图论基本算法

合集下载

图论算法详解(C++版)

图论算法详解(C++版)

1.1、prim算法:无向图的生成树就是从图的边集中选择一些边,使得这些边构成一个连通无环图,也就是树。

如果给每一条边加一个权,所有生成树中权和最小的生成树称为最小生成树。

【Prim算法思想】任意时刻的中间结果都是一棵树,每次花费最小的代价,用一条边把不在树中的结点加进来。

【最小生成树算法实例】现有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权代表公路造价。

在分析了这张图后发现,任一对城市都是连通的。

现在要求用公路把所有城市联系起来,如何设计可使得工程的总造价最少?【输入】第一行两个数v(v<=200),e,分别代表城市数和边数以下e行,每行为两个顶点和它们之间的边权w(w<1000)。

【输出】连通所有城市的公路最小造价。

【输入样例】6 101 2 101 5 191 6 212 3 52 4 62 6 113 4 64 5 184 6 145 6 33【输出样例】50 原图最小生成树#include<cstdio>#include<string>#include<cstring>#include<climits>using namespace std;int i,j,k,n,m,mi,t,s,a[1000][1000]; void prim(){int mi,p,f,k,d[1000];bool v[1000];memset(v,false,sizeof(v));f=1;for (i=2;i<=n;i++){d[i]=INT_MAX;}d[f]=0;s=0;for(i=1;i<=n;i++){mi=INT_MAX;for (j=1;j<=n;j++)if ((v[j]==false) && (d[j]<mi)){p=j;mi=d[j];}s+=mi;v[p]=true;for(j=1;j<=n;j++){if (a[p][j]<d[j]) d[j]=a[p][j];}}}int main(){memset(a,0,sizeof(a));scanf("%d%d",&n,&m);mi=INT_MAX;for (i=1;i<=n;i++){for (j=1;j<=n;j++){a[i][j]=INT_MAX;}}for (i=1;i<=m;i++){scanf("%d%d%d",&k,&j,&t);if ((t<a[k][j])||(t<a[j][k])){a[k][j]=t;a[j][k]=a[k][j];}}prim();printf("%d",s);return 0;}1.2、克鲁斯卡尔算法假设N=(V,{E})是连通网,将N中的边按权值从小到大的顺序排列;①、将n个顶点看成n个集合;②、按权值小到大的顺序选择边,所选边应满足两个顶点不在同一个顶点集合内,将该边放到生成树边的集合中。

图论及其应用

图论及其应用

图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。

图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。

本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。

图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。

图可以分为有向图和无向图两种类型。

有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。

有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。

有向图的表示可以用邻接矩阵或邻接表来表示。

无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。

无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。

无向图的表示通常使用邻接矩阵或邻接表。

常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。

通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。

DFS可以用于判断图是否连通,寻找路径以及检测环等。

广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。

不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。

BFS可以用于寻找最短路径、搜索最近的节点等。

最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。

其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。

迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。

最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。

其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。

MATLAB中常见的图论算法介绍

MATLAB中常见的图论算法介绍

MATLAB中常见的图论算法介绍一、引言图是计算机科学中非常重要的一种数据结构,广泛应用于各个领域。

图论算法能够解决多种问题,如网络分析、社交网络分析、路径规划等。

在本篇文章中,我们将介绍一些在MATLAB中常见的图论算法,帮助读者了解和应用这些算法。

二、图的表示方法在MATLAB中,图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维矩阵,其中行和列分别代表图的节点,矩阵中的元素表示节点之间的关系。

邻接表是一个包含图中所有节点的列表,每个节点链接到其相邻节点的列表。

三、最短路径算法1. Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即寻找一个节点到图中其他所有节点的最短路径。

