单片机课程设计——基于51单片机的温度控制系统设计

合集下载

单片机恒温箱温度控制系统的设计说明

单片机恒温箱温度控制系统的设计说明

课程设计课题:单片机培养箱温控系统设计本课程设计要求:温度控制系统基于单片机,实现对温度的实时监控,实现控制的智能化。

设计了培养箱温度控制系统,配备温度传感器,采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数字传输,采用PID控制技术,可保持温度在要求的恒定范围内,配备键盘输入设定温度;配备数码管L ED显示温度。

技术参数及设计任务:1、使用单片机AT89C2051控制温度,使培养箱保持最高温度110 ℃ 。

2、培养箱温度可预设,干燥过程恒温控制,控温误差小于± 2℃.3、预设时显示设定温度,恒温时显示实时温度。

采用PID控制算法,显示精确到0.1℃ 。

4、当温度超过预设温度±5℃时,会发出声音报警。

和冷却过程没有线性要求。

6、温度检测部分采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数传7 、人机对话部分由键盘、显示器、报警三部分组成,实现温度显示和报警。

本课程设计系统概述一、系统原理选用AT89C2051单片机作为中央处理器,通过温度传感器DS18B20采集培养箱的温度,并将采集的信号传送给单片机。

驱动培养箱的加热或冷却。

2、系统整体结构总体设计应综合考虑系统的总体目标,进行初步的硬件选型,然后确定系统的草案,同时考虑软硬件实现的可行性。

经过反复推敲,总体方案确定以爱特梅尔公司推出的51系列单片机为温度智能控制系统核心,选用低功耗、低成本的存储器、数显等元器件。

总体规划如下:图1 系统总体框图2、硬件单元设计一、单片机最小系统电路Atmel公司的AT2051作为89C单片机,完全可以满足本系统所需的采集、控制和数据处理的需要。

单片机的选择在整个系统设计中非常重要。

该单片机具有与MCS-51系列单片机兼容性高、功耗低、可在接近零频率下工作等诸多优点。

广泛应用于各种计算机系统、工业控制、消费类产品中。

AT 89C2051 是 AT89 系列微控制器中的精简产品。

基于单片机的水温控制系统课程设计

基于单片机的水温控制系统课程设计

基于单片机的水温控制系统第1节引言水温控制在工业及日常生活中应用广泛,分类较多,不同水温控制系统的控制方法也不尽相同,其中以PID控制法最为常见。

单片机控制部分采用AT89C51单片机为核心,采用软件编程,实现用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。

然而,单纯的PID算法无法适应不同的温度环境,在某个特定场合运行性能非常良好的温度控制器,到了新环境往往无法很好胜任,甚至使系统变得不稳定,需要重新改变 PID 调节参数值以取得佳性能。

本文首先用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。

然后在模型参考自适应算法 MRAC基础上,用单片机实现了自适应控制,弥补了传统 PID控制结构在特定场合下性能下降的不足,设计了一套实用的温度测控系统,使它在不同时间常数下均可以达到技术指标。

此外还有效减少了输出继电器的开关次数,适用于环境参数经常变化的小型水温控制系统。

1.1水温控制系统概述温度控制是无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,过低的温度或过高的温度都会使水资源失去应有的作用,从而造成水资源的巨大浪费。

特别是在当前全球水资源极度缺乏的情况下,我们更应该掌握好对水温的控制,把身边的水资源好好地利用起来。

在现代冶金、石油、化工及电力生产过程中,温度是极为重要而又普遍的热工参数之一。

在环境恶劣或温度较高等场合下,为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度、节约能源,要求对加热炉炉温进行测、显示、控制,使之达到工艺标准,以单片机为核心设计的炉温控制系统,可以同时采集多个数据,并将数据通过通讯口送至上位机进行显示和控制。

