数电电子时钟设计报告

合集下载

数电电子钟课设报告

数电电子钟课设报告

一、 概 述本次课程设计旨在利用各种集成电路元件设计出一个能12小时的数字时钟,同时也要求能用电路对数字时钟进行校准。

本报告将从数字钟的各个组成分块出发,对原理进行说明,并利用方针软件进行模拟以验证并调试设计。

最终,本次课设将会进行数字钟的整体调试和验证,以确保准确性。

二、 设计任务及要求1.1 设计任务设计一个用数字显示“时”、“分”、“秒”的数字钟电路。

1.2 设计要求(1)准确计时,用数字显示“时”、“分”、“秒”。

(2)小时的计时为12进1,分和秒的计时要求为60进制进位。

(3)选做:校正时间、整点报时、定时闹钟控制。

三、 电路设计3.1设计原理与方案3.1.1 设计电路原理框图3.1.2设计原理方案构思系统的原理框图如上,该数字时钟的时钟脉冲由振荡器和分频器产生,首先由振荡器产生持续不断的脉冲,再由分频器将振荡器产生的脉冲变为标准的秒脉冲并送往秒计数器。

秒计数器产生60秒进1的脉冲送往分计数器。

分计数器再产生60分进1的脉冲送往时计数器,时计数器为12翻1。

同时各计数器模块将与带译码器的显示器相连。

实现数字时钟的功能。

校时电路则同构将分频器产生的秒脉冲分别送往小时与分计数器实现快速校时功能。

3.2单元电路的设计3.2.1 振荡电路的设计震荡电路使用555定时器实现,使其发出1kHz 的信号,经三个十分频器后就可以产生标准秒脉冲,同时,对于555定时器,若要使它发出1 kHz 的信号,即周期为1ms 。

由公式确定两个电阻的阻值,若令 可得出在输出端接上一个电阻保护电路,就可以得到一个输出为1 kHz 信号的振荡器。

3.2.2 分频电路的设计在该电路中分频器的功能主要有两个:(1)将振荡器所发出的1kHz信号变为标准的秒脉冲信号。

(2)是为校时电路和扩展电路提供标准脉冲。

本次电路中使用74ls90来实现分频功能。

74ls90是二——五——十进制计数器,可以组成二、五、十分频电路。

用74ls90组成的十分频电路如下,振荡器的输出信号经过一个74ls90构成的十分频电路后频率变为100Hz,将三个74ls90构成的十分频电路串联,就可以得到1Hz的标准秒脉冲信号。

MULTISIM数字电子技术电子时钟设计实验报告

MULTISIM数字电子技术电子时钟设计实验报告

MULTISIM数字电子技术电子时钟设计实验报告数字时钟一、实验目的学习综合数字电子电路的设计、实现和调试方法。

二、实验内容(1)设计一个24小时制的数字时钟。

(2)要求:计时、显示精度到秒;有校时功能。

采用中小规模集成电路设计。

(3)发挥:增加闹钟功能。

三、设计方案首先构成一个555定时器和分频器产生震荡周期唯一秒的标准“秒”脉冲信号,由74LS160D采用清零法分别组成六十进制的秒计数器、六十进制得分计数器、二十四进制的是计数器。

使用555定时器的输出作为秒计数器的CP脉冲,把秒计数器的进位输出作为分计数器的CP脉冲,分计数器的进位输出作为是计数器的CP脉冲。

使用SEVEN_SEG_COM_K_GREEN数码管作为显示器,74LS48为驱动器。

校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。

四、性能指标精度稳定性五、电路框图整时计数器秒计数器分计数器点(24进制) (60进制) (60进制) 报时校时电路秒信号发生器六、电路原理图6.1 六十进制分秒电路 VCC12VVCCU1CLK2U12~CLR1~LOAD9GND8ENT106ENPRCO7155404DQD611CQC512GNDBQB413AQA3 14DCD_HEXVCC74LS160D12VU2CLK2VCC~CLR1~LOAD9U1328ENT10ENPRCO71512GND11DQD61110 CQC5129BQB413AQA314GNDDCD_HEX74LS160DU8AU7A297400N 32317400N60进制分秒电路该图使用的是整体置数,可靠性高。

首先将两片74LS160D接成百进制的计数器。

然后将电路的59状态译码产生LD=1信号,同时接到两片74LS160D上,在下一个计数脉冲到达时,将0000同时置入两片74LS160D中,从而得到60进制的计数器。

进位信号可以直接由门U9A引出。

6.2 二十四进制时电路35U5VCCCLK2~CLR1VCC12VU16~LOAD9ENT10ENPRCO23715GND22DQD21611CQC20512BQB4133AQA314GNDDCD_HEXVCC74LS160D12VU6CLK2~CLRVCC1~LOAD9U172ENT10ENPRCO71527DQDGND26611CQC25512BQB24413AQA314 GNDDCD_HEX74LS160DU11A7400N24进制时电路24进制计数器使用整体置零法接成的。

数电实训报告电子时钟

数电实训报告电子时钟

一、实训目的本次数电实训旨在通过实际操作,加深对数字电子技术理论知识的理解,掌握数字电路的设计与制作方法,提高动手能力和故障排除能力。

通过设计并制作一个具有时、分、秒显示功能的电子时钟,熟悉数字电路中的计数器、译码器、显示器等基本模块,并学会运用这些模块完成一个完整的电子系统设计。

二、实训内容1. 电子时钟设计(1)设计要求设计一个具有时、分、秒显示功能的电子时钟,要求:1)采用CMOS集成电路设计,保证电路的稳定性;2)时钟显示采用7段数码管,可同时显示时、分、秒;3)时钟源采用石英晶体振荡器,确保时钟的准确性;4)具有时钟校准功能,可调整时、分、秒的显示值;5)具有时钟复位功能,可恢复时钟到初始状态。

