫做轴测投影图(简称轴测图),这种投影画法称为轴测投影法.轴测投影按投影线与轴测投影面斜交或垂直,可分为斜轴测投影和正轴测投影.按三轴方向的变形系数的大小关系,又可分为等轴测投影(三轴方向的变形系数都相等)、二轴测投影(有两轴方向的变形系数相等)和三轴测投影(三轴方向的变形系数都不相等).事实上,轴测投影的种类很多,但在实际应用中,常用的是斜二轴测投影(即斜二测画法)和正等轴测投影.第一种直观图的画法——斜二轴测投影,简称斜二测.就是投影线和投影面斜交,有两轴方向的变形系数相等的轴测投影.第二种直观图的画法——正等轴测投影.就是投影线和投影面垂直,各轴的变形系数都相等的轴测投影.斜二测与正等测各有优点,用斜二测画出的直观图能使一个面(直立于我们面前的那个面)保持原来的形状和大小,用正等测画出来的直观图可以将三个面均匀地表达出来.。

相关文档
最新文档