那么无论是哪种控制,我们都希望水温控制系统能够有很高的精确度(起码是在满足我们要求的范围内),帮助我们实现我们想要的控制,解决身边的问题。

在计算机没有发明之前,这些控制都是我们难以想象的。

而当今,随着电子行业的迅猛发展,计算机技术和传感器技术的不断改进,而且计算机和传感器的价格也日益降低,可靠性逐步提高,用信息技术来实现水温控制并提高控制的精确度不仅是可以达到的而且是容易实现的。

基于51单片机的温度报警控制系统报告

基于51单片机的温度报警控制系统报告

报告评分批改老师《现代电子综合实验》课程设计报告基于单片机的温度检测控制系统设计学生姓名 学 号专 业 班 级同组学生 提交日期 年 月 日指导教师目录2一、实验目的 .....................................................................................2二、实验要求 .....................................................................................2三、实验开发环境及工具 ...........................................................................2四、按键扫描和液晶显示功能实现 ...................................................................24.1矩阵键盘电路 ...............................................................................4.1.1矩阵键盘电路简介 .....................................................................224.1.2矩阵式按键扫描原理 ...................................................................24.1.3 按键扫描子程序设计思想及流程图 ......................................................34.2 LCD1602显示电路 ..........................................................................34.2.1 LCD1602模块简介 ....................................................................34.2.2 LCD1602模块引脚说明 .................................................................4.2.3 LCD1602控制方式及指令 ..............................................................344.2.4 LCD1602液晶显示子程序设计思想及流程图 ..............................................5五、基于单片机的温度检测控制系统设计过程 .........................................................55.1 系统整体电路框图及功能说明 ................................................................55.2 DS18B20数字温度传感器电路 ..............................................................55.2.1 单总线通信方式简介 ..................................................................65.2.2 DS18B20简介 ......................................................................5.2.3 DS18B20读写操作 ..................................................................665.3 声光报警及控制电路 ........................................................................75.4 软件设计 ..................................................................................5.4.1 主程序设计流程图 ....................................................................775.4.2 DS18B20子程序设计思想及流程图 ...................................................85.4.3 声光报警子程序设计思想及流程图 .....................................................9七、 实验过程及实验结果 ...........................................................................9八、实验中遇到的问题及解决方法 ...................................................................10附件 ............................................................................................一、实验目的(1). 掌握单片机应用系统的设计方法与步骤;(2).掌握硬件电路各功能模块的工作原理、应用电路与编程方法;(3).熟练掌握单总线的应用及编程;(4). 掌握基于单片机的温度检测控制系统的设计与实现。

基于单片机的温度控制系统课程设计报告书

基于单片机的温度控制系统课程设计报告书

单片机课程设计报告书(基于单片机的温度控制系统)学院(系):电子与信息工程学院年级专业:电子信息工程学号: 1学生:三指导教师:**教师职称:教授成绩:制作日期 2014 年 12月 20 日目录摘要 (1)引言 (2)第一章系统设计 (2)1.1 设计任务 (2)1.2 设计目的 (2)1.3 设计思路 (2)第二章硬件系统设计 (4)2.1系统方框图 (4)2.2各部分及其实现的功能 (4)第三章软件设计 (16)3.1程序流程图 (16)3.2 温度传感器流程图程图 (17)第四章仿真与调试 (18)4.1 软件电路故障与解决办法 (18)4.2 软件调试方法 (18)4.3 仿真后,部分显示成果 (19)第五章设计总结 (22)第六章参考文献 (23)附录一 (24)附录二 (25)附录三 (36)基于单片机STC89C51的温度显示系统的设计三峡学院电子与信息工程学院 12电子信息工程(职教师资)摘要:以AT89C51单片机为核心,的数字温度测量及自动控制系统的设计,该温度控制器可以实时显示和设定温度,实现对温度的自动控制。