(2)设计原理电子时钟主要由以下模块组成:1)时钟源:采用石英晶体振荡器产生标准时钟信号;2)分频器:将标准时钟信号分频,得到1Hz的秒脉冲信号;3)计数器:对秒脉冲信号进行计数,得到秒、分、时的计数值;4)译码器:将计数值转换为对应的7段数码管显示编码;5)显示器:采用7段数码管显示时、分、秒的计数值;6)校时电路:实现时钟校准功能;7)复位电路:实现时钟复位功能。

(3)电路设计1)时钟源:选用NE555定时器构成石英晶体振荡器,产生标准时钟信号;2)分频器:选用CD4060计数器进行分频,得到1Hz的秒脉冲信号;3)计数器:选用CD4518BCD计数器,分别实现秒、分、时的计数;4)译码器:选用CD4511BCD至7段数码管译码器,将计数值转换为7段数码管显示编码;5)显示器:采用7段数码管,分别显示时、分、秒的计数值;6)校时电路:采用按钮开关实现时钟校准功能;7)复位电路:采用按钮开关实现时钟复位功能。

2. 电子时钟制作(1)元器件准备根据电路设计,准备以下元器件:1)NE555定时器1个;2)CD4060计数器1个;3)CD4518BCD计数器3个;4)CD4511BCD至7段数码管译码器3个;5)7段数码管3个;6)石英晶体振荡器1个;7)电阻、电容、二极管、导线等。

数电电子钟报告

数电电子钟报告

一数字钟设计原理及组成框图1.1 工作原理数字电子钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。

通常使用振荡器电路构成数字钟。

数字电子钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时等附加功能。

因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器,校时电路、报时电路和振荡器组成。

干电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用振荡器加分频器来实现。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态送到七段显示译码器译码,通过七位LED七段显示器显示出来。

整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。

校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。

1.2 设计要点(1)设计一个精确的秒脉冲信号产生电路(2)设计60进制、24进制计数器(3)设计译码显示电路(4)设计操作方面的校时电路(5)设计整点报时电路1.3 组成框图图1 组成框图二数字钟单元电路设计2.1振荡器电路振荡器是数字钟的核心,它的作用是产生一个频率标准时间频率信号,然后再由分频器分秒脉冲,因此,振荡器频率的精度与稳定度基本决定了数字电子钟的质量。

电子电路数字钟设计课程设计报告

电子电路数字钟设计课程设计报告

电子电路数字钟设计课程设计报告电子电路数字钟设计课程设计报告导语:设计是把一种设想通过合理的规划周密的计划通过各种感觉形式传达出来的过程。

以下是小编整理电子电路数字钟设计课程设计报告的资料,欢迎阅读参考。

一、课程设计题目:直流稳压电源和多功能数字钟二、设计目的1、熟悉集成电路的引脚安排,掌握各芯片的逻辑功能及使用方法。

2、了解面包板结构及其接线方法。

3、了解数字钟的组成及工作原理。

4、熟悉数字钟的设计与制作。

5、掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法。

6、进一步巩固所学的理论知识,提高运用所学知识的分析和解决实际问题的能力。

7、提高电路布局、布线及检查和排除故障能力。

8、培养书写综合实验报告的能力。

三、方案选择与论证方案一的设计主要是由555振荡电路,时间计数电路,校时电路和译码驱动电路组成。

时间计数电路由CD4518和CD4511组成,分为一个24进制电路和两个60进制电路。

校时电路则由开关组成。

方案二的设计主要由晶体振荡电路,时间计数电路,校时电路,译码驱动电路。

其中,时间计数电路用六个74LS90组成。

校时电路主要由 HD74KS00P组成RS触发器,而且加入消抖电路,达到了自动校时的效果。

综合比较,选择方案一。

四、系统功能及原理1、直流稳压电源直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要经过变压、整流、滤波、稳压四个环节才能完成。

四个环节的工作原理如下:A、电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。

B、整流滤波电路:整流电路将交流电压Ui变换成脉动的`直流电压。

再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。

常用的整流滤波电路有全波整流滤波、桥式整流滤波等。

C、滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。

课程设计_数字电子钟设计报告 -终

课程设计_数字电子钟设计报告 -终

数字闹钟设计报告目录1. 设计任务与要求 (2)2. 设计报告内容2.1实验名称 (2)2.2实验仪器及主要器件 (2)2.3实验基本原理 (3)2.4数字闹钟单元电路设计、参数计算和器件选择…………………………3-72.5数字闹钟电路图 (8)2.6数字闹钟的调试方法与过程 (8)2.7设计与调试过程的问题解决方案 (8)3.实验心得体会……………………………………………………………………9、101. 设计任务与要求数字闹钟的具体设计任务及要求如下:(1) 有“时”、“分”十进制显示, “秒”使用发光二极管闪烁表示。

(2) 以24小时为一个计时周期。

(3) 走时过程中能按预设的定时时间(精确到小时)启动闹钟, 以发光二极管闪烁表示, 启闹时间为3s~10s。

2. 设计报告内容2.1实验名称数字闹钟2.2实验仪器及主要器件(1)CD4511( 4片)、数码管(4片)(2)74LS00(6片)(3)74LS138(2片)(4)74LS163(6片)(5)LM555(1片)(6)电阻、电容、导线等(若干)(7)面包板(2片)、示波器等2.3数字闹钟基本原理要想构成数字闹钟, 首先应选择一个标准时间源——即秒信号发生器。

