高等几何试题

合集下载

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是欧几里得几何的公理?A. 两点之间线段最短B. 过直线外一点有且只有一条直线与已知直线平行C. 任意两条直线都相交D. 圆的周长与直径的比值是一个常数答案:B2. 球面上的最短路径是:A. 直线B. 曲线C. 大圆D. 任意路径答案:C3. 以下哪个定理是球面几何中的定理?A. 勾股定理B. 泰勒斯定理C. 球面三角形的内角和大于180度D. 三角形内角和等于180度答案:C4. 以下哪个选项是双曲几何的特征?A. 过直线外一点有且只有一条直线与已知直线平行B. 过直线外一点有无数条直线与已知直线平行C. 过直线外一点没有直线与已知直线平行D. 过直线外一点有一条直线与已知直线平行答案:B二、填空题(每题5分,共20分)1. 在欧几里得几何中,一个平面上任意两个点确定一条________。

答案:直线2. 球面几何中,球面上的两点之间的最短路径称为________。

答案:大圆3. 在双曲几何中,过直线外一点可以画出________条直线与已知直线平行。

答案:无数4. 根据球面几何的性质,球面上的三角形内角和________180度。

答案:大于三、解答题(每题15分,共30分)1. 证明:在球面几何中,任意两个大圆的交点最多有两个。

证明:假设球面上有两个大圆A和B,它们相交于点P和Q。

如果存在第三个交点R,则R必须位于大圆A和B上。

由于大圆A和B是球面上的最短路径,它们在球面上的交点必须是球面上的最短路径的端点,因此R不可能存在。

因此,任意两个大圆的交点最多有两个。

答案:证明完毕。

2. 已知球面上的三角形ABC,其内角分别为α、β、γ,且α+β+γ=180°+ε,其中ε为正数。

求证:三角形ABC的边长之和小于球面上的任意其他三角形的边长之和。

证明:设球面上的任意其他三角形为DEF,其内角分别为α'、β'、γ'。

高等几何复习题

高等几何复习题

《高等几何》练习题一 、判断题( )1、两个三角形的面积之比是仿射不变量。

( )2、变换群越大,它所对应的几何内容越丰富。

( )3、无穷远直线与二阶曲线没有交点。

( )4、一点的极线是其所有调和共轭点的轨迹。

( )5、三角形的三中线共点是仿射性质。

( )6、一直线的齐次线坐标唯一。

( )7、仿射变换把单位向量仍变为单位向量。

( )8、交比是射影不变量。

( )9、透视对应必是射影对应。

( )10、平面内不共线三点可以确定一条二阶曲线。

( )11、渐近线是二次曲线的自共轭直径。

二、填空题1、 梯形的仿射图形是 。

2、 等边三角形的仿射图形是 。

3、 “点”与“ ”叫做平面上的对偶元素。

4、 设)8,1(),21,21(),2,1(C B A ---为共线三点,则=)(ABC 。

5、 已知点)1,0,1(),1,1,1(),1,1,1(=-==D B A 且2),(=CD AB ,则=C _________。

6、 四点)1,0,1(),3,1,3(),1,1,1(),1,1,1(4321P P P P --在同一直线上,则=),(4321P P P P _________。

7、 无穷远直线的齐次方程为________________________________。

8、 012=++y x 上的无穷远点的坐标是 。

9、 直线]1,2,[i i -上的实点坐标为 。

10、 一点),,(321x x x x ≡在一直线],,[321u u u u ≡上的充要条件是_________________。

11、 已知点A 的坐标)1,1,2(-及点P 的方程032321=++u u u ,则直线AP 的方程为 。

12、 设二直线]3,1,2[],1,1,1[交点为A ,点P 的线坐标方程为032321=++u u u ,则直线AP 方程为 。

13、 方程03=x 在射影坐标系下表示坐标三点形的第三边,而在仿射坐标系下它表示___________________________。

高等几何试卷及答案

高等几何试卷及答案

《高等几何》考试试题A 卷(120分钟)一、填空题(2分⨯12=24分)1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -19、一点列到自身的两射影变换a):21→,32→,43→; b):10→,32→,01→ 其中为对合的就是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件就是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它就是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x xx x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10分)证明:三点形ABC 与三点形C B A '''内接于二次曲线(C),设 AB I C B ''=D AB I C A ''=E B A ''I BC=D ' B A ''I AC=E ',则),,,(B A B A C '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线(C '),亦即三点形ABC 与三点形C B A '''的边外切一条二次曲线。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 已知直线l的方程为Ax+By+C=0,直线m的方程为Dx+Ey+F=0,若l与m平行,则以下哪个条件成立?A. A/D = B/E ≠ C/FB. A/D = B/E = C/FC. A/D = B/E ≠ C/FD. A/D ≠ B/E = C/F答案:A2. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β垂直,则以下哪个条件成立?A. AE + BF + CG = 0B. AE + BF + CG ≠ 0C. AE + BF + CG = D + HD. AE + BF + CG = D - H答案:A3. 已知点P(x1, y1, z1)在平面α:Ax+By+Cz+D=0上,则以下哪个条件成立?A. Ax1+By1+Cz1+D=0B. Ax1+By1+Cz1+D≠0C. Ax1+By1+Cz1+D>0D. Ax1+By1+Cz1+D<0答案:A4. 已知直线l的参数方程为x=x0+at,y=y0+bt,z=z0+ct,其中a、b、c为直线的方向向量,若直线l与平面α:Ax+By+Cz+D=0平行,则以下哪个条件成立?A. Aa+Bb+Cc=0B. Aa+Bb+Cc≠0C. Aa+Bb+Cc=DD. Aa+Bb+Cc=-D答案:A二、填空题(每题5分,共20分)5. 已知直线l的方程为Ax+By+Cz+D=0,直线m的方程为Ex+Fy+Gz+H=0,若l与m相交,则它们的交点坐标为__________。

答案:((BF-CE)/(AF-CD), (AG-CF)/(AF-CD), (AE-BF)/(AF-CD))6. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β相交,则它们的交线方程为__________。

答案:(Ax+By+Cz+D)(EF-GH) - (Ex+Fy+Gz+H)(AF-CD) = 07. 已知点P(x1, y1, z1)到平面α:Ax+By+Cz+D=0的距离为d,则d=__________。

