直线与方程单元测试题

合集下载

苏教版高中数学选择性必修第一册第1章 直线与方程 单元测试卷(含答案)

苏教版高中数学选择性必修第一册第1章 直线与方程 单元测试卷(含答案)

苏教版高中数学选择性必修第一册第1章直线与方程单元测试卷(满分150分,时间120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两平行线x +y -1=0与2x +2y -7=0之间的距离是()A .32B .322C .542D .62.已知直线l 经过点P (2,1),且与直线2x +3y +1=0垂直,则直线l 的方程是()A .2x +3y -7=0B .3x +2y -8=0C .2x -3y -1=0D .3x -2y -4=03.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是()A .1B .-1C .-2或-1D .-2或14.直线x cos α+3y +2=0的倾斜角的取值范围是()A .π6,,5π6B .0,π6∪5π6,C .0,5π6D .π6,5π65.若直线x +ny +3=0与直线nx +9y +9=0平行,则实数n 的值为()A .3B .-3C .1或3D .3或-36.若直线y =kx +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A -12,B -16,C D -12,+∞7.已知直线l :x -y -1=0,直线l 1:2x -y -2=0.若直线l 2与直线l 1关于直线l 对称,则直线l 2的方程是()A .x -2y +1=0B .x -2y -1=0C.x+y-1=0D.x+2y-1=08.数学家欧拉在其所著的《三角形几何学》一书中提出:“任意三角形的外心、重心、垂心在同一条直线上.”后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(4,0)或(-4,0)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.截距相等的直线都可以用方程xa+ya=1表示B.方程x+my-2=0(m∈R)能表示与y轴平行的直线C.经过点P(1,1)且倾斜角为θ的直线方程为y-1=tanθ(x-1)D.经过点P1(x1,y1),P2(x2,y2)的直线方程为(y2-y1)(x-x1)-(x2-x1)(y-y1)=010.若直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直,则实数a的值是() A.-3B.1C.-1D.311.光线自点(2,4)射入,经倾斜角为135°的直线l:y=kx+1反射后经过点(5,0),则反射光线还经过()A B.点(14,1)C.点(13,2)D.点(13,1)12.下列m的值中,不能使三条直线4x-y=4,mx-y=0和2x+3my=4构成三角形的有()A.4B.-6C.-1D.23三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分、第二个空3分.13.若直线l的倾斜角α满足4sinα=3cosα,且它在x轴上的截距为3,则直线l的方程是________________.14.无论实数k取何值,直线(k+2)x+(k-3)y+k-3=0都恒过定点,则该定点的坐标为________.15.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和直线l 2:x -3y +10=0截得的线段的中点恰好为P ,则直线l 的方程为________,此时被截得的线段长为________.16.已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且点Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)有下列3个条件:①l ′与l 平行且过点(-1,3);②l ′与l 垂直,且l ′与两坐标轴围成的三角形的面积为4;③l ′是l 绕原点旋转180°而得到的直线.从中任选1个,补充到下面的问题中并解答.问题:已知直线l 的方程为3x +4y -12=0,且________,求直线l ′的方程.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知△ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求△ABC 的面积.19.(12分)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 不经过第二象限,求实数a 的取值范围;(2)若直线l 与x 轴、y 轴分别交于点M ,N ,求△MON (O 为坐标原点)面积的最小值及此时直线l 的方程.20.(12分)已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 是直角梯形(点A ,B ,C ,D 按逆时针方向排列).21.(12分)在平面直角坐标系中,点A (2,3),B (1,1),直线l :x +y +1=0.(1)在直线l 上找一点C 使得AC +BC 最小,并求这个最小值和点C 的坐标;(2)在直线l 上找一点D 使得|AD -BD |最大,并求这个最大值和点D 的坐标.22.(12分)已知直线l 1:2x -y +a =0(a >0),直线l 2:-4x +2y +1=0,直线l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求实数a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5?若能,求点P 的坐标,若不能,请说明理由.参考答案与解析综合测试第1章直线与方程1.C 提示方程x +y -1=0可化为2x +2y -2=0,所以两平行线之间的距离为|-2-(-7)|22+22=5422.D 提示由题意知k l =-1-23=32,故直线l 的方程为y -1=32(x -2),即3x -2y -4=0 3.D 提示由题意知a ≠0.当x =0时,y =a +2;当y =0时,x =a +2a .因此a +2a=a +2,解得a =-2或a =14.B 提示直线的斜率k =-33cos α∈-33,33.设直线的倾斜角为θ,则-33≤tan θ≤33,所以0≤θ≤π6或5π6≤θ<π5.B 提示由题意知1n =n9,解得n =±3.当n =3时,3x +9y +9=0,即x +3y +3=0,两直线重合(舍去)6.B 提示=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.因为直线y =kx +2k +1与直线y=-12x +20,0,解得-16<k <127.B 提示因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知点(0,-2)在l 1上,设其关于l的对称点为(x ,y )-y -22-1=0,1,=-1,=-1,所以点(1,0),(-1,-1)在l 2上,从而可得l 2的方程为x -2y -1=08.A提示设C (m ,n ).由重心坐标公式得△ABC线的方程得2+m 3-4+n3+2=0,整理得m -n +4=0①.易得边AB 的中点为(1,2),k AB =4-00-2=-2,所以边AB 的垂直平分线的方程为y -2=12(x -1),即x -2y +3=0.-2y +3=0,-y +2=0,=-1,=1,所以△ABC 的外心为(-1,1),则(m +1)2+(n -1)2=32+12=10,整理得m 2+n 2+2m -2n =8②.