其组成部分为:AT89S51单片机、DS18B20智能数字温度传感器、键盘与显示电路、温度控制电路。

高精度的DS18B20温度传感器作为温度检测元件,LED数码管并行动态显示作为显示电路,单片机通过对信号进行相应处理,从而实现对所测温度进行控制。

当温度比设定温度小时,当温度大于等于设定温度时,控制器断开电加热设备。

此外,文中还介绍了该温度控制器的软件设计部分,主要模块包括:数码管显示程序、按键处理程序、温度信号处理程序。

主程序通过调用各个上述子程序来完成所有的温度控制器功能。

在此基础上本文还提出了系统软硬件抗干扰措施和系统软硬件及整机调试方案。

该温度控制器具有控制方便、简单的特点,可以实现对温度的高精度控制,并且可以提高被控系统的技术指标。

关键词:单片机;温度传感器;寄存器;引言随着电子技术,特别是随大规模集成电路的产生而出现的微型计算机技术的飞速发展,人类生活发生了根本性的改变。

基于51单片机的冰箱温度智能控制系统的课程设计

基于51单片机的冰箱温度智能控制系统的课程设计

一.电冰箱的系统组成 ............................................4 二.工作原理: ..................................................6 三.本系统采用单片机控制的电冰箱主要功能及要求: ................6 第二章硬件部分......................................................7 一.系统结构图 ..................................................7 二.微处理器(单片机) ..........................................7 三.温度传感器 .................................................12 四.电压检测装置 ...............................................16 五.功能按键 ...................................................16 六.压缩机,风机、电磁阀控制 ...................................17 七.故障报警电路 ...............................................17 第三章 软件部分....................................................17 一、主程序:MAIN ...............................................18 二、初始化子程序:INTI1 ........................................22 三、键盘扫描子程序:KEY ........................................23 四.打开压缩机子程序:OPEN .....................................26 五.关闭压缩机:CLOSE ..........................................27 六.定时器 0 中断程序:用于压缩机延时 ...........................28 七.延时子程序 .................................................29 第四章 分析与结论..................................................29 致 谢.............................................................29

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

基于51单片机的水温自动控制系统沈统摘要:在现代化的工业生产中,温度是常用的测量机被控参数。

本水温控制系统采用AT89C51为核心控制器件,实现对水温在30℃到96℃的自动控制。

由精密摄氏温度传感器LM35D构成前置信号采集和调理电路,过零检测双向可控硅输出光电耦合器MOC3041构成后向控制电路,由74LS164和LED数码管构成两位静态显示用于显示实时温度值。

关键词:89C51单片机;LM35D温度传感器;ADC0809;MOC3041光电藕耦合器;水温自动控制0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。

而智能化的控制系统成为一种发展的趋势。

本文所阐述的就是一种基于89C51单片机的温度控制系统。

本温控系统可应用于温度范围30℃到96℃。

1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。

1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。

(2)当液位低于某一值时,停止加热。

(3)用AD转换器把采集到的模拟温度值送入单片机。

(4)无竞争-冒险,无抖动。

1.3技术指标(1)温度显示误差不超过1℃。

(2)温度显示范围为0℃—99℃。

(3)程序部分用PID算法实现温度自动控制。

(4)检测信号为电压信号。

2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。

AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。

其引脚图如图1所示。

2.2显示系统分析与论证显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。

在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。

单片机课程设计——基于51单片机的温度控制系统设计

单片机课程设计——基于51单片机的温度控制系统设计

. . .. . .单片机课程设计报告题目:温度控制系统设计学院:通信与信息工程学院专业:测控技术与仪器专业班级:测控三班成员:徐郡二〇一四年六月十二日一、引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

对于不同场所、不同工艺、所需温度高低围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。

随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。

利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。

作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本系统利用传感器与单片机相结合,应用性比较强,本系统可以作为仓库温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。