可以采用LM555构成多谐振荡器, 通过改变电阻来实现频率的变化, 使之产生1HZ的信号。

计时的规律是: 60秒=1分, 60分=1小时, 24小时=1天, 就需要对计数器分别设计为60进制和24进制的, 并发出驱动信号。

各计数器输出信号经译码器到数字显示器, 按“时”、“分”顺序将数字显示出来, 秒信号可以通过数码管边角的点来显示。

数字闹钟要求有定时响闹的功能, 故需要提供设定闹时电路和对比起闹电路。

设时电路应共享译码器到数字显示器, 以便使用者设定时间, 并可减少电路的芯片数量;而对比起闹电路提供声源, 应具有人工止闹功能, 止闹后不再重新操作, 将不再发生起闹等功能。

数字电子钟的逻辑框图如图所示。

电子数字时钟课程设计报告(数电)

电子数字时钟课程设计报告(数电)

电子数字时钟课程设计报告(数电)第一篇:电子数字时钟课程设计报告(数电)数字电子钟的设计1.设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。

而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。

且由于数字钟包括组合逻辑电路和时叙电路。

通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。

1.1设计指标1.时间以12小时为一个周期;2.显示时、分、秒;3.具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; 1.2 设计要求1、电路设计原理说明2、硬件电路设计(要求画出电路原理图及说明)3、实物制作:完成的系统能达到题目的要求。

4、完成3000字的课程设计报告2.功能原理2.1 数字钟的基本原理数字电子钟由信号发生器、“时、分、秒”计数器、LED数码管、校时电路、整点报时电路等组成。

工作原理为时钟源用以产生稳定的脉冲信号,作为数字种的时间基准,要求震荡频率为1HZ,为标准秒脉冲。

将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计数器,可以实现24小时的累计。

LED数码管将“时、分、秒”计数器的输出状态显示。

校时电路是来对“时、分、秒”显示数字进行校对调整。

2.2 原理框图3.功能模块3.1 振荡电路多谐振荡器也称无稳态触发器,它没有稳定状态,同时无需外加触发脉冲,就能输出一定频率的矩形波形(自激振荡)。

数字电子技术课程设计报告报告——电子钟设计

数字电子技术课程设计报告报告——电子钟设计

数字电子技术课程设计报告课题:数字钟的设计与制作学年:专业:班级:姓名:数字电子技术课程设计报告一、设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计与制作数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.二、设计内容及要求〔1〕设计指标①由晶振电路产生1HZ标准秒信号;②分、秒为00~59六十进制计数器;③时为00~23二十四进制计数器;④周显示从1~日为七进制计数器;⑤具有校时功能,可以分别对时及分进展单独校时,使其校正到标准时间;⑥整点具有报时功能,当时间到达整点前鸣叫五次低音〔500HZ〕,整点时再鸣叫一次高音〔1000HZ〕。

〔2〕设计要求①画出电路原理图〔或仿真电路图〕;②元器件及参数选择;③电路仿真与调试。

〔3〕制作要求自行装配和调试,并能发现问题和解决问题。

〔4〕编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图数字钟实际上是一个对标准频率〔1HZ〕进展计数的计数电路。

由于计数的起始时间不可能与标准时间〔如时间〕一致,故需要在电路上加一个校时电路,同时标准的1HZ 时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

数字电子钟的总体图如图〔1〕所示。

由图〔1〕可见,数字电子钟由以下几局部组成:石英晶体振荡器和分频器组成的秒脉冲发生器;校对电路;六十进制秒、分计数器、二十进制时计数器及七十进制日计数器;以及秒、分、时的译码显示局部等。

四、主要局部的实现方案1 秒脉冲电路由晶振32768Hz经CD4060分频为2Hz,再经过74LS74一次分频,即得1Hz 标准秒脉冲,提供应时钟计数脉冲。

数字电子钟设计报告,完整版

数字电子钟设计报告,完整版

一、任务技术指标设计一个数字电子钟(1)能显示小时、分钟和秒;(2)能进行24小时和12小时转换;(3)具有小时和分钟的校时功能。

二、总体设计思想1.基本原理该数字钟由振荡器、分频器、计数器、译码器、显示器和校时电路等六部分组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换也可以用开关进行选择。

2.系统框图如图1:振荡器产生的钟标信号送到分频器,分频电路将时标信号送至计数器。

计数器通过译码显示把累计的结果以“时”、“分”、“秒”的数字显示出来。

整个过程中可选择用校时电路进行校时。

图1 系统框图三、具体设计1.总体设计电路该数字钟由振荡器、分频器、计数器、显示器和校时电路组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理分计数器计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换可以用开关进行选择。

图2 总体电路图2.模块设计(1)振荡器的设计振荡器是数字钟的核心。

振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。

石英晶体振荡器的作用是产生时间标准信号。

因此,一般采用石英晶体振荡器经过分频得到这一时间脉冲信号。

电路中采用的是将石英晶体与对称式多谐振荡器中的耦合电容串联起来,就组成了如图3所示石英晶体多谐振荡器。

图3振荡器电路图和仿真波形图(2)分频器的设计对于分频器的设计选定74LS90集成芯片。

数字电子时钟课程设计报告

数字电子时钟课程设计报告

数字电子时钟设计报告目录一、设计任务和要求二、设计的方案的选择与论证三、电路设计计算与分析四、总结及心得五、附录六、参考文献一、设计任务和要求(一)设计任务(1)时钟显示功能,能够以十进制显示“时”、“分”、“秒”。