联立①②解得m =-4,n=0或m =0,n =4.当m =0,n =4时,点B ,C 重合,应舍去,所以顶点C 的坐标是(-4,0)9.BD 提示对于A ,若直线过原点,横、纵截距都为0,则不能用方程x a +ya =1表示,所以A 不正确;对于B ,当m =0时,与y 轴平行的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设P (x ,y )是经过点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,根据P 1P 2∥P 1P 可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确.故选BD 10.AB 提示若两直线垂直,则a (a -1)+(1-a )(2a +3)=0,即a 2+2a -3=0,解得a =-3或a =1.故选AB 11.AD提示由题意得k =tan135°=-1.设点(2,4)关于直线l :y =-x +1的对称点为(m ,n ),则1,=-m +22+1,=-3,=-1,所以反射光线所在直线的方程为y =0-(-1)5-(-3)·(x -5)=18(x -5).当x =13时,y =1;当x =14时,y =98.故反射光线过点(13,1)12.ACD 提示①当l 1:4x -y =4平行于l 2:mx -y =0时,m =4;②当l 1:4x -y =4平行于l 3:2x +3my =4时,m =-16;③当l 2:mx -y =0平行于l 3:2x +3my =4时,3m 2+2=0,无解;④当三条直线经过同一个点时,把直线l 1与l 22x +3my =4中得84-m +12m 24-m -4=0,解得m =-1或23.综上,满足条件的m 为4或-16或-1或2313.3x -4y-9=0提示因为4sin α=3cos α,所以tan α=34,从而直线l 的方程为y =34(x -3),即3x -4y -9=014.(0,-1)提示方程(k +2)x +(k -3)y +k -3=0可化为k (x +y +1)+2x -3y-3=0x -3y -3=0,+y +1=0,解得=0,=-115.x +4y -4=0217提示设l 1与l 的交点为A (a,8-2a ),则由题意知点A 关于点P 的对称点B (-a,2a -6)在l 2上,把点B 的坐标代入l 2的方程中得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.易求得两交点分别为(-4,2),(4,0),所以截得的线段长为21716.94提示因为动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0.又点Q (4,0)到动直线l 0的最大距离为3,所以(4-1)2+(0+m )2=3,解得m =0,所以a +c =2.又a >0,c >0,所以12a +2c =12(a +c+c 2a +=94,当且仅当c =2a =43,即c =43,a =23时等号成立17.选择条件①:因为直线l :3x +4y -12=0,所以k l =-34.因为l ′∥l ,所以k l ′=k l =-34,从而直线l ′:y =-34(x +1)+3,即3x +4y -9=0选择条件②:因为l ′⊥l ,所以k l ′=43.设l ′在x 轴上的截距为b ,则l ′在y 轴上的截距为-43b .由题意可知S =12|b |·|-43b |=4,解得b =±6,所以直线l ′:y =43(x +6)或y =43(x -6)选择条件③:因为l ′是l 绕原点旋转180°而得到的直线,所以l ′与l 关于原点对称.任取点(x 0,y 0)在l 上,设其在l ′上的对称点为(x ,y ),所以x =-x 0,y =-y 0,从而-3x -4y -12=0,因此直线l ′:3x +4y +12=018.(1)因为k BC =7-(-1)3-(-1)=2,所以k AD =-12,从而边BC 上的高AD 所在直线的方程为y -5=-12(x +1),即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为y -35-3=x -1-1-1,即y =-x +4(3)由题意知边BC 所在直线的方程为y -(-1)7-(-1)=x -(-1)3-(-1),即2x -y +1=0,BC =(3+1)2+(7+1)2=45,所以点A 到直线BC 的距离h =|2×(-1)-5+1|22+1=655,从而△ABC 的面积=12BC ·h =1219.(1)直线l 的方程可化为y =-(a +1)x +a +2.因为l 不过第二象限,所以(a +1)≥0,+2≤0,解得a ≤-2,从而a 的取值范围为(-∞,-2](2)直线l 的方程可化为y =-(a +1)x +a +2,所以OM =|a +2a +1|,ON =|a +2|,从而S △MON =12OM ·ON =12(a +2)2|a +1|=|a +1|+2,当且仅当|a +1|=1|a+1|,即a =0时等号成立,因此△MON 面积的最小值为2,此时直线l 的方程为x +y -2=0(第20题)20.设所求点D 的坐标为(x ,y ).如图,由于k AB =3,k BC =0,所以k AB ·k BC =0≠-1,即AB 与BC 不垂直.①若BC ⊥CD ,AD ⊥CD .因为k BC =0,所以直线CD 的斜率不存在,从而有x =3.又k AD =k BC ,所以y -3x =0,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3).②若AD ⊥AB ,AD ⊥CD .因为k AD =y -3x,k CD =y x -3,又AD ⊥AB ,所以y -3x ·3=-1.又AB∥CD ,所以yx -3=3.=185,=95,此时AD与BC 不平行,故所求点D综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)21.(1)设点A 关于直线l 的对称点为A ′(x ,y )1,+y+32+1=0,=-4,=-3,即A ′(-4,-3),所以直线A ′B 的方程为y +31+3=x +41+44x -5y +1=0.当C 为直线4x -5y +1=0与直线x +y +1=0的交点时,AC +BCx -5y +1=0,+y +1=0,=-23=-13所以-23,-AC +BC 的最小值为A ′B =(1+4)2+(1+3)2=41(2)由题意知直线AB 的方程为y -31-3=x -21-2,即2x -y -1=0.当D 为直线2x -y -1=0与直线x +y +1=0的交点时,|AD -BD |x -y -1=0,+y +1=0,=0,=-1,所以D (0,-1),从而|AD -BD |的最大值为AB =(2-1)2+(3-1)2=522.(1)直线l 2的方程可化为2x -y -12=0,所以两条平行线l 1与l 2间的距离d =7510,即|a +12|5=7510,亦即|a +12|=72.又a >0,解得a =3(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·|c +12|5,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y0+4=0或3x 0+2=0.由于点P 在第一象限,所以3x 0+2=0x 0-y 0+132=0,0-2y 0+4=0,0=-3,0=12(舍去);联立x 0-y 0+116=0,0-2y 0+4=0,0=19,0=3718.所以存在点P。