高等几何试卷与答案

高等几何试卷与答案

《高等几何》考试试题 A 卷( 120 分钟)题号一二三四五六七八合计分数2410101010121212100得分一、填空题( 2 分12=24 分)1、平行四边形的仿射对应图形为:平行四边形;2、直线 x15x20 上无穷远点坐标为:(5,-1,0)3、已知 (l1l 2 , l 3l 4 ) 3 ,则 (l 4l 3 , l 2 l1 )3(l1l 3 , l 2 l 4 )-24、过点 A(1,i,2)的实直线的齐次方程为: 2 x1 x305、方程 u125u1u26u220 表示的图形坐标(1,2,0)( 1,3,0)6、已知OX轴上的射影变换式为x'2x 1,则原点的对应点-1x337、求点(1, 1,0)关于二阶曲线 3x125x22x327x1 x24x1x35x2 x30 的极线方程x13x26x308、ABCD为平行四边形,过A引AE与对角线BD平行,则A( BC, DE ) = -19、一点列到自身的两射影变换a):1 2 , 2 3 , 3 4 ;b): 0 1 , 2 3 ,1 0 其中为对合的是:b10、求射影变换'210 的自对应元素的参数111、两个线束点列成透视的充要条件是底的交点自对应12、直线 2x1x2x30 上的三点A(1,3,1),B(2,5,1),C (1,2,0)的单比( ABC ) =1二、求二阶曲线的方程,它是由下列两个射影线束所决定的:x1 x3 0 与 x2' x3 0且'2'10。

由两线束的方程有:x1, 'x 2 。

x 3x 3将它们代入射影对应式并化简得,x 1x 2 2x 2 x 3 x 1 x 3 x 32 0此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10 分)证明:三点形 ABC 和三点形 A B C 内接于二次曲线( C ),设AB BC =D AB AC =EAB BC=DABAC= E , 则 C (A,B,A,B)C(A,B,A,B)所 以 ,(A,D,E,B)C (A,B ,A,B)C(A,B ,A ,B)(E ,B ,A ,D )即 (A,D,E,B) (E ,B ,A ,D )这两个点列对应点的连线 AC , C B , C A ,BC 连同这两个点列的底AB ,A B 属于同一条二级曲线 ( C ),亦即三点形 ABC 和三点形 A B C 的边外切一条二次曲线。

《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案一、单选题1. 菱形的仿射对应图形是()A 、菱形B 、平行四边形C 、正方形D 、不等边四边形答案:B2. 圆经过中心射影之后的对应图形是()A 、圆B 、椭圆C 、二次曲线D 、二共点直线答案:C3. 射影平面上所有射影变换的集合构成群,称为射影变换群,它是()A 、8维群B 、6维群C 、4维群D 、3维群答案:A4. 正六边形经过中心射影后的对应图形是()A 、正六边形B 、二次曲线C 、二平行直线D 、内接于二次曲线的六边形答案:D5. 在射影平面上,两条相交直线可以把平面分成几个区域?()A 、1B 、2C 、3D 、4答案:B6. 欧式平面内所有正交变换的集合构成群,称为正交变换群,它是()A 、3维群B 、4维群C 、6维群D 、8维群答案:A7. 双曲型曲线与无穷远直线的关系是()A 、相交B 、相切C 、相离D 、相割答案:A8. 下面属于欧式几何学的是()A 、梯形B 、离心率C 、重心D 、塞瓦定理和麦尼劳斯定理答案:B9. 直角三角形经过中心射影后的对应图形是()A 、三角形B 、等腰三角形C 、直角三角形D 、四边形答案:A10. 共点的直线经过中心射影之后的对应图形是()A 、二直线B 、二垂直直线C 、共点的直线D 、二平行直线答案:C11. 在射影平面上二阶曲线可共分为()类.A 、2B 、3C 、4D 、5答案:D12. 双曲线有几条主轴?()A 、1B 、2C 、3D 、4答案:B13. 已知两点A(2,-1,1),B(3,1,-2),下列哪一个点与它们共线?()A 、(7 ,-1 ,0)B 、(7 ,-1 ,1)C 、(5 ,0 ,2)D 、(0 ,0 ,1)答案:A14. 等腰梯形的仿射对应图形是:()A 、等腰梯形B 、梯形C 、四边形D 、平行四边形答案:B15. 对于非恒等二维射影变换下列说法错误的是()A 、是非奇线性对应B 、保持共线四点的交比不变C 、不变直线不能超过三条D 、不共线的不变点至多有三个答案:C16. 下列哪些图形具有射影性质?()A 、平行直线B 、三点共线C 、两点间的距离D 、两直线的夹角答案:B17. 圆的仿射对应图形是:()A 、梯形B 、四边形C 、椭圆D 、平行四边形答案:C18. 矩形的仿射对应图形是:()A 、四边形B 、平行四边形C 、梯形D 、圆答案:B19. 下列名称或者定理不属于仿射几何学的是A 、三角形的垂心B 、梯形C 、在平面内无三线共点的四条直线有六个交点D 、椭圆答案:A二、判断题1. 一维基本形间的射影对应不保持对应四元素的交比. ()A 、正确B 、错误答案:错误2. 两全等三角形经仿射对应后得两全等三角形()A 、正确B 、错误答案:错误3. 射影平面的不共点三直线将平面分成四部分.()A 、正确B 、错误答案:正确4. 一个角的内外角平分线调和分离角的两边()A 、正确B 、错误答案:正确5. 共线三点的单比经中心射影后不变. ()A 、正确B 、错误答案:错误6. 二直线所成角度是相似群的不变量.()A 、正确B 、错误答案:正确7. 射影平面上的一直线能将射影平面剖分成两部分. ()A 、正确B 、错误答案:错误8. 三点形经中心射影之后还是三点形.()A 、正确B 、错误答案:正确9. 在一维射影变换中,若已知一对对应元素(非自对应元素)符合对合条件,则此射影变换一定是对合. ()A 、正确B 、错误答案:正确10. 在仿射变换下,等腰三角形的对应图形是三角形. ()A 、正确B 、错误答案:正确11. 仿射变换的基本不变量是单比. ()A 、正确B 、错误答案:正确12. 抛物线有一对主轴. ()A 、正确B 、错误答案:错误13. 三角形的垂心属于仿射几何学的范畴()A 、正确B 、错误答案:错误14. 在仿射变换下,正方形的对应图形是正方形.()A 、正确B 、错误答案:错误15. 共线点的极线必共点,共点线的极点必共线()A 、正确B 、错误答案:正确16. 椭圆和双曲线的四个焦点中有二实点二虚点.()A 、正确B 、错误答案:正确17. 配极变换是一种非奇线性对应,()A 、正确B 、错误答案:正确18. 两个三角形的面积之比是仿射不变量. ()A 、正确B 、错误19. 德萨格定理属于射影几何学的范畴. ()A 、正确B 、错误答案:正确20. 二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数. ()A 、正确B 、错误答案:正确21. 菱形的仿射对应图形是四边形. ()A 、正确B 、错误答案:错误22. 两点列的底只要相交构成的射影对应就是透视对应. ()A 、正确B 、错误答案:错误23.A 、正确B 、错误答案:正确24. 两个不同的无穷远点所决定的直线上可以含有有穷远点.()A 、正确B 、错误答案:错误三、名词解释1. 图形的仿射性质答案:图形经过任何仿射变换后都不变的性质称为图形的仿射性质.2. 二次曲线的直径答案:无穷远点关于二次曲线的有穷极线称为此二次曲线的直径.3. 二次曲线的中心答案:无穷远直线关于二次曲线的极点称为此二次曲线的中心.4. 配极原则答案:如果P点的极线通过Q点,则Q点的极线也通过P点.5. 二阶曲线答案:在射影平面上,成射影对应的两个线束对应直线的交点的集合称为二阶曲线.6. 二次曲线的渐近线答案:二次曲线上的无穷远点的切线,如果不是无穷远直线,则称为二次曲线的渐近线.7. 对偶原则答案:在射影平面里,如果一个命题成立,则它的对偶命题也成立.8. 完全四点形答案:由四个点(其中无三点共线)以及连结其中任意两点的六条直线所组成的图形称为完全四点形.四、问答题1. 下列图形的仿射对应图形是什么?(1)圆;(2)等腰三角形;(3)三角形的内心;(4)两个合同的矩阵;(5)三角形的重心;(6)相似三角形;(7)三角形的垂心;(8)矩形。