算法的基本思想是通过不断选择最短路径的节点来逐步扩展最短路径树。

在MATLAB中,可以使用graph对象和shortestpath函数来实现Dijkstra算法。

首先,使用graph对象创建图,然后使用shortestpath函数计算从源节点到目标节点的最短路径。

2. Bellman-Ford算法Bellman-Ford算法也用于解决单源最短路径问题,但相比Dijkstra算法,Bellman-Ford算法可以处理带有负权边的图。

算法的基本思想是通过松弛操作来逐步减小节点的估计距离,直到找到最短路径。

在MATLAB中,可以使用graph对象和shortestpath函数来实现Bellman-Ford算法。

与Dijkstra算法类似,首先使用graph对象创建图,然后使用shortestpath函数计算最短路径。

四、最小生成树算法1. Prim算法Prim算法用于寻找一个无向图的最小生成树。

算法的基本思想是从一个初始节点开始,逐步添加边,直到所有节点都被连接成一棵生成树。

在MATLAB中,可以使用graph对象和minspantree函数来实现Prim算法。

首先,使用graph对象创建图,然后使用minspantree函数计算最小生成树。

图论知识点

图论知识点

图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。

图由节点(或顶点)和连接这些节点的边组成。

本文将概述图论的基本概念、类型、算法以及在各种领域的应用。

1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。

边可以是有向的(指向一个方向)或无向的(双向连接)。

1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。

环是一条起点和终点相同的路径。

1.3 度数节点的度数是与该节点相连的边的数量。

对于有向图,分为入度和出度。

1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。

2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。

2.2 简单图和多重图简单图是没有多重边或自环的图。

多重图中,可以有多条边连接同一对节点。

2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。

有向图的连通性称为强连通性。

2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。

3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。

3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。

3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。

4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。

4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。

4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。

5. 结论图论是数学中一个非常重要和广泛应用的领域。

它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。

随着科技的发展,图论在新的领域中的应用将会不断涌现。

本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。

电网络理论 第二章图论

电网络理论    第二章图论

电网络理论第二章图论第二章图论图论是电网络理论的重要分支,主要研究对象是图。

图是由节点和边构成的一种抽象模型,被广泛应用于计算机科学、数学和其他相关领域。

本章将介绍图论的基本概念、常用算法以及在电网络中的应用。

1. 图的定义和表示方式图由节点(也称为顶点)和边组成。

节点表示图中的元素,边表示节点之间的关联关系。

图可以分为有向图和无向图两种类型。

有向图中的边有方向性,表示从一个节点到另一个节点的单向关系。

无向图中的边没有方向性,表示节点之间的无序关系。

图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维数组,用于表示节点之间的关系。

邻接表则是由链表构成的数组,每个节点对应一条链表,链表中记录了该节点与其他节点的关系。

2. 图的基本术语和性质图论中有一些基本的术语和性质,包括:- 路径:指从一个节点到达另一个节点所经过的一系列边和节点。

- 简单路径:路径中不含有重复节点的路径。

- 环:起点和终点相同的路径。

- 连通图:图中任意两个节点之间都存在路径的图。

- 强连通图:有向图中任意两个节点之间都存在路径的图。

- 子图:由图中部分节点和对应的边组成的图。

- 度:节点所连接的边的数量。

- 入度和出度:有向图中节点的入边和出边的数量。

3. 常用图论算法图论中有许多重要的算法,下面介绍其中几个常用算法:- 广度优先搜索(BFS):用于查找图中从起点到终点的最短路径,同时可以用于遍历图的所有节点。

- 深度优先搜索(DFS):用于遍历图的所有节点,通过递归的方式沿着路径向前搜索,直到没有未访问的节点。

- 最小生成树(MST):通过连接图中的所有节点,使得生成的树具有最小的总权重。

- 最短路径算法:例如迪杰斯特拉算法和贝尔曼-福特算法,用于查找图中两个节点之间的最短路径。

- 拓扑排序:用于对有向无环图进行排序,使得图中的节点满足一定的顺序关系。

4. 图论在电网络中的应用图论在电网络领域有广泛的应用,包括:- 网络拓扑分析:通过图论算法可以对电网络的拓扑结构进行分析,了解网络中节点之间的连接关系。

图论中的常用经典算法

图论中的常用经典算法

图论中的常用经典算法第一节最小生成树算法一、生成树的概念若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。

在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。

对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。

要访问其它顶点则还需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。

由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。

如下图:但不管如何,我们都可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。

二、求图的最小生成树算法严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。

对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。

求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网[问题描述]有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。