解析几何的直线方程单元测试

解析几何的直线方程单元测试

解析几何的直线方程单元测试几何的直线方程是几何学中的重要知识点之一,通过单元测试可以检验学生对该知识点的掌握程度。

本文将通过对几何的直线方程单元测试进行解析,帮助读者更好地理解该知识点。

第一部分:选择题1. 下列哪个不是直线的方程?A. y = 2x + 3B. x - y = 5C. 3x + 4y = 12D. x = y^2答案:D。

选项A、B、C都是直线的方程,而D是一个二次函数的图像,因此不是直线的方程。

2. 一条直线的斜率为2,过点(3,4),该直线的方程为:A. y = 2x + 4B. y = 2x - 4C. y = 4x + 2D. y = 4x - 2答案:A。

根据直线的点斜式可知,斜率为2,过点(3,4)的直线方程为y = 2x + 4。

第二部分:填空题3. 过点(2,-1)且斜率为-3的直线方程为________。

答案:y = -3x + 5。

根据直线的点斜式可知,过点(2,-1)且斜率为-3的直线方程为y = -3x + 5。

4. 直线2x - 3y = 6的截距形式是________。

答案:x/3 - y/2 = 1。

将原方程化为截距形式得x/3 - y/2 = 1。

第三部分:计算题5. 求直线y = 3x - 2与y = -2x + 5的交点坐标。

解:将两直线方程联立,得3x - 2 = -2x + 5,解方程得x = 1,代入任意一条直线方程,得y = 3*1 - 2 = 1,故交点坐标为(1,1)。

6. 已知直线过点(1,2)且斜率为4,求该直线的方程。

解:根据直线的点斜式可得直线方程为y = 4x - 2。

通过以上解析,相信读者对几何的直线方程单元测试有了更深入的理解,希。

直线与方程》单元测试卷

直线与方程》单元测试卷

直线与方程》单元测试卷1.若直线x=2015的倾斜角为α,则α()。

A。

等于° B。

等于180° C。

等于90° D。

不存在如果直线的方程为x=2015,则它是垂直于y轴的直线,没有倾斜角,因此答案是D.不存在。

2.过点(1,0)且与直线x-2y-2=0平行的直线方程是()。

A。

x-2y-1=0 B。

x-2y+1=0 C。

2x+y-2=0 D。

x+2y-1=0将直线x-2y-2=0改写为斜截式方程y=x/2-1,则它的斜率为1/2.与它平行的直线斜率也为1/2,且过点(1,0),因此直线方程为y=1/2x-1/2,即选项B。

3.已知三角形ABC的顶点坐标为A(-1,5),B(-2,-1),C(4,3),若M是BC边的中点,则中线AM的长为()。

A。

42 B。

13 C。

25 D。

21首先求出BC边的中点坐标:M[(Bx+Cx)/2.(By+Cy)/2] = [(4-2)/2.(3-1)/2] = (1,1)。

然后计算AM的长度:√[(-1-1)²+(5-1)²] = √32 = 4√2,因此答案是B.13.5.到直线3x-4y-1=0的距离为2的直线方程是()。

A。

3x-4y-11=0 B。

3x-4y-11=0或3x-4y+9=0C。

3x-4y+9=0 D。

3x-4y+11=0或3x-4y-9=0将直线3x-4y-1=0改写为斜截式方程y=3/4x-1/4.到该直线距离为2的直线,其斜率为-4/3(两直线垂直),过点(-1,0)(垂足),因此直线方程为y=-4/3(x+1),即选项B。

6.直线5x-4y-20=0在x轴上的截距,在y轴上的截距和斜率分别是()。

A。

4,5,5/4 B。

5,4,4/5 C。

4,-5,-5/4 D。

4,-5,5/4将直线5x-4y-20=0改写为截距式方程y=5/4x-5,则它在x 轴上的截距为4,y轴上的截距为-5,斜率为5/4,因此答案是A。

直线与方程单元测试

直线与方程单元测试

直线与方程单元测试一、选择题.1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) (A )30° (B )45° (C )60° (D ) 90°2.如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= ( ) (A ) -3 (B )-6 (C )23-(D )323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274.已知过点A (-2,m )和点B (m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )(A ) m =-8 (B ) m =0 (C ) m =2 (D ) m =105.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) (A )3x-y-8=0 (B )3x+y+4=0 (C )3x-y+6=0 (D )3x+y+2=06.直线0202=++=++n y x m y x 和的位置关系是( ) (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定7.如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3, 则必有( )(A ) k 1<k 3<k 2 (B ) k 3<k 1<k 2(C ) k 1<k 2<k 3 (D ) k 3<k 2<k 18.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0 9.直线ax+2y-4=0与直线x+y-2=0互相垂直,那么a=( ).(A )1 (B )31- (C )32- (D )-210.如果直线x+(1+m )y=2-m 与直线2mx+4y+16=0重合,则m=( )(A)1 (B)2 (C)1或-2 (D)-211.设有直线kx-y+1-3k=0,当k变动时,所有直线都经过定点()(A)(0,0)(B)(0,1)(C)(3,1)(D)(2,1)二、填空题.17.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .18.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .19.三条直线2x+3y=1,3x+2y=1,ax-y=1相交与一点,则a= .20.经过点A(-1,-5)和点B(2,13)的直线在x轴上的截距为 .三、解答题.21.①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程.22.直线x+m2y+6=0与直线(m-2)x+3my+2m=0,没有公共点,求实数m的值.23.求过直线x-2y+1=0和x+3y-1=0的交点且与直线x=y3垂直的直线方程. 24.已知A(7,8),B(10,4),C(2,-4)三点,求ABC的面积.。

(完整版)必修2第三章直线与方程测试题

(完整版)必修2第三章直线与方程测试题

第三章直线与方程测试题(一)一.选择题(每题 5 分,共 12 小题,共 60 分)1.若直线过点( 3,3)且倾斜角为30 0,则该直线的方程为()A. y3x 63x 433B. yC. yx 4D. y x 23332.假如A(3,1) 、 B(2, k) 、 C (8,11),在同向来线上,那么k 的值是()。

A.6B.7C. 8D.93.假如直线 x by90 经过直线 5x 6 y 170 与直线 4x 3y 20 的交点,那么 b 等于().A.2B.3C.4D. 54. 直线(2m25m 2) x (m 24) y 5m0 的倾斜角是450,则 m 的值为()。

A.2B. 3C. -3D.- 25.两条直线3x 2 y m0 和 ( m 21) x 3 y 2 3m0的地点关系是( )A. 平行B.订交C.重合D.与m相关* 6.到直线2x y 1 0 的距离为5的点的会合是( ) 5A. 直线2x y 2 0B.直线C. 直线2x y0 或直线 2x y 2 0D. 直线2x y02 x y0或直线 2x y 2 07 直线x 2 y b0 与两坐标轴所围成的三角形的面积不大于1,那么 b 的取值范围是()A. [2,2]B. (, 2] [2, )C. [2,0)(0,2]D. (, )*8 .若直线l与两直线y 1 , x y 7 0 分别交于M,N两点,且MN的中点是P(1, 1),则直线 l 的斜率是()2A .B .3233C.2D .329.两平行线3x2y10 , 6x ay c 0 之间的距离为 2 13 ,则 c 2的值是 ( )13a A .± 1 B. 1 C. -1 D . 210.直线x 2 y 10 对于直线x1对称的直线方程是()A .x 2 y 10B.2 x y 1 0C.2x y 30D.x 2 y 3 0**11 .点P到点A (1,0)和直线x1的距离相等,且 P 到直线 y x 的距离等于2,这样的点P 2共有()A .1 个B. 2 个C.3 个D. 4 个*12 .若y a | x | 的图象与直线y x a(a 0) ,有两个不一样交点,则a 的取值范围是()A .0 a 1 0 B .a1C.a0 且 a 1 D .a1二.填空题(每题 5 分,共 4 小题,共20 分)13. 经过点(2, 3) ,在 x 轴、y轴上截距相等的直线方程是;或。