课题主要任务是完成环境温度监测,利用单片机实现温度监测并通过报警信号提示温度异常。

本设计具有操作方便,控制灵活等优点。

本设计系统包括单片机,温度采集模块,显示模块,按键控制模块,报警和指示模块五个部分。

文中对每个部分功能、实现过程作了详细介绍。

整个系统的核心是进行温度监控,完成了课题所有要求。

二、实验目的和要求2.1学习DS18B20温度传感芯片的结构和工作原理。

2.2掌握LED数码管显示的原理及编程方法。

2.3掌握独立式键盘的原理及使用方法。

2.4掌握51系列单片机数据采集及处理的方法。

单片机课程设计基于单片机的温度控制系统设计

单片机课程设计基于单片机的温度控制系统设计

02 单片机基础知识
单片机的定义和作用
定义:单片机 是一种集成电 路芯片,将微 处理器、存储 器、输入/输出 接口等集成在 一个芯片上。
作用:单片机 广泛应用于各 种电子设备中, 如家电、汽车、 工业控制等领 域,实现对设 备的控制和操
作。
特点:体积小、 功耗低、可靠 性高、编程方
便等。
应用:在温度 控制系统设计 中,单片机可 以实时监测和 控制温度,实 现对温度的精
试等
温度数据采集与处理
温度传感器:用于采集环境温度数据 单片机:处理温度数据,控制加热或制冷设备 数据处理:将温度数据转换为可识别的信号 控制策略:根据温度数据调整加热或制冷设备的工作状态
温度控制输出实现
温度传感器:用于检测环境 温度
单片机控制:通过单片机控 制温度传感器和执行器
执行器:用于调节环境温度
温度控制算法:实现温度控 制的核心算法,如PID控制
算法
05 系统调试与性能测试
系统调试方法与步骤
硬件连接:确 保所有硬件设 备正确连接, 如单片机、温 度传感器、显
示设备等。
软件调试:编 写并调试单片 机程序,确保 其能够正确读 取温度传感器 数据并控制显
示设备。
性能测试:在 特定温度环境 下,测试系统 的响应速度和 准确性,以及 稳定性和可靠
问题:硬件资源不足 解决方案:优化硬件配置,提高系统性能 解决方案:优化硬件配置,提高系统性能
问题:系统稳定性差 解决方案:增加系统自检功能,提高系统稳定性 解决方案:增加系统自检功能,提高系统稳定性
创新点与特色功能实现
创新点:采用 单片机控制, 实现温度自动
调节
特色功能:具 有温度报警功 能,超过设定 温度时发出警

51单片机温度课程设计

51单片机温度课程设计

51单片机温度课程设计一、课程目标知识目标:1. 理解51单片机的结构与原理,掌握温度传感器与单片机的连接方法;2. 学会编写程序,实现温度的采集、处理和显示;3. 了解温度控制系统的基本原理及其在实际应用中的重要性。

技能目标:1. 能够正确使用万用表、编程器等工具,进行单片机与温度传感器的连接;2. 掌握C语言编程,实现温度数据的采集、处理和显示;3. 能够分析温度控制系统的性能,提出优化方案。

情感态度价值观目标:1. 培养学生动手实践能力,激发创新精神,增强解决实际问题的自信心;2. 培养团队合作精神,提高沟通与协作能力;3. 增强学生对我国电子产业的了解,提高国家认同感和自豪感。

课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的动手能力和实际操作技能。

学生特点:学生具备一定的电子基础知识,对单片机有一定了解,但实际操作经验不足。

教学要求:教师需采用讲解、示范、指导相结合的教学方法,引导学生主动参与实践,提高学生的实际操作能力。

同时,注重培养学生分析问题和解决问题的能力,达到学以致用的目的。

通过本课程的学习,使学生能够将所学知识应用于实际项目中,为未来的职业发展打下坚实基础。

二、教学内容1. 理论知识:- 51单片机基础知识:介绍51单片机的结构、工作原理及特点;- 温度传感器原理:讲解温度传感器的工作原理、种类及其与单片机的连接方法;- C语言编程:复习C语言基础知识,重点讲解与51单片机相关的编程技巧。