高等几何模拟试题

高等几何模拟试题

《高等几何》试题(A )一、填空题(每题3分共15分)1、是仿射不变量,是射影不变量2、直线30x y 上的无穷远点坐标为3、过点(1,i,0)的实直线方程为4、二重元素参数为2与3的对合方程为5、二次曲线22611240xyy 过点(1,2)P 的切线方程二、判断题(每题2分共10分)1、两全等三角形经仿射对应后得两全等三角形()2、射影对应保持交比不变,也保持单比不变()3、一个角的内外角平分线调和分离角的两边()4、欧氏几何是射影几何的子几何,所以对应内容是射影几何对应内容的子集()5、共线点的极线必共点,共点线的极点必共线()三、(7分)求一仿射变换,它使直线210x y 上的每个点都不变,且使点(1,-1)变为(-1,2)四、(8分)求证:点(1,2,1),(1,1,2),(3,0,5)A B C 三点共线,并求,t s 使,(1,2,3)i i i c ta sb i五、(10分)设一直线上的点的射影变换是/324x xx证明变换有两个自对应点,且这两自对应点与任一对对应点的交比为常数。

六、(10分)求证:两直线所成角度是相似群的不变量。

七、(10分)(1)求点(5,1,7)关于二阶曲线222123121323236240xx x x x x x x x 的极线(2)已知二阶曲线外一点P 求作其极线。

(写出作法,并画图)八、(10分)叙述并证明德萨格定理的逆定理九、(10分)求通过两直线[1,3,1],[1,5,1]a b 交点且属于二级曲线222123420uu u的直线十、(10分)已知,,,,A B P Q R 是共线不同点,如果(,)1,(,)1,(,)PA QB QR AB PR AB 求《高等几何》试题(B )一、填空题(每题3分共15分)1、仿射变换//71424x x y yxy的不变点为2、两点决定一条直线的对偶命题为3、直线[i ,2,1-i] 上的实点为4、若交比(,)2AB CD 则(,)AD BC 5、二次曲线中的配极原则二、判断题(每题2分共10分)1、不变直线上的点都是不变点()2、在一复直线上有唯一一个实点()3、两点列的底只要相交构成的射影对应就是透视对应()4、射影群仿射群正交群()5、二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数()三、(7分)经过(3,2)(6,1)A B 和的直线AB 与直线360x y相交于P ,求()ABP 四、(8分)试证:欧氏平面上的所有平移变换的集合构成一个变换群五、(10分)已知直线1234,,,L L L L 的方程分别为:210,320,70,510x y x y x y x 求证四直线共点,并求1234(,)L L L L六、(10分)利用德萨格定理证明:任意四边形各对对边中点的连线与二对角线中点的连线相交于一点七、(10分)求(1)二阶曲线22212313230,1)x x xx x 5过点P(2,2的切线方程(2)二级曲线222123170u u u 在直线L[1,4,1] 上的切点方程八、(10分)叙述并证明德萨格定理定理(可用代数法)九、(10分)已知二阶曲线(C ):221121332460xx x x x x (1)求点(1,2,1)P 关于曲线的极线(2)求直线123360x x x 关于曲线的极点十、(10分)试证:圆上任一点与圆内接正方形各顶点连线构成一个调和线束《高等几何》试题(C )一、填空题(每题3分共15分)6、直线20xy 在仿射变换//213xx y yxy 下的像直线7、X 轴Y 轴上的无穷远点坐标分别为8、过点(1,-i ,2)的实直线方程为9、射影变换'230自对应元素的参数为10、二级曲线222123170u u u 在直线上[1,4,1]的切点方程三、判断题(每题2分共10分)1、仿射变换保持平行性不变()2、射影对应保持交比不变,也保持单比不变()3、线段中点与无穷远点调和分离两端点()4、如果P 点的极线过Q 点,则Q 点的极线也过P 点()5、不共线五点可以确定一条二阶曲线()三、(7分)已知OX 轴上的射影变换'213x xx,求坐标原点,无穷远点的对应点四、(8分)已知直线,,a c d 的方程分别为123123120,00x x x x x x x ,且2(,)3ab cd 求直线b 的方程。