(2)具有校准“时”、“分”的功能。

(3)整点自动报时:在整点时自动发出鸣叫声并有指示灯闪烁。

(4)闹钟功能:可按设定的时间报时。

(二)设计要求(1)用Multisim画出整个系统电路图,并列出所需器件清单。

(2)调试振荡电路,用Multisim提供的示波器观察其输出波形是否复合要求。

(3)实现整个数字电子钟电路各项任务的正常工作。

二、设计的方案的选择与论证钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。

诸如,定时报警、按时自动打铃、时间程序自动控制等,这些,都是以钟表数字化为基础的。

本次所要设计的数字电子表可以满足使用者的一些特殊要求,输出方式灵活,如可以随意设置时、分、秒的输出,定点报时。

由于集成电路技术的发展,特别是MOS集成电路技术的发展,使数字电子钟具有体积小、耗电省、计时准确、性能稳定、维护方便等优点。

此次设计的数字时钟电子电路分为以下6个部分:(1)振荡电路(2)时间计数电路(3)显示电路(4)校时电路(5)整点报时电路(6)闹钟功能电路。

数字时钟实际上是一个对标准频率(1HZ)进行计数的计数电路,因此,时间计数电路是一个由计数器组成的时序逻辑电路。

用555定时器构成的多谐振荡器作为秒脉冲信号源,控制秒个位的信号输入,整点报时信号输入和闹钟报时信号输入,是整个电路唯一的脉冲信号源。

将计数器与显示器相连接,可以将输入的二进制数翻译成可以直读的十进制数字并显示出来,显示管与计数器之间由译码器相接,作为译码驱动。

由于计数的起始时间不可能与标准时间(如北京时间)完全一致,异或计数过程中可能出现误差,固需要在电路中添加校时电路,以保证可以随时对时间进行校正。

数字电子钟设计实训报告

数字电子钟设计实训报告

数字电子钟的设计【摘要】本系统由晶体振荡器、分频器、计数器、译码器、七段译码显示器和校准、报时电路组成,采用了CMOS或TTL系列(双列直插式)中小规模集成芯片。

总体方案设计由主体电路和扩展电路两大部分组成。

其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能,进行了各单元电路设计,总体安装、制作及调试。

数字钟是一种计时装置,不仅能替代指针式钟表,还可以运用到定时控制、自动计时及时间程序控制等方面,应用广泛。

【关键词】石英晶振、分频器、计数器、译码器、七段译码显示器、校准、整点报时。

第一章数字电子钟总体方案1.1数字电子钟总体方案的确定数字电子钟组成一般由振荡器、分频器、计数器、译码器及显示器等几部分组成。

石英振荡器产生的时标信号送到分频器,分频电路将时标信号分成秒脉冲,秒脉冲送入计数器进行计数,并把累计结果以“时”、“分”、“秒”的数字显示出来。

“秒”的显示由两级计数器和译码器组成的六十进制计数器电路实现,“分“的显示电路与“秒”相同。

“时”的显示由两极计数器和译码器组成的二十四进制计数器电路实现。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态0进行七段显示译码器译码,通过六位七段译码显示器显示出来。

整点报时电路根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。

校时电路时用来对“时”、“分”显示数字进行校对调整的。

数字电子钟总体方案框图图1.1.1 数字电子钟组成框图1.2数字电子钟电路组成数字电子钟组成一般由振荡器、分频器、计数器、译码器及七段译码显示器等几部分组成(如图1.2.1所示)。

课程设计_数字电子钟设计报告

课程设计_数字电子钟设计报告

课程设计_数字电子钟设计报告第一篇:课程设计_数字电子钟设计报告数字电子钟设计报告数字电子钟设计报告目录1.实验目的 (2)2.实验题目描述和要求 (2)3.设计报告内容...........................................................................2 3.1实验名称.................................................................................2 3.2实验目的.................................................................................2 3.3实验器材及主要器件..................................................................2 3.4数字电子钟基本原理..................................................................3 3.5数字电子钟单元电路设计、参数计算和器件选择..............................3-8 3.6数字电子钟电路图.....................................................................9 3.7数字电子钟的组装与调试............................................................9 4.实验结论.................................................................................9 5.实验心得 (10)参考文献 (10)数字电子钟设计报告一简述数字电子钟是一种用数字显示秒,分,时,日的计时装置,与传统的机械相比,它具有走时准确,显示直观,无机械传动装置等优点,因而得到了广泛的应用:小到人们日常生活中的电子手表,大到车站,码头,机场等公共场所的大型数显电子钟。