现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。

[输入]n(城市数,1<=n<=100)e(边数)以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。

图论的基础概念和算法

图论的基础概念和算法

图论的基础概念和算法图论是数学的一个分支,研究的对象是图。

图是由一组互不相连的节点(顶点)和连接这些节点的边(边)组成的数学结构。

图论的基础概念包括顶点、边、路径、环、度数等。

本文将介绍图论的基础概念以及常用的图算法。

一、基础概念1. 图的定义和表示图由顶点集合和边集合组成。

顶点集合用V表示,边集合用E表示。

图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维数组,用来表示图中顶点之间的连接关系。

邻接表是一个链表数组,用来表示每个顶点相邻顶点的列表。

2. 顶点和边顶点是图的基本组成单位,用来表示图中的一个节点。

边是连接两个顶点的线段,用来表示两个顶点之间的关系。

3. 路径和环路径是由一系列相邻顶点连接而成的顶点序列。

路径的长度是指路径上经过的边的数目。

环是起点和终点相同的路径。

4. 度数顶点的度数是指与其相邻的边的数目。

入度是指指向该顶点的边的数目,出度是指由该顶点指向其他顶点的边的数目。

图中顶点的度数可以用来判断顶点的重要性。

二、常用算法1. 广度优先搜索(BFS)广度优先搜索是一种用来遍历和搜索图的算法。

从一个起始顶点开始,逐层扩展,先访问距离起始顶点最近的顶点,然后访问它们的相邻顶点,并逐渐向外扩展。

广度优先搜索可以用来计算两个顶点之间的最短路径。

2. 深度优先搜索(DFS)深度优先搜索是另一种常用的图遍历算法。

从一个起始顶点开始,沿着一条路径尽可能深入地访问图,直到不能再继续深入为止,然后回溯到上一个顶点,继续探索其他路径。

深度优先搜索可以用来计算连通分量、拓扑排序和寻找环等。

3. 最小生成树最小生成树是指图中通过连接所有顶点的子图,并且该子图的边权重之和最小。

常用的最小生成树算法包括Prim算法和Kruskal算法。

Prim算法从一个顶点开始,逐步扩展最小生成树的边,直到包含所有顶点为止。

Kruskal算法则是从边的权重最小的边开始,逐步增加边到最小生成树中,直到包含所有顶点为止。

4. 最短路径算法最短路径算法用来计算两个顶点之间的最短路径。

图论基础图的表示与常见算法

图论基础图的表示与常见算法

图论基础图的表示与常见算法图论是数学的一个分支,研究的是图这种数学结构。

图由节点(顶点)和边组成,是研究网络、关系、连接等问题的重要工具。

在图论中,图的表示和算法是非常重要的内容,本文将介绍图的表示方法以及一些常见的图算法。

一、图的表示1. 邻接矩阵表示法邻接矩阵是表示图的一种常见方法,适用于稠密图。

对于一个有n 个节点的图,邻接矩阵是一个n×n的矩阵,其中第i行第j列的元素表示节点i到节点j是否有边相连。

如果有边相连,则该元素的值为1或边的权重;如果没有边相连,则该元素的值为0或者无穷大。

邻接矩阵的优点是可以方便地进行边的查找和修改,但缺点是对于稀疏图来说,会浪费大量的空间。

2. 邻接表表示法邻接表是表示图的另一种常见方法,适用于稀疏图。

对于一个有n 个节点的图,邻接表是一个长度为n的数组,数组中的每个元素是一个链表,链表中存储了与该节点相连的其他节点。

邻接表的优点是节省空间,适用于稀疏图,但缺点是查找边的时间复杂度较高。

3. 关联矩阵表示法关联矩阵是表示图的另一种方法,适用于有向图。

对于一个有n个节点和m条边的图,关联矩阵是一个n×m的矩阵,其中第i行第j列的元素表示节点i和边j的关系。

如果节点i是边j的起点,则该元素的值为-1;如果节点i是边j的终点,则该元素的值为1;如果节点i与边j无关,则该元素的值为0。

关联矩阵适用于有向图,可以方便地表示节点和边之间的关系。

二、常见图算法1. 深度优先搜索(Depth First Search,DFS)深度优先搜索是一种用于遍历或搜索图的算法。

从起始节点开始,沿着一条路径一直向下搜索,直到到达叶子节点,然后回溯到上一个节点,继续搜索其他路径。