《直线与方程》单元测试题

《直线与方程》单元测试题

人教A 必修2第三章《直线与方程》单元测试题(时间:60分钟,满分:100分) 班别 座号 姓名 成绩一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23-D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )27 4. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A 3x-y-8=0 B 3x+y+4=0C 3x-y+6=0D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0C 2x+y-5=0D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A (-2,1)B (2,1)C (1,-2)D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有A. k 1<k 3<k 2B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=011点(3,9)关于直线x +3y -10=0对称的点的坐标是( )A (-1,-3)B (17,-9)C (-1,3)D (-17,9)12方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A 恒过定点(-2,3) B 恒过定点(2,3) C 恒过点(-2,3)和点(2,3) D 都是平行直线13直线x tan 3π+y =0的倾斜角是( ) A -3π B 3π C 3π2 D 3π2- 二、填空题(本大题共4小题,每小题5分,共20分)1.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 .2.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .3.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .4.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 .三、解答题(本大题共3小题,每小题10分,共30分)1. ①求平行于直线3x+4y-12=0,且与它的2.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值.②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*3.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:;;;;;;;;; A 12 A 13 C+4y-7=0或x=-1; +y-3=0或2x-y=0; 3.261; +5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. =0或m=-1;=1或3x-4y-3=0.。

(完整版)人教版数学必修2直线与方程单元测试题

(完整版)人教版数学必修2直线与方程单元测试题

第三章《直线与方程》单元测试题一、选择题1. 直线l 经过原点和点( 1,1) ,则它的倾斜角是()A.34B.54C.4或54D.42. 斜率为2的直线过(3,5),( a,7),( -1,b) 三点,则a,b 的值是()A.a 4,b 0 B.a 4 ,b 3C.a 4,b 3 D.a 4 ,b 33. 设点A(2,3) ,B( 3,2) ,直线过P(1,1) 且与线段AB 订交,则l 的斜率k 的取值范围是()A. 3k ≥或k ≤ 4 B.434≤k ≤C.434≤k ≤4 D.以上都不对4. 直线(a 2)x (1 a) y 3 0 与直线(a 1)x (2a 3) y 2 0 相互垂直,则 a ()A. 1 B.1 C. 1 D.3 25. 直线l 过点A 1,2 ,且可是第四象限,那么直线l 的斜率的取值范围是()A.0,2 B.0,1 C.1,D.210,26. 到两条直线3x 4y 5 0 与5x 12y 13 0 的距离相等的点P( x,y) 必然知足方程()A.x 4y 4 0 B.7x 4y0C.x 4y 4 0或4x 8y9 0 D.7x 4y0 或32 x 56 y 65 07. 已知直线3x 2y 3 0 和6x my 1 0相互平行,则它们之间的距离是()A.4 B.21313C.52613 D.726138. 已知等腰直角三角形ABC的斜边所在的直线是3x y 2 0,直角极点是 C (3,2) ,则两条直角边AC,BC 的方程是()A.3x y 5 0 ,x 2y7 0 B.2x y 4 0 ,x 2y7 0C.2x y 4 0,2x y 7 0 D.3x 2y 2 0 ,2x y 2 09. 入射光芒线在直线l:2x y 3 0上,经过x 轴反射到直线l2 上,再经过y轴反射到直线1l 上,则直线l3 的方程为()3A.x 2y 3 0 B.2x y 3 0 C.2x y 3 0 D.2x y 6 0x y 5 010. 已知x,y 知足,且z=2x+4y 的最小值为-6 ,则常数k=()x 3x y k 0A.2 B.9 C. 3 D.0二、填空题k11. 已知三点(2,3) ,(4,3) 及(5,) 在同一条直线上,则k 的值是.212. 在y 轴上有一点m ,它与点( 3,1) 连成的直线的倾斜角为120t ,则点m 的坐标为.13. 设点P 在直线x 3y 0 上,且P到原点的距离与P 到直线x 3y 2 0的距离相等,则点P坐标是.14. 直线l 过直线2x y 4 0 与x 3y 5 0 的交点,且垂直于直线是.1y x ,则直线l 的方程2x y 3 015. 若x,y 知足,设y kx ,则k 的取值范围是.x y 1 03x y 5 0三、解答题16. 已知ABC 中,点A(1,2) ,AB 边和AC 边上的中线方程分别是5x 3y 3 0 和7x 3y 5 0,求BC所在的直线方程的一般式。

直线方程单元测试—标准试卷

直线方程单元测试—标准试卷

高一直线与方程专题测试一、选择题(5分×12=60分)1、以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A、3x-y-8=0 B 、3x+y+4=0 C 、3x-y+6=0 D 、3x+y+2=02、如图1,直线321,,l l l 的斜率分别为321,,k k k ,则必有A 、 k 1<k 3<k 2B 、k 3<k 1<k 2C 、k 1<k 2<k 3D 、k 3<k 2<k 13、直线mx-y+2m+1=0经过一定点,则该点的坐标是A (-2,1)B (2,1)C (1,-2)D (1,2)4、过点P (1,2)且与原点O 距离最大的直线l 的方程( )A 、250x y +-=B 、240x y +-=C 、370x y +-=D 、350x y +-=5、方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( )A 、恒过定点(-2,3)B 、恒过定点(2,3)C 、恒过点(-2,3)和点(2,3)D 、都是平行直线6、直线x tan 3π+y =0的倾斜角是( )A 、-3πB 、3πC 、3π2D 、3π2-7、已知直线1l 的方程是ax-y+b =0, 2l 的方程是bx-y-a =0(ab ≠0,a ≠b),则下列各示意图形中,正确的是( )8、直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )A 、1133y x =-+ B 、113y x =-+ C 、33y x =- D 、113y x =+ 9、若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB中点M 到原点距离的最小值为A 、23B 、32C 、33D 、2410、已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是( ) A 、4 B 、13132 C 、26135 D 、26137 11、点(3,9)关于直线x +3y -10=0对称的点的坐标是( )A 、(-1,-3)B 、(17,-9)C 、(-1,3)D 、(-17,9)12、已知0,0ab bc <<,则直线ax by c +=通过( )A 、第一、二、三象限B 、第一、二、四象限C 、第一、三、四象限D 、第二、三、四象限二、填空题(4分×4=16分)13、直线1l :x +my +6=0与2l :(m -2)x +3y +2m =0,若21//l l 则m =_________ 14、过点(1,2)且在两坐标轴上的截距相等的直线的方程15、直线y=21x 关于直线x =1对称的直线方程是16、将一张坐标纸折叠一次,使点(0,2)与点(2,0)-重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________三、解答题(12分×5+14=74分)17、点(3,5)A -,点(2,10)B ,求为x 轴上一点P ,使 AP PB +最短18、(1)求平行于直线012-43=+y x 且与它的距离是7的直线的方程;(2)求垂直于直线05-3=+y x ,且与点(-1,0)p 的距离是1053的直线的方程. 19、(1)经过点(3,0)A 且与直线05-2=+y x 平行的直线。