高等几何练习题(附参考答案)

高等几何练习题(附参考答案)

1.求一个二维射影变换,它使点(1,0,1),(0,1,1),(1,1,1),(0,0,1)分别变为(1,0,0),(0,1,0),(0,0,1),(1,1,1)。

2. 求通过点(1,0,1),(0,1,1),(0,-1,0)且以031=-x x ,032=-x x 为切线的二次曲线的方程。

3.已知一个一维射影变换的三对对应点的参数为:0→1/2,2→5/8,1→3/5,求出此射影变换的参数对应方程和自对应点的参数。

4.给定二次曲线C: 02223222121=++-x x x x x , (1)求点P(1,1)关于二次曲线(C)的极线以及x 轴关于的二次曲线(C)极点。

(2) 判断二阶曲线(C)的类型,并求二阶曲线(C)的过点(1,0,0)的直径及其共轭直径。

5.设四直线4321,,,l l l l 的方程分别为,023,02321321=-+=+-x x x x x x,0721=-x x ,0531=-x x ,求),(4321l l l l 的值。

6. 一个一维射影对应,它使直线l 上的点)1(1P ,)2(2P,)3(3P 顺次对应直线l '上的点)1(1-'P ,)2(2-'P ,)3(3-'P,请写出该一维射影对应的非齐次表达式与齐次表达式。

7.求由两个射影线束031=-x x λ,032='-x x λ,12='+λλ所构成的二次曲线的方程。

8.已知二阶曲线c :04228233231212221=+-++-x x x x x x x x x , (1) 此二阶曲线什么类型的?其中心是什么?(2)试求此二阶曲线的渐近线。

9.求一仿射变换,使直线x+2y-1=0上的每一个点都不变,且使点(1,-1)变为点(-1,2)。

1.(15分)解:所求变换式为:3132121111x a x a x a x ++='ρ 3232221212x a x a x a x ++='ρ 3332321313x a x a x a x ++='ρ (3分) 将(1,0,1)→(1,0,0),(0,1,1)→(0,1,0),(1,1,1)→(0,0,1),(0,0,1)→(1,1,1)代入上式可解得:1:1:1:1:0:1:1:1:0::::::::333231232221131211----=a a a a a a a a a (6分)∴所求变换式为:321x x x +-='ρ 312x x x +-='ρ 3213x x x x +--='ρ (6分)2.(15分)0222233332233113222221122111=+++++x a x x a x x a x a x x a x a过点(1,0,1) 02331311=++a a a过点(0,1,1) 02332322=++a a a过点(0,-1,0) 022=a (6分)02331311=++a a a ,023323=+a a ,022=a , ∴02312=+a a ,)(33131311a a a a +-=+ (0,1,1)在曲线上,切线032=-x x ,0)()()(333232232211312=+++++x a a x a a x a a∴01312=+a a ,)(33232322a a a a +-=+∴曲线方程为023323121=+--x x x x x x x 。

大学几何学考试题及答案

大学几何学考试题及答案

大学几何学考试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是欧几里得几何的公理?A. 两点之间可以画一条直线B. 所有直角都相等C. 两点确定一条直线D. 直线外一点与直线上各点连接的线段中,垂线段最短答案:C2. 在平面几何中,一个三角形的内角和是多少?A. 180度B. 360度C. 90度D. 270度答案:A3. 以下哪个几何图形是中心对称图形?A. 正方形B. 矩形C. 等腰三角形D. 等边三角形答案:A4. 一个圆的面积公式是?A. A = πr²B. A = 2πrC. A = πrD. A = 4πr²答案:A二、填空题(每题5分,共20分)1. 一个圆的周长公式是______。

答案:C = 2πr2. 如果一个矩形的长是10cm,宽是5cm,那么它的面积是______平方厘米。

答案:503. 在直角坐标系中,点(3,4)关于x轴的对称点的坐标是______。

答案:(3,-4)4. 一个正方体的体积公式是______。

答案:V = a³三、简答题(每题10分,共30分)1. 什么是勾股定理?请给出其公式并解释其意义。

答案:勾股定理是直角三角形的两条直角边的平方和等于斜边的平方。

公式为a² + b² = c²,其中a和b是直角边,c是斜边。

这个定理说明了在直角三角形中,边长之间的关系。

2. 描述一下什么是相似三角形,并给出相似三角形的性质。

答案:相似三角形是指两个三角形的对应角相等,对应边的比例相等的三角形。

相似三角形的性质包括:对应角相等,对应边成比例,以及面积比等于对应边长比的平方。

3. 解释一下什么是圆的切线,并给出切线的性质。

答案:圆的切线是指在圆上某一点处与圆相切的直线。

切线的性质包括:切线与过该点的半径垂直,且在切点处只有一个切线。

四、计算题(每题15分,共30分)1. 给定一个半径为5cm的圆,求其周长和面积。

高考几何考试题目及答案

高考几何考试题目及答案

高考几何考试题目及答案在三角形ABC中,角A、B、C的对边分别为a、b、c。

已知a=3,b=4,角C=60°,求边c的长度。

解:根据余弦定理,我们有\[ c^2 = a^2 + b^2 - 2ab\cos C \]将已知数值代入公式,得\[ c^2 = 3^2 + 4^2 - 2 \cdot 3 \cdot 4 \cdot \cos 60° \]\[ c^2 = 9 + 16 - 24 \cdot \frac{1}{2} \]\[ c^2 = 25 - 12 \]\[ c^2 = 13 \]因此,边c的长度为\[ c = \sqrt{13} \]在直角三角形DEF中,直角边DE和EF的长度分别为5和12,求斜边DF的长度。

解:根据勾股定理,我们有\[ DF^2 = DE^2 + EF^2 \]将已知数值代入公式,得\[ DF^2 = 5^2 + 12^2 \]\[ DF^2 = 25 + 144 \]\[ DF^2 = 169 \]因此,斜边DF的长度为\[ DF = \sqrt{169} \]\[ DF = 13 \]在圆O中,弦AB和CD相交于点P,且OP垂直于AB,求弦AB和CD的长度比。