数字电子钟设计报告

数字电子钟设计报告

数字电子钟设计报告
本报告将介绍数字电子钟的设计,包括系统架构、硬件设计和软件设计。

1. 系统架构
数字电子钟的系统架构分为两部分:信息输入和显示输出。

信息输入包括时间信息和闹钟设置信息,可以通过按钮进行设置。

显示输出部分包括LED数字显示屏、音响和闹钟提示灯。

2. 硬件设计
数字电子钟的硬件设计包括微控制器、时钟模块、数码管驱动器、按钮和声音电路。

微控制器采用ATmega32芯片,具有良好的性能和良好的可靠性。

时钟模块采用DS1302实时时钟芯片,可以提供准确的时
间信息。

数码管驱动器采用常用的MAX7219芯片,非常方便,可以控制8位数码管。

按钮用于输入时间信息和闹钟设置信息。

声音电路包括一个蜂鸣器和一个三极管,可以产生响亮的闹钟声。

3. 软件设计
数字电子钟的软件设计包括时钟模块、数码管显示模块、按钮扫描模块和闹钟模块。

时钟模块负责读取DS1302芯片提供的时间信息,并将其存储在ATmega32芯片中。

数码管显示模块负责将存储在ATmega32芯片中的时间信息通过MAX7219芯片发送给8位数码管进行显示。

按钮扫描模块负责扫描按钮输入信息,并将其存储在ATmega32芯片中。

闹钟模块负责读取ATmega32芯片中的闹钟设置信息,并在设定的时间点触发闹钟提示灯和蜂鸣器发出响亮的闹钟声。

4. 总结
数字电子钟的设计包括系统架构、硬件设计和软件设计。

该设计可以提供准确的时间信息和实用的闹钟功能。

它可以广泛应用于家庭、办公室和学校等领域。

数字电子钟 实验报告

数字电子钟 实验报告

课题一数字电子钟电子钟是一种高精度的计时工具,它采用了集成电路和石英技术,因此走时精度高,稳定性能好,使用方便,且不需要经常调校。

电子钟根据显示方式不同,分为指针式电子钟和数字式电子钟。

指针式电子钟采用机械传动带动指针显示;而数字式电子钟则是采用译码电路驱动数码显示器件,以数字形式显示。

这些译码显示器件,利用集成技术可以做的非常小巧,也可以另加一定的驱动电路,推动霓红灯或白炽灯显示系统,制做成大型电子钟表。

因此,数字式电子钟用途非常广泛。

一、课程设计(综合实验)的目的与要求设计一个具有如下功能的数字电子钟:1.基本功能(1)能直接显示时、分、秒;(2)能正确计时,小时采用二十四进制,分和秒采用60进制;(3)有校时功能,手动调整时、分;2.扩展功能(1)能进行24小时整点报时,要求从59分50秒开始,每2秒钟响一声,共响5次;每响一次声音持续0.5秒。

(2)要求只在6--22点之间每整点报时,23--5点之间整点不报时;(3)具有任意几点几分均可响铃的闹钟控制电路。

响铃1分钟,可人为通过开关使响铃提前终止;二、设计(实验)正文数字电子钟实际上是一个对标准频率(1HZ)进行计数并通过数码管显示的计数电路,由于计数的起始时间与标准时间(如北京时间)不一致,故需要在电路上加一个校时电路。

标准的1HZ时间信号必须准确稳定,可以使用555定时器设计1HZ的振荡电路。

时间计数电路由秒计数器(个位,十位)、分计数器(个位,十位)电路构成,秒个位和秒十位计数器、分个位和分十位计数器均为60进制计数器,而根据设计要求,时个位和时十位计数器为24进制计数器。

1.系统原理框图如下:2.1 分、秒计时器分、秒计时器均为60进制计数器,当秒计时器接受到一个秒脉冲时,秒计数器个位开始从1计数到9,同时在个位计数产生进位时将进位接秒计数器的十位计数器CLK,此时秒显示器将显示00、01、02、...、59、00;每当秒计数器数到00时,就会产生一个脉冲输出送至分计时器,此时分计数器数值在原有基础上加1,其显示器将显示00、01、02、...、59、00,当分计数器产生进位时,将会在进位端产生高电平,进而触发电路,驱动蜂鸣器,起到整点报时的功能。

数字电子钟的设计报告

数字电子钟的设计报告

数字电子钟的设计报告设计报告:数字电子钟1.引言:数字电子钟是一种数字显示时间的钟表。

它采用数字显示技术,以数字方式传达时间信息,相比于传统的机械钟表,数字电子钟更加准确、方便,并且可以提供更多附加功能。

本设计报告将介绍数字电子钟的设计方案。

2.设计目标:设计数字电子钟的目标是能够准确地显示时间,并具备以下功能:(1) 显示当前时间,包括小时、分钟、秒钟,并提供24小时制和12小时制的选择;(2) 提供闹钟功能,用户可以设定闹钟时间,并在到达指定时间时提醒用户;(3) 提供定时器功能,用户可以设定定时器时间,并在倒计时结束时提醒用户;(4) 显示日期和星期;(5) 提供时间调整功能,用户可以进行时间调整。

3.设计方案:(1) 显示模块:采用数码管或者液晶显示屏作为显示模块,通过驱动电路将数字信号转换为对应的数字显示;(2) 时钟芯片:使用时钟芯片来提供准确的时间数据,并通过串行通信接口与主控芯片进行通信;(3) 主控芯片:采用单片机或者微处理器作为主控芯片,负责接收和处理用户的输入,并控制显示模块的显示;(4) 按键模块:用户可以通过按键模块来进行时间设定、闹钟设定等操作,并通过主控芯片进行处理;(5) 蜂鸣器:用于提醒用户设定的闹钟时间或定时器时间到达。

4.功能实现:(1) 时间显示功能:主控芯片从时钟芯片获取时间数据,并将数据转换为数码管或者液晶显示屏上的数字显示;(2) 闹钟功能:用户可以通过按键模块设定闹钟时间,主控芯片与时钟芯片进行比较,当到达设定时间时,蜂鸣器会发出提醒声音;(3) 定时器功能:用户可以通过按键模块设定定时器时间,主控芯片进行倒计时,并在倒计时结束时发出提醒声音;(4) 日期和星期显示:主控芯片从时钟芯片获取日期和星期数据,并将数据转换为数码管或者液晶显示屏上的文字显示;(5) 时间调整功能:用户可以通过按键模块进行时间调整,主控芯片与时钟芯片进行通信,更新时间数据。

数电课程设计报告-数字电子钟东北大学

数电课程设计报告-数字电子钟东北大学

数电课程设计报告-数字电子钟东北大学第一篇:数电课程设计报告-数字电子钟东北大学课程设计报告设计题目:数字电子钟设计与实现班级:学号:姓名:指导教师:设计时间:摘要数字时钟已成为人们日常生活中必不可少的必需品,广泛于个人家庭以及办公室等公共场所,给人们的生活、学习、工作、娱乐带来了极大的方便。

由于数字集成电路技术的发展采用了先进的三石英技术,使数字时钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。