直线与方程单元测试题.doc

直线与方程单元测试题.doc

直线与方程单元测试题姓名 分数1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .103.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x5.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.2 6.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与,,a b θ的值有关7.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在 8.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( ) A.34k ≥ B .324k ≤≤ C .324k k ≥≤或 D .2k ≤ 9.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 10.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32C .32-D . 23- 11.点(1,1)P - 到直线10x y -+=的距离是________________.12.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________.13.点A (1,3),B (5,-2),点P 在x 轴上使|AP|-|BP|最大,则P 的坐标为:14.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.15.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

直线的方程单元测试题

直线的方程单元测试题

直线的方程单元测试题一、填空题1.直线20x y n -+=和4210x y -+=的位置关系是 .2.点(,)P m n 与点(1,1)Q n m -+关于直线l 对称,则直线l 的方程为 .3.到两坐标轴距离相等的点(,)P x y 满足的条件是 .4.两直线1l :3450x y ++=,2l :60x by c ++=间的距离为3,则b c += .5.已知两点(3,2)A 和(1,4)B -到直线30mx y ++=距离相等,则m 的值为 .6.点(,)P m n m --到直线1x y m n +=的距离等于 .7.函数y =的最小值为 .8.已知直线420mx y +-=与250x y n -+=互相垂直,垂足为(1,)p ,则m n p -+= .9.已知点(0,1)M -,点N 在直线10x y -+=上,若直线MN 垂直于直线230x y +-=,则点N 的坐标为 .10.若直线l 垂直于直线3470x y +-=且与原点的距离为6,则直线l 的方程是 .11.已知实数x ,y 满足关系式512600x y +-=的最小值是 .12.直线20ax by +-=,若适合341a b -=,则该直线比过定点 .13.直线1l :51230x y +-=与2l :51240x y -+=的对称轴方程是 .二、解答题14.若直线260x a y ++=和直线(2)320a x ay a -++=没有公共点,求a 的值.15.已知三条直线:21x y -=,23x ky +=,345kx y +=,是否存在实数k 使得三条直线相交于一点?若存在,求实数k 的值;若不存在,请说明理由.16.已知直线l :33y x =+,求:(1)点(4,5)P 关于l 的对称点坐标;(2)直线2y x =-关于l 的对称直线的方程;(3)直线l 关于点(3,2)A 的对称直线的方程.17.已知直线1l :20(0)x y a a -+=>,2l :4210x y -++=,3l :10x y +-=,且1l 与2l 的距离是10. (1)求a 的值; (2)能否找到一点P ,使得点P 同时满足下列三个条件:①点P 是第一象限的点;②点P 到直线1l 的距离是点P 到直线2l 的距离的12;③点P 到直线1l 的距离与点P 到直线2l 的距.若能,求出点P 的坐标;若不能,请说明理由.。