解:根据相交弦定理,我们有\[ AP \cdot PB = CP \cdot PD \]由于OP垂直于AB,所以AP = PB,设AP = PB = x,则有\[ x^2 = CP \cdot PD \]设CP = y,PD = z,则有\[ x^2 = yz \]由于AB和CD相交于点P,根据相交弦定理,我们可以得到弦AB和CD 的长度比为\[ \frac{AB}{CD} = \frac{AP + PB}{CP + PD} = \frac{2x}{y + z} \]由于x^2 = yz,我们可以将x表示为\[ x = \sqrt{yz} \]因此,弦AB和CD的长度比为\[ \frac{AB}{CD} = \frac{2\sqrt{yz}}{y + z} \]在四边形ABCD中,已知AB=CD,AD=BC,求证四边形ABCD为平行四边形。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 在欧几里得空间中,下列哪个几何体的体积是固定的?A. 球体B. 圆柱体C. 圆锥体D. 正方体答案:A2. 以下哪个是平面几何中的定理?A. 勾股定理B. 毕达哥拉斯定理C. 欧拉定理D. 费马定理答案:A3. 在三维空间中,一个点到一个平面的距离公式是什么?A. 点到平面的距离等于点到平面上任意一点的距离B. 点到平面的距离等于点到平面上垂足的距离C. 点到平面的距离等于点到平面上垂线段的长度D. 点到平面的距离等于点到平面上垂线段的长度的平方答案:B4. 以下哪个几何图形是对称的?A. 椭圆B. 抛物线C. 双曲线D. 直线答案:A二、填空题(每题5分,共20分)1. 一个圆的周长公式为__________。

答案:2πr2. 一个球体的表面积公式为__________。

答案:4πr²3. 在直角坐标系中,点(3, -4, 5)到原点的距离为__________。

答案:√(3² + (-4)² + 5²)4. 一个正四面体的体积公式为__________。

答案:(a³√2)/12,其中a是正四面体的边长。

三、解答题(每题15分,共30分)1. 证明:在欧几里得平面上,如果一个三角形的两边和这两边的夹角相等,那么这个三角形是等腰三角形。

证明:设三角形ABC中,AB=AC,∠BAC=∠BCA。

根据等腰三角形的性质,我们知道在等腰三角形中,两腰相等的三角形,其底角也相等。

因此,∠ABC=∠ACB。

由于∠BAC=∠BCA,所以∠ABC=∠ACB=∠BAC。

这表明三角形ABC的所有内角都相等,即每个角都是60°。

因此,三角形ABC是一个等边三角形,也是等腰三角形。

2. 计算:在三维空间中,给定一个点P(2, -3, 4)和一个平面方程3x - 4y + 5z = 6,求点P到该平面的距离。

高等几何测试题及答案

高等几何测试题及答案

高等几何测试题及答案一、选择题(每题5分,共20分)1. 在三维空间中,以下哪个几何体的体积是最小的?A. 正方体B. 球体C. 圆柱体D. 圆锥体答案:D2. 以下哪个定理是关于直线与平面关系的?A. 勾股定理B. 泰勒斯定理C. 毕达哥拉斯定理D. 欧拉定理答案:B3. 在欧几里得几何中,以下哪个图形是不可测量的?A. 线段B. 角度C. 面积D. 体积答案:B4. 以下哪个几何概念与曲面的曲率有关?A. 向量B. 张量C. 标量D. 矢量答案:B二、填空题(每题5分,共20分)1. 一个球体的表面积公式是_______。

答案:4πr²2. 一个圆柱体的体积公式是_______。

答案:πr²h3. 欧拉特征数对于一个球体的值是_______。

答案:24. 一个圆锥体的侧面积公式是_______。

答案:πrl三、解答题(每题15分,共30分)1. 证明:在三维空间中,任何两个不同平面的交线都是一条直线。

答案:略2. 解释并证明高斯-博内定理在曲面上的适用性。

答案:略四、计算题(每题15分,共30分)1. 计算半径为3的球体的体积。

答案:4/3π(3)³ = 36π2. 计算底面半径为4,高为5的圆柱体的表面积。

答案:2π(4)² + 2π(4)(5) = 32π + 40π = 72π结束语:以上为高等几何测试题及答案,希望同学们通过这些题目能够更好地理解和掌握高等几何的基本概念和定理。

高等几何_习题集(含答案)

高等几何_习题集(含答案)

《高等几何》课程习题集一、计算题11. 设点A (3,1,2),B (3,-1,0)的联线与圆x 2+y 2-5x -7y +6=0相交于两点C 和D ,求交点C ,D 及交比(AB ,CD )。

2. 将一维笛氏坐标与射影坐标的关系:,0(1)x x αβλαδγβγδ+=-≠+以齐次坐标表达。

3. 求射影变换11221231234,63,(1)x x x x x x x x x x ρρρ'=-⎧⎪'=-⎨⎪'=--⎩的二重元素。

4. 试求四直线2x -y+1=0,3x+y -2=0, 7x -y=0,5x -1=0顺这次序的交比。

5. 已知线束中的三直线a ,b ,c 求作直线d 使(ab ,cd )=-1。

6. (i )求变换:x'=21x x -,y'=21yx -的二重点。

(ii )设O 为原点,P 为直线x=1上任一点,m'为直线OP 上一点M 的对应点, 求交比(OP ,MM');(iii )从这个交比得出什么结论?解出逆变换式以验证这结论。

7. 设P 1,P 2,P 4三点的坐标为(1,1,1),(1,-1,1),(1,0,1)且(P 1P 2, P 3P 4)=2,求点P 3的坐标。

8. 在直线上取笛氏坐标为 2,0,1的三点作为射影坐标系的A 1,A 2, E (i)求此直线上任一点P 的笛氏坐标x 与射影坐标λ的关系;(ii )问有没有一点,它的两种坐标相等?9. 直线上顺序四点A 、B 、C 、D 相邻两点距离相等,计算这四点形成的六个交比的值。