2. 实践操作:- 硬件连接:指导学生使用万用表等工具,完成温度传感器与51单片机的连接;- 软件编程:编写程序实现温度数据采集、处理和显示,通过实践操作熟悉编程过程;- 系统调试:分析温度控制系统的性能,引导学生提出优化方案并进行调试。

3. 教学大纲:- 第一周:51单片机基础知识学习,了解温度传感器原理;- 第二周:C语言编程复习,学习与51单片机相关的编程技巧;- 第三周:进行硬件连接,学习温度传感器与单片机的连接方法;- 第四周:编写程序,实现温度数据采集、处理和显示;- 第五周:系统调试,分析性能并提出优化方案。

基于单片机的智能温度控制器设计课程设计

基于单片机的智能温度控制器设计课程设计

单片机类课程设计题目:智能温度控制器目录论文总页数23页一、引言 (2)二、关键字 (3)三、设计的题目 (3)四、课程设计的基本要求 (4)五、方案设计 (4)六、系统设计方案及框图 (5)6.1智能温度控制器总体方案 (5)6.2设计原理框图 (6)七、数字信号采集和处理 (6)7.1、DS18B20产品的特点 (7)7.2、DS18B20的引脚介绍 (7)7.3、DS18B20的使用方法 (8)八、系统硬件电路 (11)8.1 控制器内部结构 (12)8.2 控制器具体电路 (13)九、系统扩展电路 (13)9. 1 数字温度感应模块接口电路 (13)9. 2 液晶显示电路 (14)9. 3 系统输入电路 (15)十、系统总电路 (15)10.1Altium Designer电路设计软件绘制的总电路原理图 (16)10. 2电路仿真软件PROTEUS下系统实时仿真 (16)10. 3 系统总电路PCB图的设计 (17)十一、系统软件 (18)十二、总结与体会 (20)十三、参考文献 (21)一、引言随着科技的不断发展,二十一世纪已经进入电子信息时代的轨道。

为了能够更好的适应社会的发展和需要,学好电子方面的知识对于我们这些二十一世纪的大学生是尤为重要的,单片机更是如此。

与此同时,设计一些新的电子产品对我们在学校所学知识的一种掌握和巩固。

许多情况下需要测量温度参数。

通常测温系统的主要器件是热敏电阻,由于它体积小、重复性好、测量方法简单,所以在测温系统中广泛应用。

但采用热敏电阻的测温系统需要A/D转换,而且测量精度不高。

本设计中采用Dallas公司生产的一种新型温度传感器DS18B20,它集温度测量、A/D转换于一体,其测量范围宽(-55℃~+125℃),精度高(0.0625℃),DS18B20是一款具有单总线结构的器件。

另外再搭配Dallas 公司生产的另一种实时时钟芯片DS1302用以产生精确的时、分、秒信号来实现实时温度测量,显示电路采用1602液晶。

基于单片机的温度计的课程设计报告

基于单片机的温度计的课程设计报告

基于单片机的数字温度计的设计姓名:詹崇武班级:09应电2班学号:2009061601学院:机电工程学院2011-12-7目录1、课程设计目的 (3)2、工具/准备工作 (3)3、设计步骤及原理 (6)步骤1:方案框图 (6)步骤2:程序设计 (7)步骤3:电路硬件设计及Proteus软件仿真 (8)4、设计结果及分析 (9)5、总结及心得体会 (9)6、对本设计过程及方法、手段的改进建议 (9)7、参考文献 (10)1、课程设计目的本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。

本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。

2、工具/准备工作原件清单原件介绍1. STC89C52的功能特性STC89C52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。

在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

具有以下标准功能:8K字节Flash,512字节RAM,32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。