《直线与方程》单元测试卷

《直线与方程》单元测试卷

《直线与方程》单元测试题1.若直线 x= 2015 的倾斜角为α,则α()A.等于 0°B.等于180°C.等于 90° D .不存在2.过点 (1, 0)且与直线 x-2y- 2= 0 平行的直线方程是 ()A . x- 2y- 1= 0B. x-2y+ 1= 0C. 2x+ y- 2=0 D .x+ 2y- 1=03.已知三角形ABC 的顶点坐标为A(- 1, 5), B(- 2,- 1), C(4,3),若 M 是 BC 边的中点,则中线 AM 的长为 ()A.4 2 B. 13 C.2 5 D.2 134.若光线从点 P(- 3, 3)射到 y 轴上,经 y 轴反射后经过点Q(- 1,-5),则光线从点 P 到点 Q 走过的路程为 ()A .10B.5+ 17 C.45D.2 175.到直线 3x- 4y- 1=0 的距离为 2 的直线方程是 ()A . 3x-4y- 11= 0B. 3x-4y- 11= 0 或 3x- 4y+ 9= 0C. 3x- 4y+ 9= 0 D .3x- 4y+ 11= 0 或 3x- 4y-9= 06.直线 5x-4y- 20=0在 x 轴上的截距,在 y 轴上的截距和斜率分别是 ()5554A.4,5,4B.5,4,4C.4,-5,4D.4,- 5,57.若直线 (2m- 3)x- (m- 2)y+ m+ 1= 0 恒过某个点 P,则点 P 的坐标为 ()A.(3,5) B.(-3,5)C. (- 3,- 5)D. (3,- 5)8.如图 D3 - 1 所示,直线 l1:ax- y+b= 0 与直线 l 2:bx+ y- a= 0(ab≠ 0)的图像应该是()图 D3-19.若直线 3x+ y- 3=0 与直线 6x+ my+1= 0 平行,则它们之间的距离为 ()257A.4 B.1313 C.2613 D.201010.点 P(7,- 4)关于直线 l: 6x- 5y- 1= 0 的对称点 Q 的坐标是 ()A.(5,6)B.(2, 3)C. (- 5, 6)D.(-2,3)11.若直线 l : y= kx-3与直线2x+ 3y- 6= 0 的交点位于第一象限,则直线 l 的倾斜角的取值范围是 (πππππ πππ)A.B. 6,2C. 3,2D. 6,26,312.已知△ ABC 的三个顶点分别是A(0, 3), B(3, 3), C(2,0),若直线 l: x= a 将△ ABC分割成面积相等的两部分,则 a 的值是 ()A. 3 B. 1+232C.1+3 D.213.过两直线 x- 3y+ 1= 0 和3x+ y-3= 0 的交点,并且与原点的最短距离为1的直线2的方程为 ________.14.已知 a,b 满足 a+2b= 1,则直线 ax+3y+ b= 0 必过定点 ________.15.过点 (- 2,- 3)且在 x 轴、 y 轴上的截距相等的直线方程是________.16.已知点 A(1 ,-1),点 B(3 ,5) ,点 P 是直线 y=x 上的动点,当 |PA|+ |PB|的值最小时,点 P 的坐标是 ________.17.已知直线 l 经过点 (0,- 2),其倾斜角的大小是60° .(1)求直线 l 的方程; (2)求直线 l 与两坐标轴围成的三角形的面积.18.求过两直线x- 2y+ 4= 0 和 x+ y- 2= 0 的交点,且分别满足下列条件的直线l 的方程.(1)直线 l 与直线 3x-4y+ 1= 0 平行; (2)直线 l 与直线 5x + 3y- 6= 0 垂直.19.已知直线 l1: y=- k(x - a)和直线 l2在 x 轴上的截距相等,且它们的倾斜角互补,又知直线 l1过点 P(- 3, 3).如果点 Q(2 ,2) 到直线 l2的距离为 1,求 l 2的方程.20.已知△ ABC 中,A 点坐标为 (0,1) ,AB 边上的高线方程为 x+ 2y- 4= 0,AC 边上的中线方程为 2x+ y- 3= 0,求 AB ,BC, AC 边所在的直线方程.21.若光线从点 Q(2, 0)发出,射到直线 l: x+ y= 4 上的点 E,经 l 反射到 y 轴上的点 F,再经 y 轴反射又回到点 Q,求直线 EF 的方程.22.在平面直角坐标系中,已知矩形轴的正半轴上,点 A 与坐标原点重合上.ABCD 的长为 2,宽为 1, AB , AD 边分别在 x 轴, y (如图 D 3- 2 所示 ).将矩形折叠,使点 A 落在线段 DC(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当- 2+3≤ k≤ 0 时,求折痕长的最大值.图D3- 2单元测评 (三)1. C2. A [解析 ] 设直线的方程为 x- 2y+ b =0 ,将点 (1 ,0) 代入得 b =- 1 ,所以直线方程为 x- 2y- 1 = 0.3. C[解析 ] 设点 M 的坐标为 (x0, y0 ),由中点坐标公式得 x0=-2+4= 1,2-1+32=2 5. y0==1,即点 M 的坐标为 (1,1),故 |AM| =(1+1)2+( 1-5)24. C[解析 ] Q(- 1 ,- 5) 关于 y 轴的对称点为 Q 1(1 ,- 5) ,易知光线从点P到点 Q走过的路程为 |PQ 1 |= 42+82= 4 5.5.B [解析 ] 本题可采用排除法,显然不能选择A ,C. 又因为直线 3x - 4y +11= 0 到12直线 3x -4y - 1=0 的距离为 5 ,故不能选择 D ,所以答案为 B.x y 56.C [解析 ]直线 5x - 4y -20 = 0 可化为 4 - 5= 1 或 y = 4x - 5,易得直线在 x 轴, y5轴上的截距分别为 4,- 5,斜率为 4 .7.C [解析 ] 方程 (2m - 3)x - (m - 2)y + m + 1= 0 可整理为2x - y + 1= 0 , x =- 3, m(2x - y + 1) -(3x - 2y - 1) = 0 ,联立 得 y =- 5.3x -2y - 1= 0,故 P(-3,- 5).8. B [解析 ] ∵ ab ≠0,∴可把 l 1 和 l 2 的方程都化成斜截式, 得 l 1 : y = ax + b , l 2: y =- bx +a ,∴ l 1 的斜率等于 l 2 在 y 轴上的截距.∵ C 中 l 1 的斜率小于 0 ,l 2 在 y 轴上的截距大于 0 ;D 中 l 1 的斜率大于 0, l 2 在 y 轴上的截距小于 0,∴可排除 C ,D 两选项.