尽管目前市场上已有现成的数字时钟电路芯片出售,价格便宜、使用也方便,但鉴于数字时钟电路的基本组成包含了数字电路的组成部分,因此进行数定时钟的设计是必要的。

在这里我们将已学过的比较零散的数字电路的知识有机的、系统的联系起来用于实际,来增养我们的综合分析和设计电路的能力。

本次设计以数字时钟为主,实现对时、分、秒数字显示的计数器计时装置,周期为24小时,显示满为23时59分59秒并具4有校时功能的数电子时钟。

电路主要采用中规模的集成电路,本电路主要脉冲产生模块、校时模块、两个六十进制模块(分、秒)、一个二十四进制模块(时)和一个报时逻辑电路组成。

时、分、秒再通过BCD-7段译码显示屏显示出来。

关键词:计数器译码器校时目录概述2 课程设计任务及要求2.1 设计任务2.2 设计要求3 理论设计3.1方案论证3.2 系统设计3.2.1 结构框图及说明3.2.2 系统原理图及工作原理3.3 单元电路设计3.3.1秒脉冲电路设计3.3.2时、分、秒计数器电路3.3.3校时电路3.3.4译码显示电路3.3.5定时电路设计4.软件仿真4.1 仿真电路图4.2 仿真过程4.2 仿真结果5.结论6.使用仪器设备清单7.参考文献。

8.收获、体会和建议。

5 5 8 10 11 13 15 16181919202.课程设计及要求2.1设计任务数字电子时钟是一种用数字电路技术实现“时”、“分”、“秒”计时的装置。

数字电路电子钟设计实验报告

数字电路电子钟设计实验报告

数字电路电子钟设计实验报告目录1.实验目的2.实验题目描述和要求3.设计报告内容3.1实验名称3.2实验目的3.3实验器材及主要器件3.4数字电子钟基本原理3.5数字电子钟制作与调试3.6数字电子钟电路图3.7数字电子钟的组装与调试4.实验结论5.实验心得1.实验目的※掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;※进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;※提高电路布局﹑布线及检查和排除故障的能力;※培养书写综合实验报告的能力。

2.实验题目描述和要求(1)数字电子钟基本功能数字电子钟是一个大众化产品,一般来讲应具有以下基本功能。

①能进行小时、分、秒显示。

②能进行小时、分、秒设置。

③能实现整点报时。

④能通过设置,实现任意时间报时。

(2)数字电子钟基本性能一个实用的数字电子钟应满足三个“度”:精度、亮度和响度。

①精度是指显示的时间必须准确。

②亮度是指显示的时间必须让人看得清楚。

③响度是指报时的声音必须清脆有力。

(3)数字电子钟用于教学设计时必须考虑的因素从教学角度来看,数字电子钟的设计应考虑以下几点。

①数字电路可由多种不同方案实现,在方案比较时应着重考虑所选用的方案在设计时能否把数字电路包含的主要知识全部囊括进去。

②应把数字电子钟分解成若干个模块,并在印制电路板设计时把各模块固定在不同的区域。

③应确保大多数学生能在规定时间内完成制作与调试。

④数字电子钟印制电路板(PCB)设计时除留下足够的训练内容让学生完成外,应设计一标准印制电路板设计示范区。

(4)本教材设计的数字电子钟总体方案根据以上分析,本教材把数字电子钟分解为信号电路、显示电路、计时电路、校时电路和报时电路五个功能相对独立的模块(如图8-1所示),采用如图8-2所示的设计方案,并按要求实施时参照一下规定进行。

①各模块的制作、调试按显示电路、信号电路、计时电路、校时电路和报时电路的顺序进行。

数字电子钟课程设计实验报告

数字电子钟课程设计实验报告

数字电子钟课程设计实验报告1. 引言本实验旨在设计一个数字电子钟,通过对电子元件的运用和数字电路的设计,实现显示当前时间和日期的功能。

在实验过程中,我们将学习数字电子钟的工作原理,熟悉数字电子元件的连接与使用,并运用已学知识进行设计和实现。

2. 设计思路为了设计一个完整的数字电子钟,我们需要考虑以下几个方面的内容:2.1 时钟模块时钟模块是数字电子钟的核心部分,用于记录和显示当前时间。

我们可以使用实时时钟(RTC)模块来实现这一功能。

RTC模块可以精确地计时,并提供与微处理器的接口。

2.2 显示模块数字电子钟的显示模块需要能够显示当前时间和日期。

常见的显示模块包括LED数码管和液晶显示屏。

我们可以根据实际需求选择合适的显示模块。

2.3 控制模块为了方便用户对数字电子钟进行设置和操作,我们需要设计一个控制模块。

用户可以通过控制模块来调整时间、日期等参数,并进行其他操作。

3. 设计步骤3.1 连接电子元件首先,我们需要连接时钟模块、显示模块和控制模块。

按照时钟模块和显示模块的规格说明,将它们与微处理器连接起来。

同时,根据控制模块的需求,连接控制模块与微处理器。

3.2 编写代码编写代码是实现数字电子钟功能的关键步骤。

在代码中,我们需要实现时钟模块的读取和计时功能,显示模块的显示功能,以及控制模块的参数调整和操作功能。

3.3 调试和测试完成代码编写后,我们需要对数字电子钟进行调试和测试。

首先,确保时钟模块的读取和计时功能正常。

然后,验证显示模块的显示功能是否正确。

最后,通过控制模块进行参数调整和操作,确保所有功能都能够正常运行。

4. 实验结果经过设计、编写代码、调试和测试,我们成功地实现了数字电子钟的功能。

我们的数字电子钟可以准确地显示当前时间和日期,并且具备参数调整和操作功能。

5. 总结与讨论本次实验通过设计数字电子钟,我们对数字电路的基本原理和设计方法有了更深入的理解。

通过实践,我们掌握了连接电子元件、编写代码、调试和测试的基本技能,并成功地实现了数字电子钟的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子技术课程设计数字电子时钟学院:计算机学院专业:电子信息科学技术成员:姚俊2012142219 曹勤2012142216指导教师:陈明一、题目要求:设计一个能校准时、分的数字电子时钟,要求:(1)时钟的“时”“分”、“秒”要求各用两位显示;(2)显示采用六只LED数码管分别显示时分秒;(3)时间的小时、分钟可手动调整;(4)采用+5V电源供电。