另外STC89X52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

最高运作频率35Mhz,6T/12T可选。

2. DS18B20的特点本设计的测温系统采用芯片DS18B20,DS18B20是DALLAS公司的最新单线数字温度传感器,它的体积更小,适用电压更宽,更经济。

基于单片机温度控制系统设计

基于单片机温度控制系统设计

基于单片机的温度控制系统设计摘要:这次综合设计,主要是设计一个温度控制系统,用STC89C52单片机控制,用智能温度传感器DS18B20对温度进行采集,用LCD1602液晶显示屏将采集到的温度显示出来。

系统可以有效的将温度控制在设定的范围内。

如果实际温度超出了控制范围,则系统会有自动的提示信号,并且相应的继电器会动作。

我们的实际生活离不开对温度的控制,在很多情况下我们都要对我们所处的环境进行温度检测,然后通过一定的措施进行调节,从而达到我们自己想要的温度,使我们的生活环境更加适宜。

关键字:单片机;液晶显示屏;温度传感器;继电器;提示信号Abstract:This integrated design is the design of a temperature control system. A smart temperature sensor DS18B20 is used to collect temperature and a LCD1602 Liquid Screen is used to display the collected temperature. The system controlled by STC89C52 can effectively control the temperature within the setting limits. If the actual temperature exceeds the setting range, the system will automatically give signal, and the corresponding Relay will take related actions. It is necessary for us to control the temperature because in many situations the temperature around us is not proper for us. So we need to detect it and take some actions to adjust it to the temperature we want to make the environment around us better.Key Words:DS18B20;LCD1602;STC89C52;Relay;Signal引言目前,测控系统在工业生产中起着把关者和指导者的作用,它从生产现场到各种参数的获取,运用科学规律和系统工程的做法,综合有效地利用各种先进技术,通过自动手段和装备,使每个生产环节得到优化,进而保证生产规范化,提高产品质量,降低成本,满足需要,保证安全生产。

单片机原理与应用课程设计报告

单片机原理与应用课程设计报告

单片机原理与应用课程设计报告一、设计题目基于单片机的智能温度控制系统二、设计目的通过本次课程设计,旨在加深对单片机原理与应用的理解,掌握单片机的基本应用,提高实际操作能力和解决问题的能力。

同时,通过设计一个智能温度控制系统,实现对温度的实时监测和控制,提高系统的自动化和智能化水平。

三、设计原理本设计采用单片机作为主控制器,通过温度传感器采集环境温度信息,经过A/D转换器将模拟信号转换为数字信号,再由单片机进行处理。

根据设定的温度阈值,单片机输出相应的控制信号,驱动加热元件或风扇等执行机构,实现对温度的调节和控制。

同时,通过LED显示屏实时显示当前温度值。

四、硬件电路设计1. 单片机选择:采用常用的51单片机作为主控制器。

2. 温度传感器:采用DS18B20数字温度传感器,具有测量精度高、抗干扰能力强等优点。

3. A/D转换器:采用ADC0809芯片,将温度传感器输出的模拟信号转换为数字信号。

4. 执行机构:采用继电器控制加热元件和风扇等设备。

5. LED显示屏:采用1602液晶显示屏,用于实时显示当前温度值。

五、软件程序设计1. 主程序:初始化单片机和相关硬件,启动温度传感器采集温度数据,循环检测温度值,根据设定阈值控制执行机构。

2. 温度采集程序:启动温度传感器采集环境温度数据,经过A/D转换器转换为数字信号后传送给单片机。

3. 显示程序:将当前温度值实时显示在LED显示屏上。

4. 控制程序:根据设定的温度阈值,输出相应的控制信号驱动执行机构进行温度调节。

六、实验与测试1. 硬件电路搭建:按照设计原理图搭建硬件电路,确保连接正确无误。

2. 程序编写与调试:编写软件程序并进行调试,确保程序运行正常。

3. 系统测试:通过实际测试验证系统的功能和性能,包括温度采集、控制、显示等功能。

4. 结果分析:对测试结果进行分析和总结,找出存在的问题和改进的方向。

七、结论与展望通过本次课程设计,我们成功地设计并实现了一个基于单片机的智能温度控制系统。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