又∵ l 1 在 y 轴上的截距等于 l 2 的斜率的相反数,∴可排除 A. 9.D [解析 ] 因为直线 3x + y - 3 = 0 与 6x + my + 1 =0 平行,所以 m = 2 ,所以它们1之间的距离为 d =-3-2 = 7 10.32+1220n + 4 6=- 1,10 .C [解析 ] 设 Q 点坐标为 (m ,n) ,则 m - 7×5 解得 m =- 5 ,6× m + 7 - 5×n - 4- 1 = 0,2 2n = 6 ,所以点 P(7 ,- 4) 关于直线 l : 6x -5y - 1=0 的对称点 Q 的坐标是 (- 5, 6) .11. B [解析 ] 如图所示,直线 2x + 3y -6 = 0过点 A(3 , 0) ,B(0 , 2) ,直线 l 必过点 C(0 ,- 3) ,当直线 l 过 A 点时,两直线的交点在x 轴,当直线 l 绕 C 点逆时针旋转时,l 的倾斜角的取值范围是 π π交点进入第一象限,从而可得直线6 , 2 .12 .A [解析 ] 只有当直线x =a 与线段 AC 相交时, x = a 才可将△ ABC 分成面积相等的两部分. S △ABC =1× 3× 3= 9 ,设 x = a 与 AB , AC 分别相交于 D , E ,则 S △ ADE = 1×a2 22 3 1 9× 2a = 2× 2,解得 a = 3( 负值舍去 ).11313 . x = 2或 x- 3y + 1 =0[解析 ] 易求得两直线交点的坐标为2 , 2 ,显然直线 x1=2满足条件.31当斜率存在时,设过该点的直线方程为y - 2 =k x - 2,化为一般式得 2kx - 2y + 3- k = 0 ,因为直线与原点的最短距离为 1 , 2所以 | 3 -k| =1 ,解得 k = 3 ,4+ 4k 2 23所以所求直线的方程为 x-3y+ 1 = 0.1 1[解析 ] 由 a + 2b = 1 得 a = 1 - 2b ,所以 (1- 2b)x +3y + b =0 ,14. 2,- 61 即 b(1 -2x) + x + 3y = 0,联立 1- 2x = 0,x = 2 , 得1x +3y = 0,y =- 6,1 1故直线必过定点 2 ,- 6 .15 . x + y + 5= 0 或 3x - 2y = 0 [解析 ] 当直线过原点时,所求直线的方程为3x - 2y=0 ;当直线不过原点时,易得所求直线的方程为 x + y +5= 0.16 . (2, 2) [解析 ] 易知当点 P 为直线 AB 与直线 y = x 的交点时, |PA| +|PB| 的值最小.直线 AB 的方程为 y - 5=5-(- 1)(x - 3) ,即 3x - y - 4= 0.3 - 13x - y - 4= 0, x = 2,解方程组 得y =x , y = 2.所以当 |PA| + |PB| 的值最小时,点 P 的坐标为 (2 , 2) .17 .解: (1) 由直线的点斜式方程得直线l 的方程为 y + 2 = tan 60 ° x ,即 3x - y - 2 =0.(2) 设直线 l 与 x 轴, y 轴的交点分别为 A ,B ,令 y =0 得 x =2 3;令 x =0 得 y =- 2. 3所以 S △OAB =1 OA · OB = 1×2×23 =23,故所求三角形的面积为2 3 . 2 233318 .解: 联立 {x - 2y +4 = 0 ,x + y - 2= 0 ,解得 x =0 ,所以交点坐标为 (0 , 2) .y = 2 , 3(1) 因为直线 l 与直线 3x -4y + 1= 0 平行,所以 k = 4 ,故直线 l 的方程为 3x - 4y + 8= 0.3(2) 因为直线 l 与直线 5x +3y - 6= 0 垂直,所以 k = 5 , 故直线 l 的方程为 3x - 5y + 10 = 0.19 .解: 由题意,可设直线 l 2 的方程为 y =k(x - a) ,即 kx - y - ak = 0 ,∵点 Q(2 , 2) 到直线 l 2 的距离为 1,∴ |2k -2 - ak|=1,①k 2+ 1又∵直线 l 1 的方程为 y =- k(x -a) ,且直线 l 1 过点 P(- 3 , 3) ,∴ ak = 3- 3k. ②由①②得 |5k -5|= 1,两边平方整理得 12k 2- 25k + 12= 0 ,k 2+ 14 3解得 k = 3 或 k =4.43∴当 k = 3 时,代入②得 a =- 4,此时直线 l 2 的方程 4x - 3y + 3 = 0;当 k =3时,代入②得 a =1 ,此时直线 l 的方程为 3x - 4y - 3 = 0.42l 2 的方程为 4x - 3y + 3 =0 或 3x - 4y - 3= 0.综上所述,直线20.解: 由已知易得直线 AB 的斜率为 2 ,∵ A 点坐标为 (0 ,1) ,∴ AB 边所在的直线方程为 2x - y + 1 = 0.12x - y +1 = 0 ,x =2,1联立 2x + y - 3= 0 ,解得故直线 AB 与 AC 边上的中线的交点为B 2,2.y =2,设 AC 边中点 D(x 1 , 3- 2x 1) ,C(4 - 2y 1 , y 1),∵ D 为 AC 的中点,∴由中点坐标公式 2x 1 =4- 2y 1, x 1= 1 ,得解得y 1= 1 ,2 ( 3-2x 1)= 1 + y 1,∴ C(2 , 1) ,∴ BC 边所在的直线方程为 2x + 3y - 7 =0 , AC 边所在的直线方程为 y =1.21 .解: 设 Q 关于 y 轴的对称点为 Q 1 ,则 Q 1 的坐标为 (- 2 ,0) .设 Q 关于直线 l 的对称点为 m + 2, n 在直线 l 上. Q 2(m ,n) ,则 QQ 2 的中点 G2 2m + 2 n ∴2 + 2=4,①n又∵ QQ 2⊥ l ,∴ m - 2= 1.②由①②得 Q 2( 4,2).由物理学知识可知,点Q 1,Q 2 在直线 EF 上,1 ∴ k EF = kQ 1Q2 = 3.1∴直线 EF 的方程为 y = 3(x + 2) ,即 x - 3y + 2 = 0.122 .解: (1) ①当 k =0 时,此时点 A 与点 D 重合,折痕所在的直线方程为 y = 2;②当 k ≠0时,将矩形折叠后点 A 落在线段 DC 上的点记为 G(a ,1) ,所以点 A 与点 G 关于折痕所在的直线对称,有 k OG · k =- 1?1· k =- 1? a =- k ,a故点 G 的坐标为 G(- k , 1),OG 的交点坐标 (线段 OG 的中点 )为 Pk1从而折痕所在的直线与 -2, 2 ,1 kk 2 1 折痕所在的直线方程为 y - 2 = k x +2 ,即 y = kx + 2 +2.k 2 1 综上所述,折痕所在的直线方程为y = kx + 2 + 2 .(2) 当 k = 0 时,折痕的长为 2;k2当- 2 + 3≤ k<0BC 于点 M 1 ,交 y 时,折痕所在的直线交2, 2k + 2 + 2 轴于点N 0, k 2+ 12 ,k 2+ 1 k 221∵ |MN| 2= 22 + 2 - 2k + 2 +2 = 4+ 4k 2≤ 4 +4 × (7 - 43)=32-163,∴折痕长度的最大值为 32-16 3=2( 6- 2).而 2( 6 - 2)>2 ,故折痕长度的最大值为 2( 6- 2).。