DFS可以用递归或栈来实现。

2. 广度优先搜索(Breadth First Search,BFS)广度优先搜索是另一种用于遍历或搜索图的算法。

从起始节点开始,先访问起始节点的所有邻居节点,然后再依次访问邻居节点的邻居节点,以此类推。

图论算法——精选推荐

图论算法——精选推荐

图论算法五⼀时候随便翻书看到了⼀些关于离散数学图论的模板和算法,⼤概总结了⼀下,图论要⽐数论稍简单⼀点点。

⼀、 点⽤边连起来就叫做图,严格意义上讲,图是⼀种数据结构,定义为:graph=(V,E)。

V是⼀个⾮空有限集合,代表顶点(结点),E代表边的集合。

⼆、图的⼀些定义和概念(a)有向图:图的边有⽅向,只能按箭头⽅向从⼀点到另⼀点。

(a)就是⼀个有向图。

(b)⽆向图:图的边没有⽅向,可以双向。

(b)就是⼀个⽆向图。

结点的度:⽆向图中与结点相连的边的数⽬,称为结点的度。

结点的⼊度:在有向图中,以这个结点为终点的有向边的数⽬。

结点的出度:在有向图中,以这个结点为起点的有向边的数⽬。

权值:边的“费⽤”,可以形象地理解为边的长度。

连通:如果图中结点U,V之间存在⼀条从U通过若⼲条边、点到达V的通路,则称U、V 是连通的。

回路:起点和终点相同的路径,称为回路,或“环”。

完全图:⼀个n 阶的完全⽆向图含有n*(n-1)/2 条边;⼀个n 阶的完全有向图含有n*(n-1)条边; 稠密图:⼀个边数接近完全图的图。

稀疏图:⼀个边数远远少于完全图的图。

强连通分量:有向图中任意两点都连通的最⼤⼦图。

右图中,1-2-5构成⼀个强连通分量。

特殊地,单个点也算⼀个强连通分量,所以右图有三个强连通分量:1-2-5,4,3。

图的存储结构1.⼆维数组邻接矩阵存储定义int G[101][101];G[i][j]的值,表⽰从点i到点j的边的权值,定义如下:0 1 1 1 0 1 1G(A)= 1 0 1 1 G(B)= 0 0 1 1 1 0 0 0 1 0 1 1 0 0图的遍历void dfs(int i){visited[i] = true;for(int j = 1;j <= num[i] ; j++)if(!visited[g[i][j]])dfs(g[i][j]);}int main(){memset(visited,false,sizeof(visited));for(int i=1 ; i<=n ;i++)if(!visited[i])dfs(i);}可以看到上⾯这段遍历整张图的代码中主函数部分,先把图中各点初始化false,每次遍历时先判断两点是否联通将遍历过的点修改为true。

图论的基本概念和应用

图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图由节点和边组成,节点表示对象,边表示对象之间的关系。

图论的基本概念包括图的类型、图的表示方法、图的遍历算法等。

图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。

一、图的类型图可以分为有向图和无向图两种类型。

有向图中的边有方向,表示从一个节点到另一个节点的关系;无向图中的边没有方向,表示两个节点之间的关系是相互的。

有向图和无向图都可以有权重,表示边的权值。

二、图的表示方法图可以用邻接矩阵和邻接表两种方式来表示。

邻接矩阵是一个二维数组,数组的行和列分别表示图中的节点,数组中的元素表示节点之间的边;邻接表是一个链表数组,数组的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。

三、图的遍历算法图的遍历算法包括深度优先搜索(DFS)和广度优先搜索(BFS)。

深度优先搜索从一个节点开始,沿着一条路径一直遍历到最后一个节点,然后回溯到上一个节点,再继续遍历其他路径;广度优先搜索从一个节点开始,先遍历与该节点相邻的所有节点,然后再遍历与这些节点相邻的节点,依次类推。

四、图论的应用1. 计算机科学:图论在计算机科学中有着广泛的应用。

例如,图可以用来表示计算机网络中的节点和连接关系,通过图的遍历算法可以实现网络路由和路径规划;图可以用来表示程序中的依赖关系,通过图的遍历算法可以实现代码的分析和优化。