目录摘要 (1)第一章前言 (3)1.1课题背景与意义 (3)1.2温度控制系统的应用 (3)第二章系统方案 (5)2。

1水温控制系统设计任务和要求 (5)2.2水温控制系统部分 (5)2。

3控制方式 (7)第三章系统硬件设计 (8)3。

1总体设计框图及说明 (8)3.2外部电路设计 (8)3。

3 单片机系统电路设计 (9)第四章结论 (1)参考文献 (21)基于单片机的水温控制系统【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。

为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。

该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。

【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID调节算法第一章前言1.1课题背景与意义在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制.采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

目前,温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距.现在,我国在这方面总体技术水平处于20世纪80年代中后期水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机课程设计报告题目:温度控制系统设计学院:通信与信息工程学院专业:测控技术与仪器专业班级: 测控三班成员: 徐郡二〇一四年六月十二日一、引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。

随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。

利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。

作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本系统利用传感器与单片机相结合,应用性比较强,本系统可以作为仓库温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。

课题主要任务是完成环境温度监测,利用单片机实现温度监测并通过报警信号提示温度异常。

本设计具有操作方便,控制灵活等优点。

本设计系统包括单片机,温度采集模块,显示模块,按键控制模块,报警和指示模块五个部分。

文中对每个部分功能、实现过程作了详细介绍。

整个系统的核心是进行温度监控,完成了课题所有要求。

二、实验目的和要求2.1学习DS18B20温度传感芯片的结构和工作原理。

2.2掌握LED数码管显示的原理及编程方法。

2.3掌握独立式键盘的原理及使用方法。

2.4掌握51系列单片机数据采集及处理的方法。

三、方案设计总体设计方案采用AT89C52单片机作控制器,温度传感器选用DS18B20来设计数字温度计,系统由5个模块组成:主控制器、测温电路、显示电路、控制电路、报警及指示电路。

主控制器由单片机AT89C52实现,测温电路由DS18B20温度传感器实现,显示电路由4位LED数码管直读显示,,报警指示电路由蜂鸣器和发光二级管构成,控制电路由按键构成。

本设计所使用的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确等特点,其输出温度采用数字显示,主要用于对温度的精度要求较高的场所,或科研实验室使用,并且加有报警装置,超过限制温度可发出报警信号,还可以调整报警上下限温度。

该设计控制器使用单片机AT89C52,测温传感器使用DS18B20,用4位共阳极LED数码管以I/O口传送数据,实现温度显示,能准确达到以上要求。

四、实验原理利用温度传感器芯片监测环境温度,将温度信号转换为数字信号传送到单片机内部,单片机通过对温度数据进行处理,利用四位八段数码管显示环境温度,并利用蜂鸣器和发光二极管发出超限警报信号。

通过按键操作可以改变报警温度的上下限。

五、材料清单六、基本芯片及其原理6.1单片机89C52是INTEL公司MCS-51系列单片机中基本的产品,它采用INTEL 公司可靠的CHMOS工艺技术制造的高性能8位单片机,属于标准的MCS-51的HCMOS产品。

它结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,它基于标准的MCS-51单片机体系结构和指令系统,属于80C51增强型单片机版本,集成了时钟输出和向上或向下计数器等更多的功能,适合于类似马达控制等应用场合。

89C52内置8位中央处理单元、256字节内部数据存储器RAM、8k片内程序存储器(ROM)32个双向输入/输出(I/O)口、3个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片内时钟振荡电路。

此外,89C52还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。

在空闲模式下冻结CPU而RAM定时器、串行口和中断系统维持其功能。

掉电模式下,保存RAM数据,时钟振荡停止,同时停止芯片内其它功能。

89C52有PDIP(40pin)和PLC C(44pin)两种封装形式。

本次课程设计所使用的单片机为STC89C52单片机,是深圳宏晶科技生产的完全兼容INTEL公司MCS-51系列的单片机。

6.2温度传感器及其原理传感器DS18B20具有体积小、精度高、适用电压宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。