10. 设点列上以数x 为笛氏坐标的点叫做x ,试求一射影对应,使点列上的三点1,2,3对应于点列上三点0,3,2;11. 从变换式112321233123,,(1)x x x x x x x x x x x x ρρρ'=-++⎧⎪'=-+⎨⎪'=+-⎩求出每一坐标三角形的三边在另一坐标系下的方程 12. 求四点(2,1,-1),(1,-1,1),(1,0,0),(1,5,-5)顺这次序的交比。

高等几何试题推荐及答案

高等几何试题推荐及答案

高等几何试题推荐及答案1. 已知一个正四面体的边长为 \(a\),求其体积。

答案:正四面体的体积 \(V\) 可以通过以下公式计算:\[ V = \frac{a^3 \sqrt{2}}{12} \]2. 求证:在球面上任意两点的最短距离是这两点之间的大圆弧。

答案:设球面上的两点为 \(A\) 和 \(B\),球心为 \(O\),球半径为 \(R\)。

设 \(AB\) 与球心 \(O\) 连线交于点 \(C\)。

根据球面距离的性质,\(AC + CB\) 为 \(A\) 和 \(B\) 之间的大圆弧。

根据球面三角形的性质,\(AC + CB \leq AB\)。

当且仅当 \(A\)、\(B\)、\(C\) 共线时,等号成立,即 \(AB\) 为大圆弧。

3. 已知一个圆锥的底面半径为 \(r\),高为 \(h\),求圆锥的侧面积。

答案:圆锥的侧面积 \(A\) 可以通过以下公式计算:\[ A = \pi r l \]其中 \(l\) 为圆锥的母线长度,可以通过勾股定理计算得到:\[ l = \sqrt{r^2 + h^2} \]4. 求证:如果一个平面与一个球相交,那么交线是一个圆。

答案:设平面与球相交,设球心为 \(O\),球半径为 \(R\),平面与球相交的圆心为 \(C\),圆半径为 \(r\)。

因为平面与球相交,所以 \(OC\) 垂直于交线。

根据球心到平面的距离 \(d\) 与球半径 \(R\) 和圆半径 \(r\) 的关系:\[ d^2 + r^2 = R^2 \]由于 \(d\) 为常数,\(r\) 也为常数,所以交线是一个圆。

5. 已知一个圆柱的底面半径为 \(r\),高为 \(h\),求圆柱的体积。

答案:圆柱的体积 \(V\) 可以通过以下公式计算:\[ V = \pi r^2 h \]6. 求证:在三维空间中,任意两条相交直线确定一个平面。

答案:设两条相交直线为 \(L_1\) 和 \(L_2\),交点为 \(P\)。

高中几何体试题及答案大全

高中几何体试题及答案大全

高中几何体试题及答案大全试题一:直线与平面的关系题目:在空间直角坐标系中,直线l过点A(1, 2, 3)且与向量(2, -1, 0)平行。

求证:直线l与平面x - 2y + z = 6平行。

答案:首先,直线l的参数方程可以表示为:\[ x = 1 + 2t, \quad y = 2 - t, \quad z = 3 \]其中\( t \)为参数。

接下来,将直线l的参数方程代入平面方程x - 2y + z = 6,得到:\[ (1 + 2t) - 2(2 - t) + 3 = 6 \]\[ 1 + 2t - 4 + 2t + 3 = 6 \]\[ 4t = 6 \]\[ t = \frac{3}{2} \]由于直线l的参数方程中,参数\( t \)可以取任意实数,而代入平面方程后,\( t \)有唯一解,这表明直线l与平面x - 2y + z = 6平行。

试题二:立体几何体积计算题目:一个正方体的边长为a,求其外接球的体积。

答案:正方体的外接球的直径等于正方体的对角线长度,即:\[ 2R = a\sqrt{3} \]其中\( R \)为外接球的半径。

由此可得外接球的半径为:\[ R = \frac{a\sqrt{3}}{2} \]球的体积公式为:\[ V = \frac{4}{3}\pi R^3 \]代入\( R \)的值,得到正方体外接球的体积为:\[ V = \frac{4}{3}\pi \left(\frac{a\sqrt{3}}{2}\right)^3 =\frac{\pi a^3\sqrt{3}}{2} \]试题三:圆锥曲线问题题目:已知椭圆的方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \),其中a > b > 0。

求椭圆的焦点坐标。

答案:椭圆的焦点位于主轴上,根据椭圆的性质,焦点到椭圆中心的距离为c,满足以下关系:\[ c^2 = a^2 - b^2 \]假设焦点位于x轴上,焦点的坐标为\( (c, 0) \)和\( (-c, 0) \)。

高等几何试题及答案

高等几何试题及答案

试卷类型: A高等几何使用专业年级 考试方式:开卷( )闭卷( √ ) 共 6 页题号 一 二 三 四 五 六 合计 得分一、 填空题(每小题4 分,共 20 分) 1、设 P 1 (1), 2P (-1), 3P ( )为共线三点,则 ( 1P 2P 3P ) 。

2、写出德萨格定理的对偶命题:。

3、若共点四直线 a,b,c,d 的交比为(ab,cd)=-1,则交比(ad,bc)=______。

4、平面上 4 个变换群,射影群,仿射群,相似群,正交群的大小关系为:。

5、二次曲线的点坐标方程为 4xx x 2 0,则其线坐标方程为是 。

二、 选择题 (每小题 2 分,共 10 分)1.下列哪个图形是仿射不变图形? ( )A.圆B.直角三角形C.矩形D.平行四边形2. u 12 2u 1u 2 8u 22表示( ) A.以-1/4 为方向的无穷远点和以 1/2 为方向的无穷远点名姓 号学 班 业专 系1 3 2┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ 线┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ 封┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ 密┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉B. 以-4 为方向的无穷远点和以 2 为方向的无穷远点C. 以4 为方向的无穷远点和以-2 为方向的无穷远点D. 以 1/4 为方向的无穷远点和以-1/2 为方向的无穷远点3.两个不共底且不成透视的射影点列至少可以由几次透视对应组成? ( )A.一次B.两次C.三次D.四次4.下面的名称或定理分别不属于仿射几何学有 ( ):A. 三角形的垂心B. 梯形C.在平面内无三线共点的四条直线有六个交点D.椭圆5.二次曲线按射影分类总共可分为( )A.4 类B.5 类C.6 类D.8 类三、判断题(每小题 2 分,共 10 分)1.仿射对应不一定保持二直线的平行性。