二、设计原理1、由石英晶体多谐振荡器或555定时器和分频器产生1HZ标准秒脉冲。

2、“秒”、“分”电路均为00—59的六十进制计数、译码、数码管显示电路;3、“时电路”为00—23的二十四进制计数、译码、显示电路;4、由与非门控制电路来校正“时”、“分”电路。

(图2.1)三、设计思路根据题目,我们可以分析出:数字电子钟是由多块数字集成电路构成的,其中有振荡器,分频器,校时电路,计数器,译码器和显示器六部分组成。

振荡器和分频器组成标准秒信号发生器,不同进制的计数器产生计数,译码器和显示器进行显示,通过校时电路实现对时,分的校准。

1.秒脉冲发生信号:振荡器又包括由集成电路555与RC组成的多谐振荡器,用石英晶体构成的振荡器,两种方案如下图所示:(1)由555定时器与RC构成的多谐振荡器,由频率计算公式可知: 12T=0.7R +2R C **() (公式1) R3为可调电位器,调节R3可使输出的频率为1khz 。

电路如下图所示:(图 3.1)产生的波形如下图所示:(图 3.2)(图3.3)综上所述,一般来说,振荡器的频率越高,计时的精度就越高。

因为本电路对精度没有较高的要求,因此,我们选用由集成电路555与RC 组成的多谐振荡器。

2、分频电路(1)利用74ls90来实现分频,74LS90为中规模TTL 集成计数器,可实现二分频、五分频和十分频等功能,它由一个二进制计数器和一个五进制计数器构成。

电路图如下所示:77(图3.4)以上的两个7490N构成了25分频电路将三个74ls90级联即可实现101010**=1000分频。

其中脉冲发生信号从第一个74ls90的14端口进入,从最后的计数器11端口输出的即为1hz的方波信号。

(2)也可利用十进制计数74160来分频,或者是二进制计数器74ls161来分频,原理都是把计数器利用反馈清零或反馈置数接成十进制,然后级联即可。

3、计时电路模块:将其分为“时”,“分”,“秒”三个分模块,然后将其级联起来便可达到要求。

电路图如下:(1)“时”模块:SPST(3.5)利用74ls08与门反馈均接到两个计数器的置零端1R0、2R0,74ls90为同步清零,则应74ls08接成“24”来实现二十四进制。

(2)“分”模块:DCD_HEX_DIG_BLUEKey = Space(3.6)同样利用74ls08同步清零法来实现六十进制。

(3)同分钟一样的方法来实现“秒”模块。

5、校正电路模块数字钟启动后,每当数字钟显示与实际时间不符时,需要根据标准时间进行校时。

校“秒”时,采用等待校时。

校“分”、“时”的原理比较简单,采用加速校时。

对校时电路的要求是 :1)在小时校正时不影响分钟和秒的正常计数。

2)在分校正时不影响秒和小时的正常计数。

工作情况为:不校正时,J1和J2都闭合,正常计时。

校正时位时,J2断开,J3往下打,输入快速脉冲自动校时;校正分位时,J1断开,J3上打,输入快速脉冲自动校时。

校正秒位时,J9往左打,输入快速脉冲自动校时。

6、报时模块根据要求,报时时间为第50、52、54、56、58、00秒,因此首先将分钟的59与秒钟50、52、54、56、58相与(信号1),秒钟个位连接参照卡洛图如下:L=A’D’+B’C’D’=(A+D)’+(B+C+D)连接如全图所示。

然后再让时针的进位信号与L相或,记得到标准蜂鸣器电路输入信号(NPN基极信号)。

四.总体方案本电路是以555定时器组成多谐振荡器作为频率发生器,多谐振荡器产生1000HZ的振荡波,经过分频器分频,分解成1HZ的脉冲波,随后经过秒计数器,秒计时器是60进制计数器,当计数器计数到60时产生进位脉冲,到分计数器。

分计数器也是60进制计数器,当分计数器计数到60时,再次产生更高一级的进位脉冲,脉冲送到时计数器,实现了分向时的进位。

当需要进行校时时,打开对应的开关,进行对应位置上的校时,此时计数进位脉冲无效。

而计数器的工作是通过外接时钟脉冲CP的作用下,秒的个位加法计数器开始记数,通过译码器和数码显示管显示数字即计数器。

当经过10个脉冲信号后,秒个位计数器完成一次循环,秒十位计数器的CP与秒个位计数器的CP 同步,秒十位开始计数,秒十位计数器工作1次,通过译码器和数码显示管,秒十位数字加1。

当经过60个脉冲信号,秒部分电路完成一个周期,分钟个位计数器的CP通过秒十位计数器的Q2Q1与非得到脉冲,分钟个位计数器工作一次,通过译码器和数码显示管,分钟的个位数字加1。

分部分的工作方式与秒部分电路完全相同。

当经过3600个脉冲信号,分钟部分电路完成一个周期,小时个位计数器的CP通过分十位计数器的Q2Q1与非得到脉冲,小时个位计数器工作一次,通过译码器和数码显示管,小时的个位数字加1。