全部传感元件及转换电路集成在形如一只三极管的集成电路内。

“一线总线”独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

现在,新一代的DS18B20体积更小、更经济、更灵活。

使用户可以充分发挥“一线总线”的优点。

同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜,体积更小。

6.2.1 DS18B20的特性(1)适应电压范围更宽,电压范围:3.0~5.5V,寄生电源方式下可由数据线供电。

(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。

(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。

(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。

(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。

(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。

(8)测量结果直接输出数字温度信号,以“一线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。

(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

6.2.2 DS18B20内部结构及DS18B20的管脚排列64位光刻ROM是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。

不同的器件地址序列号不同。

DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。

DS18B20的引脚定义:图一DS18B20引脚定义(1)DQ为数字信号输入/输出端。

(2)GND为电源地。

(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

6.2.3 DS18B20的编程(1)DS18B20的初始化:①先将数据线置高电平“1”。

②延时(该时间要求的不是很严格,但是尽可能的短一点)③数据线拉到低电平“0”。

④延时750us(该时间的时间范围可以从480us到960us)。

⑤数据线拉到高电平“1”。

⑥延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。

据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。

⑦若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。

⑧将数据线再次拉高到高电平“1”后结束。

初始化程序代码如下:void ds_reset(void){char presence=1;while(presence)ﻩ{ﻩwhile(presence)ﻩ{ﻩﻩﻩDQ=1;ﻩﻩ_nop_();ﻩ_nop_();ﻩDQ=0;ﻩdelay(50);ﻩDQ=1;ﻩﻩdelay(6);ﻩﻩpresence=DQ;ﻩﻩ}ﻩﻩdelay(45);presence=~DQ;}DQ=1;}(2)DS18B20的写操作:①数据线先置低电平“0”。

②延时确定的时间为15us。

③按从低位到高位的顺序发送字节(一次只发送一位)。

④延时时间为45us。

⑤将数据线拉到高电平。

⑥重复上(1)到(6)的操作直到所有的字节全部发送完为止。

⑦最后将数据线拉高。

写操作程序代码如下:void ds_write(uchar ds_wrdata){ﻩuchar i;for(i=8;i>0;i--)ﻩ{ﻩDQ=1;ﻩ_nop_();_nop_();ﻩDQ=0;ﻩ_nop_();ﻩ_nop_();ﻩﻩ_nop_();ﻩ_nop_();ﻩDQ=ds_wrdata&0x01;//最低位移出ﻩdelay(6);ds_wrdata=ds_wrdata/2; //右移1位ﻩ}DQ=1;ﻩdelay(1);}(3)DS18B20的读操作:①将数据线拉高“1”。

②延时2us。

③将数据线拉低“0”。

④延时15us。

⑤将数据线拉高“1”。

⑥延时15us。

⑦读数据线的状态得到1个状态位,并进行数据处理。

⑧延时30us。

读操作程序代码如下:uchar ds_read(void){ﻩuchari;ﻩuchar value=0;for(i=8;i>0;i--){DQ=1;_nop_();ﻩﻩ_nop_();ﻩvalue>>=1;ﻩDQ=0;ﻩﻩ_nop_();ﻩﻩ_nop_();ﻩ_nop_();ﻩ_nop_();ﻩﻩDQ=1;ﻩﻩ_nop_();ﻩ_nop_();ﻩ_nop_();_nop_();ﻩif(DQ)value|=0x80;delay(6);ﻩ}DQ=1;return(value);}6.2.4 DS18B20传感器的温度数据关系:图二温度传感器的温度数据关系6.2.5DS18B20的外部电源供电方式:在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。

图三 外部电源供电连接图七、系统框图本系统设计由5个模块组成:主控制器(单片机)、温度采集模块、温度显示模块、控制电路模块、报警及指示模块。

相关文档
最新文档