2. 网络分析:图论在网络分析中有着重要的应用。

例如,社交网络可以用图来表示,节点表示用户,边表示用户之间的关系,通过图的遍历算法可以实现社交网络的分析和预测;互联网中的网页可以用图来表示,节点表示网页,边表示网页之间的链接关系,通过图的遍历算法可以实现搜索引擎的排名和推荐算法。

3. 运筹学:图论在运筹学中有着重要的应用。

例如,图可以用来表示物流网络中的节点和路径,通过图的遍历算法可以实现最短路径和最小生成树的计算;图可以用来表示任务调度中的依赖关系,通过图的遍历算法可以实现任务的优化和调度。

图论算法介绍

图论算法介绍

if (a[i,k]=1)and (a[k,j]=1) then a[i,j]=1 (a[i,j]=1表示i可达j,a[i,j]=0表示i不可达j)。
var
link,longlink:array[1..20,1..20] of boolean;{ 无向图和无向图的传递闭包。其

l o n g l i n k[i,
例如:公路交通图,边以距离w为权。

2
2
1
3
1
3
有向完全图 例
245
无向完全图 5
1
例 1
3
6
图与子图
57
32
46
G2
顶点5的度:3 顶点2的度:4
3
6
例 245
1
3
6
G1
顶点2入度:1 出度:3 顶点4入度:1 出度:0

路径:1,2,3,5,6,3 路径长度:5
245
简单路径:1,2,3,5
❖ 图 G = (V, E)
V = 顶点集 E = 边集 = V V的子集
结点集V={a, b, c, d} 边集E={e1, e2, e3, e4, e5} 其中e1=(a, b), e2=(a, c),
e3=(a, d), e4=(b, c), e5=(c, d)。
(一)、计算无向图的传递闭包
v1→v2→v4→v8→v5 →v3→v6→v7
算法结构:
调用一次dfs(i), 可按深度优先搜索 的顺序访问处理结 点i所在的连通分 支(或强连通分 支),dfs(i)的时 间复杂度为W(n2)。 整个图按深度优先 搜索顺序遍历的过 程如下:
显然,为了避免重复访问同一个顶点,必须 记住每个顶点是否被访问过。为此,可设置 一个布尔向量visited[1..n],它的初值为 false,一旦访问了顶点vi,便将visited[i] 置为ture。 图的深度优先搜索是一个递归过程,可以使 用栈来存储那些暂时不访问的邻接点.类似于 树的前序遍历,它的特点是尽可能先对纵深 方向进行搜索,故称之深度优先搜索。

组合图论图论及其算法课件

组合图论图论及其算法课件

4. 实例:求下列赋权完全图的最优Hamilton回路.
A
解:ACEBDA: 权和 25 BACEDB: 权和 25 CABEDC: 权和 22 DACEBD: 权和 25 EACDBE: 权和 27
21 B
9 10
34 5E 7 6
C8D 所选初始点不同,得到的近似解也不同.
5. 修改方法:最邻近插入法
(2)不允许高速路在所研究的城市以外的某点 处连接.
最短网络问题: 如何用最短的线路将三部电话连起来?
A
B
C
此问题可抽象为设△ABC为等边三角形,,连接三 顶点的路线(称为网络)。这种网络有许多个, 其中最短路线者显然是二边之和(如AB∪AC).
❖ 但若增加一个周转站(新点P),连接4点的新网 络的最短路线为PA+PB+PC。最短新路径之长N 比原来只连三点的最短路径O要短。
3). 重复2)过程直到汇y被标号,或不再有顶点可以标号为止. 若y得到标号,说明存在一条x y增广路P,进入步骤2调整过程; 若y未得到标号,标号过程无法进行,说明f 即为最大流.
(2) 调整过程
1).

min{ min (vi ,v j )P
(Cij
f
ij
),
(
min
vi ,v j )P
f ji},调整增广路P中
三. 中国邮递员问题(1962,管梅谷)
1. 问题:邮递员每天从邮局选好邮件,送到他所管辖 的邮区的客户手中,再返回邮局,他每天必须走过每 条街道至少一次,问如何选择邮递路线,使得他走过 的投递总行程最短?
2. 模型:非负赋权图G: 顶点----交叉口或终端,边----街道,权-----街道长 度,此即求图的通过每条边至少一次的闭途径,称为G 的环游.