当小时个位部分完成一个周期,小时十位计数器的CP与小时个位计数器的CP同步,小时十位开始计数,小时十位计数器工作1次,通过译码器和数码显示管,小时的十位数字加1。

当小时十位部分计数到2同时小时的个位部分计数到4,小时个位计数器的清零端和十位计数器的清零端通过小时个位计数器的Q2和小时十位计数器的Q1与非得到信号,小时部分清零,从而完成了1次24小时计时。

五.具体实现由图我们可以看出,振荡器产生的信号经过分频器作为产生秒脉冲,秒脉冲送入计数器,计数结果经过“时”、“分”、“秒”,译码器,显示器显示时间。

其中振荡器和分频器组成标准秒脉冲信号发生器,由不同进制的计数器,译码器和显示电路组成计时系统。

秒信号送入计数器进行计数,把累计的结果以“时”、“分”、“秒”的数字显示出来。

“时”显示由二十四进制计数器,译码器,显示器构成;“分”、“秒”显示分别由六十进制的计数器,译码器,显示器构成;校时电路实现对时,分的校准。

六.各部分定性说明以及定量计算1.振荡器秒发生电路---振荡器是计时器的核心,振荡器的稳定度和频率的精确度决定了计时器的准确度。

一般来说,振荡器的频率越高,计时精度就越高,但耗电量将越大。

所以,在设计电路时要根据需要而设计出最佳电路。

在此设计中,我采用的是精度不高的,由集成电路555与RC组成的多谐振荡器。

555定时器是一个模拟与数字混合型的集成电路。

555定时器是一种应用极为广泛的中规模集成电路。

该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。

因而广泛用于信号的产生、变换、控制与检测。

目前生产的定时器有双极型和CMOS两种类型,其型号分别有NE555(或5G555)和C7555等多种。

它们的结构及工作原理基本相同。

通常,双极型定时器具有较大的驱动能力,而CMOS定时器具有低功耗、输入阻抗高等优点。

555定时器工作的电源电压很宽,并可承受较大的负载电流。

双极型定时器电源电压范围为5~16V,最大负载电流可达200mA;CMOS定时器电源电压范围为3~18V,最大负载电流在4mA以下。

左面图是555定时器内部组成框图。

它主要由两个高精度电压比较器C1、C2,一个RS触发器,一个放电三极管和三个5KΩ电阻的分压器而构成。

(图4.1)它的各个引脚功能如下:1脚:外接电源负端VSS 或接地,一般情况下接地。

8脚:外接电源VCC ,双极型时基电路VCC 的范围是4.5 ~ 16V ,CMOS 型时基电路VCC 的范围为3 ~ 18V 。

一般用5V 。

3脚:输出端Vo 2脚: 低触发端 6脚:TH 高触发端4脚: 是直接清零端。

当 端接低电平,则时基电路不工作,此时不论 、TH 处于何电平,时基电路输出为“0”,该端不用时应接高电平。

5脚:VC 为控制电压端。

若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF 电容接地,以防引入干扰。

7脚:放电端。

该端与放电管集电极相连,用做定时器时电容的放电。

在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为由图1可知,接通电源后,电容C1被充电,vC 上升,当vC 上升到大于2/3VCC 时,触发器被复位,放电管T 导通,此时v0为低电平,电容C1通过R2和T 放电,使vC 下降。

当vC 下降到小于1/3VCC 时,触发器被置位,v0翻转为高电平。

电容器C1放电结束;当C1放电结束时,T 截止,VCC 将通过R1、R2向电容器C1充电;当vC 上升到2/3VCC 时,触发器又被复位发生翻转,如此周而复始,在输出端就得到一个周期性的方波,其周期为 :12T=0.7R +2R C **() 。

本设计中,由电路图可知R1和C 的值,然后再根据调节R2的值可使得T=1s 。

2.分频器分频器的功能主要有两个:一个是产生标准秒脉冲信号;二是提供功能扩展电路所需要的信号,如仿电台报时用的1kHz 的高音频信号和500Hz 的低音频信号等。

本设计中,由于振荡器产生的信号频率太高,要得到标准的秒信号,就需要对所得的信号进行分频。

这里所采用的分频电路是由3个总规模计数器74LS90来构成的3级1/10分频。

74LS90的引脚图及其功能图如下图所示: 74ls90引脚图:(图4.2)74ls90真值表:(表4.2)十分频时:输入接A ,B 与A Q 相连,从D Q 输出; 五分频时:输入接A ,B 与A Q 相连,从C Q 输出; 二分频时:输入接A ,B 与A Q 相连,从B Q 输出。

(注:一般芯片的NC 引脚在应用中必须悬空,不允许接任何外围。

因为NC 脚,可能是悬空的脚,也可能是用于测试的脚。

)3、计数器本设计所采用的是十进制计数器74SL90,根据时分秒各个部分的的不同功能,设计成不同进制的计数器。

秒的个位,需要10进制计数器,十位需6进制计数器(计数到59时清零并进位),秒部分设计与分钟的设计完全相同;时部分的设计为当时钟计数到24时,使计数器的小时部分清零,从而实现整体循环计时的功能。

计数部分:利用74LS90芯片和74LS08芯片组成的计数器,它们采用异步连接,利用外接标准1Hz 脉冲信号进行计数。

显示部分: 将六片74LS90的Q0Q1Q2Q3脚分别接到CD4511上的输入上,根据脉冲的个数显示时间。

秒信号经过计数器之后分别得到显示电路,以便实现用数字显示时、分、秒的要求,计时电路共分三部分:计秒、计分和计时。

其中,计秒和计分都是60进制,而计时为24进制,可以采用两个十进制计数器74LS90实现24进制、60进制计数器。

相关文档
最新文档