(完整版)直线与方程测试题(含答案)

(完整版)直线与方程测试题(含答案)

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。

A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。

A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。

数学第3章《直线与方程》单元测试

数学第3章《直线与方程》单元测试

数学第3章《直线与方程》单元测试一、选择题(每小题1分,共20分)1.已知直线l过点A(2,3)和点B(4,5),则过点A且平行于直线l的直线斜率为()。

A.-1B.1C.2D.02.过点(3,-2)和点(-1,4)的直线方程为()。

A.y=6x-20B.y=6x+20C.y=-6x-20D.y=-6x+203.直线l1:2x+y-3=0,直线l2:3x-y+5=0,则直线l1和l2的交点为()。

A.(1,1)B.(-1,-1)C.(-1,1)D.(1,-1)4.直线2x-y-5=0与直线x-2y-1=0的夹角为()。

A.30°B.45°C.60°D.90°5.设直线过点(1,2)且与直线3x-4y+1=0垂直,则该直线方程为()。

A.y-2=4(x-1)B.y-2=-4(x-1)C.y+1=4(x-1)D.y+1=-4(x-1)二、填空题(每小题2分,共20分)1.过点(3,-4)且与直线2x-3y+5=0平行的直线方程为______________。

2.过点(1,2)且与直线4x+y-6=0垂直的直线方程为______________。

3.过点(1,-2)且与直线3x-4y+7=0垂直的直线方程为______________。

4.过点(2,1)且与直线x+2y-3=0垂直的直线方程为______________。

5.设直线过点(1,-3)且平行于直线2x-3y+4=0,直线方程为______________。

三、解答题(共60分)1.有两条直线,直线l1经过点A(1,3)和点B(2,4),直线l2经过点C(2,3)和点D(5,7)。

a)求直线l1和l2的斜率。

b)判断直线l1和l2是否平行,如果不平行,求出直线l1和l2的交点坐标。

2.判断直线y=3x+5与x轴和y轴的交点坐标,并求出与x轴和y轴分别呈45°角的直线方程。

3.直线l1经过点A(1,2)和点B(3,4),直线l2经过点C(0,1)和点D(2,3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省赣榆高级中学 直线与方程单元测试题一、填空题(5分×18=90分)1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为 ;2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是 ;3.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是 ;4.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 ;5. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ;6.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是: 7、过点A(1,2)且与原点距离最大的直线方程是:8.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是:9.已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是:10.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为:11.与点A(1,2)距离为1,且与点B(3,1)距离为2的直线有______条.12.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 .13.当10k 2<<时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 14.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ;15.直线y=21x 关于直线x =1对称的直线方程是 ; 16.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________.17.光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B ,则反射光线所在直线的方程18.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为:二.解答题(10分×4+15分×2=70分)19.已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为4,求直线l 的方程.20.(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x -y=1平行,求m 的值.(2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.21.已知∆A B C 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆A B C各边所在直线方程.22.△ABC 中,A (3,-1),AB 边上的中线CM 所在直线方程为:6x +10y -59=0,∠B 的平分线方程B T 为:x -4y +10=0,求直线BC 的方程.23. 已知函数x a x x f +=)(的定义域为),0(∞+,且222)2(+=f . 设点P 是函数图象上的任意一点,过点P 分别作直线x y =和y 轴的垂线,垂足分别为N M 、. (1)求a 的值;(2)问:||||PN PM ⋅是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设O 为原点,若四边形OMPN 面积为1+2 求P 点的坐标24.在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图所示)。

将矩形折叠,使A 点落在线段DC 上。

(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程;(2)当230k -+≤≤时,求折痕长的最大值;(3)当21k -≤≤-时,折痕为线段PQ ,设2(2||1)t k PQ =-,试求t 的最大值。

答案:1. y =33x -4 2. -9 3.相交 4.[)(]2,00,2⋃- 5.x +y +5=0或3x -2y =0 6. 26137 7. 052=-+y x 8.-1 9.][)+∞⋃--∞,125,( 10.2311. 2 12.y x =2313.二 14.,2x y =或03=-+y x 15、022=-+y x 16. x -2y -1=0 17.4x 5y 10-+= 18. (13,0)19:(1)法一:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立,所以x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程可化为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0.(3)依题意,直线l 在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k , ∴A (-1+2k k ,0),B (0,1+2k ),又-1+2k k <0且1+2k >0,∴k >0,故S =12|OA ||OB |=12×1+2k k(1+2k ) =12(4k +1k+4)=4, 即k =12,直线l 的方程为x -2y +4=0. 20.解 (1)∵ l 2的斜率k 2=1, l 1‖l 2∴ k 1=1,且l 1与l 2不重合 ∴ y 轴上的截距不相等 ∴ 由mm m m --+-2232=1且02≠-m m 得m =-1, 但m =-1时,l 1与l 2重合,故舍去, ∴ m 无解(2)当a=1时,l 1:x=3,l 2:y=52 ∴ l 1⊥l 2 当a=23-时,l 1:5653+=x y ,l 2:54-=x 显然l 1与l 2不垂直。

当a ≠1且a ≠23-时,l 1:131---=a x a a y ,l 2: 322321+++-=a x a a y ∴ k 1=1-a a k 1=321+-a a 由k 1k 2=-1得1-a a 321+-a a =-1解得3-=a ∴ 当a=1或3-=a 时,l 1⊥l 221.分析:B 点应满足的两个条件是:①B 在直线01=-y 上;②BA 的中点D 在直线012=+-y x 上。

由①可设()1,B x B ,进而由②确定B x 值. 解:设()1,B x B 则AB 的中点⎪⎭⎫ ⎝⎛+221,Bx D ∵D 在中线CD :012=+-y x 上∴012221=+⋅-+B x , 解得5=B x , 故B (5, 1).同样,因点C 在直线012=+-y x 上,可以设C 为()C C y y ,12-,求出()131---=,,C y C . 根据两点式,得ABC ∆中AB :072=-+y x , BC :014=--y x ,AC :02=+-y x .22.设),(00y x B 则AB 的中点)21,23(00-+y x M 在直线CM 上,则059211023600=--⨯++⨯y x ,即0555300=-+y x …………………①,又点B 在直线BT 上,则010400=+-y x …………………②联立①②得)5,10(B ,76310)1(5=---=∴AB K , 有BT 直线平分B ∠,则由到角公式得76411417641141⨯+-=+-BC BC K K ,得92-=BC K BC ∴的直线方程为:06592=-+y x .23.(1)∵ 22222)2(+=+=a f ,∴ 2=a . (2分)(2)点P 的坐标为),(00y x , 则有0002x x y +=,00>x ,(3分)由点到直线的距离公式可知:0000||,12||||x PN x y x PM ==-=,(6分) 故有1||||=⋅PN PM ,即||||PN PM ⋅为定值,这个值为1. (7分)(3)由题意可设),(t t M ,可知),0(0y N .(8分)∵ PM 与直线x y =垂直,∴ 11-=⋅PM k ,即 100-=--t x t y ,解得 )(2100y x t +=,又0002x x y +=,∴ 0022x x t +=.(10分)∴222120+=∆x S OPM ,222120+=∆x S OPN ,(12分)∴ 212)1(212020+≥++=+=∆∆x x S S S OPN OPM OMPN ,当且仅当10=x 时,等号成立.∴ 此时四边形OMPN 面积有最小值21+.(14分)24、解:(1) ①当0=k 时,此时A 点与D 点重合, 折痕所在的直线方程21=y ②当0≠k 时,将矩形折叠后A 点落在线段DC 上的点记为(,1)G a , 所以A 与G 关于折痕所在的直线对称,有1OG k k ⋅=-⇒11k a⋅=-⇒a k =- 故G 点坐标为)1,(k G -,从而折痕所在的直线与OG 的交点坐标(线段OG 的中点)为)21,2(k M -折痕所在的直线方程)2(21k x k y +=-,即2122k y kx =++ 由①②得折痕所在的直线方程为:2122k y kx =++ (2)当0=k 时,折痕的长为2;当20k -+≤时,折痕直线交BC 于点21(2,2)22k M k ++,交y 轴于21(0,)2k N +∵22222211||2[(2)]4444(732222k k y MN k k +==+-++=+≤+-=-。

而2)26(2>- ,故折痕长度的最大值为)26(2-(3)当21k -≤≤-时,折痕直线交DC 于1(,1)22k P k -,交x 轴于21(,0)2k Q k+- ∵22222111||1[()]1222k k PQ k k k +=+---=+ ∴22(2||1)t k PQ k k =-=+∵21k -≤≤- ∴2k k+≤-(当且仅当(2,1)k =--时取“=”号)∴当k =t 取最大值,t 的最大值是-。

相关文档
最新文档