()2.两直线能把射影平面分成两个区域。

()3.当正负号任意选取时,齐次坐标(1,1,1)表示两个相异的点。

高等几何试卷及答案

高等几何试卷及答案

【高等几何】考试试题A 卷〔120分钟〕一、填空题〔2分⨯12=24分〕1、平行四边形的仿射对应图形为: 平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: 〔5,-1,0〕3、3),(4321=l l l l ,那么=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 〔1,2,0〕 〔1,3,0〕 6、OX 轴上的射影变换式为312'+-=x x x ,那么原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,那么),(DE BC A = -1 9、一点列到自身的两射影变换a 〕:21→,32→,43→; b 〕:10→,32→,01→ 其中为对合的是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1二、求二阶曲线的方程,它是由以下两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x x x x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,那么它们也同时外切于一条二次曲线。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案试题一:已知三角形ABC中,AB = AC,D为BC边中点,AD的延长线交BC于点E,且DE = DC。

证明:∠ABC = ∠ACD。

解析:首先,根据已知条件可得到以下几个等式:AB = ACDE = DC我们需要证明∠ABC = ∠ACD。

为了证明这个等式,我们可以利用三角形的相似性。

设∠ABC = α,∠ACD = β。

根据三角形ABC中的角度和为180°,我们可以得到∠BAC = 180°- 2α。

同样地,根据三角形ACD中的角度和为180°,我们可以得到∠CAD = 180° - 2β。

接下来,我们分别观察三角形ABD和三角形ACD。

在三角形ABD中,根据角度和的性质可得∠BAD = 180° - ∠BDA - ∠ABD = 180° - (180° - 2α) - α = α。

同时根据三角形ABD中的角度和为180°,我们可以得到∠ADB = 180° - ∠ABD - ∠BAD = α。

在三角形ACD中,根据角度和的性质可得∠CAD = 180° - ∠CDA - ∠ACD = 180° - (180° - 2β) - β = β。

同时根据三角形ACD中的角度和为180°,我们可以得到∠ACD = 180° - ∠ACD - ∠ACD = β。

由于 DE = DC,根据等腰三角形的性质可知三角形ACD和三角形CDE相似。

因此,我们可以得到以下等式:AC/CD = CD/DEAC/BC = BC/DC将已知条件代入上述等式,得到:AB/BC = BC/DCAB = AC由于 AB = AC,且 BC = BC,根据全等三角形的性质可知三角形ABC和三角形ACD全等。

因此,我们可以得到∠ABC = ∠ACD。

综上所述,已证明∠ABC = ∠ACD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等几何》试题(1)1. 试确定仿射变换,使y 轴,x 轴的象分别为直线01=++y x ,01=--y x ,且点(1,1)的象为原点.(51')2. 利用仿射变换求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知A (1,2,3),B (5,-1,2),C (11,0,7),D (6,1,5),验证它们共线,并求(CD AB ,)的值.(8')6. 设1P (1,1,1),2P (1,-1,1),4P (1,0,1)为共线三点,且(4321,P P P P )=2,求3P 的坐标.(21')7. 叙述并证明帕普斯(Pappus)定理.(01')8.一维射影对应使直线l 上三点P (-1),Q (0),R (1)顺次对应直线l '上三点P '(0),Q '(1),R '(3),求这个对应的代数表达式.(01')9.试比较射影几何、仿射几何、欧氏几何的关系.(01')《高等几何》试题(2)1.求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 叙述笛沙格定理,并用代数法证之.(51')3.求证a (1,2,-1) ,b (-1,1,2),c (3,0,-5)共线,并求l 的值,使).3,2,1(=+=i mb la c i i i (01')4.已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x ,01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 5.试比较欧氏、罗氏、黎氏几何的关系. (01') 6.试证两个点列间的射影对应是透视对应的充要条件是它们底的交点自对应. (01')7.求两对对应元素,其参数为121→,0→2,所确定对合的参数方 程. (01')8.两个重叠一维基本形B A B A λλ'++,成为对合的充要条件是对应点的参数λ与λ'满足以下方程: )0(0)(2≠-=+'++'b ad d b a λλλλ (51')《高等几何》试题(3)1. 求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x , 01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 6. 在一维射影变换中,若有一对对应元素符合对合条件,则这个射影变换一定是对合. (51')7. 试比较射影几何、仿射几何、欧氏几何的关系, 试比较欧氏、罗氏、黎氏几何的关系. (02')[2005—2006第二学期期末考试试题]《高等几何》试题(A )一、 填空题(每题3分共15分)1、 是仿射不变量, 是射影不变量2、 直线30x y +=上的无穷远点坐标为3、 过点(1,i,0)的实直线方程为4、 二重元素参数为2与3的对合方程为5、 二次曲线22611240x y y -+-=过点(1,2)P 的切线方程二、 判断题(每题2分共10分)1、两全等三角形经仿射对应后得两全等三角形 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、一个角的内外角平分线调和分离角的两边 ( )4、欧氏几何是射影几何的子几何,所以对应内容是射影几何对应内容的子集 ( )5、共线点的极线必共点,共点线的极点必共线 ( )三、(7分)求一仿射变换,它使直线210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2)四、(8分)求证:点 (1,2,1),(1,1,2),(3,0,5)A B C --三点共线,并求,t s使,(1,2,3)i i i c ta sb i =+=五、(10分)设一直线上的点的射影变换是/324x x x +=+证明变换有两个自对应点,且这两自对应点与任一对对应点的交比为常数。

六、(10分)求证:两直线所成角度是相似群的不变量。

七、(10分)(1)求点(5,1,7)关于二阶曲线222123121323236240x x x x x x x x x ++---=的极线(2)已知二阶曲线外一点P 求作其极线。

(写出作法,并画图)八、(10分)叙述并证明德萨格定理的逆定理九、(10分)求通过两直线[1,3,1],[1,5,1]a b -交点且属于二级曲线222123420u u u +-=的直线十、(10分)已知,,,,A B P Q R 是共线不同点,如果(,)1,(,)1,(,)PA QB QR AB PR AB =-=-求《高等几何》试题(B )一、 填空题(每题3分共15分)1、 仿射变换//71424x x y y x y ⎧=-+⎨=++⎩的不变点为 2、 两点决定一条直线的对偶命题为3、 直线[i ,2,1-i] 上的实点为4、 若交比(,)2AB CD = 则(,)AD BC =5、 二次曲线中的配极原则二、判断题(每题2分共10分)1、不变直线上的点都是不变点 ( )2、在一复直线上有唯一一个实点 ( )3、两点列的底只要相交构成的射影对应就是透视对应 ( )4、射影群⊃仿射群⊃正交群 ( )5、二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数 ( )三、(7分)经过(3,2)(6,1)A B -和的直线AB 与直线360x y +-=相交于P ,求 ()ABP四、(8分)试证:欧氏平面上的所有平移变换的集合构成一个变换群五、(10分)已知直线1234,,,L L L L 的方程分别为:210,320,70,510x y x y x y x -+=+-=-=-=求证四直线共点,并求1234(,)L L L L六、(10分)利用德萨格定理证明:任意四边形各对对边中点的连线与二对角线中点的连线相交于一点七、(10分)求(1)二阶曲线22212313230x x x x x -+-=过点的切线方程 (2)二级曲线222123170u u u +-=在直线L[1,4,1] 上的切点方程八、(10分)叙述并证明德萨格定理定理(可用代数法)九、(10分)已知二阶曲线(C ):221121332460x x x x x x +++=(1) 求点(1,2,1)P 关于曲线的极线(2) 求直线123360x x x -+=关于曲线的极点十、(10分)试证:圆上任一点与圆内接正方形各顶点连线构成一个调和线束《高等几何》试题(C )一、填空题(每题3分共15分)6、 直线20x y +-=在仿射变换//213x x y y x y ⎧=+-⎨=-+⎩下的像直线 7、 X 轴Y 轴上的无穷远点坐标分别为8、 过点(1,-i ,2)的实直线方程为9、 射影变换'230λλλ--=自对应元素的参数为10、 二级曲线222123170u u u +-=在直线上[1,4,1]的切点方程三、 判断题(每题2分共10分)1、仿射变换保持平行性不变 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、线段中点与无穷远点调和分离两端点 ( )4、 如果P 点的极线过Q 点,则Q 点的极线也过P 点 ( )5、不共线五点可以确定一条二阶曲线 ( )三、(7分)已知OX 轴上的射影变换'213x x x -=+,求坐标原点,无穷远点的对应点四、(8分)已知直线,,a c d 的方程分别为123123120,00x x x x x x x +-=-+==, 且2(,)3ab cd =-求直线b 的方程。

五、(10 分)已知同一直线上的三点,,A B C 求一射影变换使此三点顺次变为,,B C A 并判断变换的类型,六、(10分)求证:两直线所成角度是相似群的不变量。

七、(10分)求射影变换'112'22'33x x x x x x x ρρρ⎧=+⎪=⎨⎪=⎩的不变点坐标八、(10分)叙述并证明帕斯卡定理九、(10分)求通过两直线[1,3,1],[1,5,1]a b -交点且属于二级曲线222123420u u u +-=的直线十、(10分)试证:双曲型对合的任何一对对应元素 'P P →,与其两个二重元素E,F 调和共轭即(',PP EF )=-1[参考答案] 高等几何标准答案(A )一、 填空题:(每空3分共15分)1、单比,交比2、(1,-3,0)3、30x =4、''25()120λλλλ-++=5、123127260x x x +-=二、判断题(每题2分共10分)1、错,2、错,3、对,4、错,5、对三、解:在直线210x y +-=上任取两点(1,0),(1,1)A B - 2分由(1,0)(1,0),(1,1)(1,1),(1,1)(1,2)A A B B →-→--→- 设仿射变换为'111213'212223x a x a y a y a x a y a ⎧=++⎨=++⎩ 将点的坐标代入可解得 ''22133222x x y y x y ⎧=+-⎪⎨=--+⎪⎩ 7分四、证明:因为1211120305--=- 所以三点共线 4分 由:3,20,25t s t s t s -=+=-+=- 解得 1,2t s ==-所以 12,(1,2,3)i i c a b i =-= 8分 五、证明:令''232204x x x x x x x +==+-=+由得 解得121,2x x ==- 即有两个 自对应点 4分设k 与'324k k k +=+ 对应,有'5((1)(2),)2kk -=为常数 10分 注:结果 有25也对,不过顺序有别。

六、证明:设两直线为:1122:,:a y k x b b y k x b =+=+相似变换为:''''x a x by c y bx ay d⎧=++⎨=-++⎩ 220a b +≠ 将变换代入直线a 的方程得:''121212k a b k a b k k a k b a k b++==--同理可得 5分 ''2121''212111k k k k k k k k --∴=++ 即''tan ,tan ,a b a b <>=<> 即两直线的夹角是相似群的不变量 10分七、解:(1)设(5,1,7)为P 点坐标, 二阶曲线矩阵为A=231332121--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以点P 的极线为S P =0即 123231(5,1,7)3320121P x S x x --⎛⎫⎛⎫ ⎪⎪=--= ⎪⎪ ⎪⎪--⎝⎭⎝⎭得 x 2=0 5分(2)略八(在后边)九、解:通过直线[1,3,1],[1,5,1]a b -的交点的直线的线坐标为[1,35,1]k k k ++- 2分若此直线属于二阶曲线则有 2224(1)(35)2(1)0k k k +++--=即 22742110k k ++= 解得111,39k k =-=- 10分 十、解:设123,,P A k B Q A k B R A k B =+=+=+由1122(,)1,(,)1(,)(,)(,)2,2PA QB PA QB PQ AB k AB PQ PQ AB k k k =-=-====得 由2323(,)1,(,)1k qr ab AB QR k k k =-==-⇒=-得 所以13(,)(,)2k PR AB AB PR k ===- 10分八、德萨格定理的逆定理:如果两个三点形的对应边的交点共线,则对应顶点的连线共点。

相关文档
最新文档