图论中的生成树计数算法

图论中的生成树计数算法

图论中的生成树计数算法在图论中,生成树是指一个无向连通图的一个子图,它包含图中的所有顶点,并且是一个树。

生成树计数算法是指计算一个无向连通图中生成树的数量的方法。

本文将介绍图论中的一些常见生成树计数算法。

1. Cayley公式Cayley公式是最简单的生成树计数算法之一,它适用于完全图。

完全图是指图中的任意两个不同顶点之间都有一条边相连。

假设完全图有n个顶点,那么生成树的数量为n^(n-2)个。

Cayley公式的证明可以利用普鲁夫树(Prüfer Tree)的概念,这里不再详述。

2. Kirchhoff矩阵树定理Kirchhoff矩阵树定理是另一种生成树计数算法,它适用于任意连通图。

矩阵树定理的原理是利用图的拉普拉斯矩阵(Laplacian Matrix)的性质。

图的拉普拉斯矩阵定义为:对于一个n个顶点的图,其拉普拉斯矩阵L的定义为:L=D-A,其中D是一个对角矩阵,对角线上的元素是该顶点的度数,A是图的邻接矩阵。

根据Kirchhoff矩阵树定理,一个图的所有生成树的数量等于该图的任意一个n-1阶主子式的行列式的绝对值。

主子式是指原矩阵去掉若干行和列后形成的子矩阵。

基于这个定理,我们可以通过计算图的拉普拉斯矩阵的主子式来得到生成树的数量。

3. Prufer编码Prufer编码是一种用序列表示带标号图中生成树的方法。

给定一个有n个顶点的生成树T,Prufer编码可以将T转化为一个长度为n-2的序列,该序列的元素由图中的顶点标号组成。

具体的编码方法如下:- 第一步:选择标号最小的叶子节点,并将与之相邻的节点记录下来。

- 第二步:删除该叶子节点,并将该叶子节点的标号记录下来。

- 重复以上两步,直到所有顶点都被删除为止。

通过Prufer编码,我们可以将生成树的计数问题转化为序列的计数问题。

在给定n个顶点的情况下,长度为n-2的Prufer序列的数量为n^(n-2)。

除了上述介绍的几种生成树计数算法外,还有其他更复杂的算法,如Chow定理、Matrix-Tree定理等。

图论的基本算法及性质

图论的基本算法及性质

图论的基本算法及性质二分图(Is-Bipartite)一个图的所有顶点可以划分成两个子集,使所有的边的入度和出度顶点分别在这两个子集中。

这个问题可以转换为上篇提到过的图的着色问题,只要看图是否能着2个颜色就行了。

当然,可以回溯解决这个问题,不过对于着2个颜色可以BFS解决。

同样,一维数组colors表示节点已着的颜色。

伪代码:IS-BIPARTITE(g,colors)let queue be new Queuecolors[0] = 1queue.push(0)while queue.empty() == falselet v = queue.top()queue.pop()for i equal to every vertex in gif colors[i] == 0colors[i] = 3 - colors[v]queue.push(i)else if colors[i] == colors[v]return falseendendreturn true时间复杂度:Θ(V+E),V表示顶点的个数,E表示边的个数DFS改良(DFS-Improve)上篇文章提到过,搜索解空间是树形的,也就是在说BFS和DFS。

那么在对图进行BFS和DFS有什么区别呢,这个问题要从解空间角度去理解。

对图进行BFS的解空间是一颗树,可叫广度优先树。

而DFS是多棵树构成的森林,可叫深度优先森林。

这里要对DFS进行小小的改良,它的性质会对解多个问题会很有帮助。

原版DFS搜索的时候,会先遍历本顶点,再递归遍历临接的顶点。

DFS改良希望能先递归遍历临接的顶点,再遍历本顶点,并且按遍历顺序逆序存储起来。

伪代码:DFS-IMPROVE(v,visited,stack)visited[v] = truefor i equal to every vertex adjacent to vif visited[i] == falseDFS-IMPROVE(i,visited,stack)endstack.push(v)这个改良版DFS有个很有用的性质就是,对于两个顶点A、B,存在A到B的路径,而不存在B到A的路径,则从记录的顺序中取出的时候,一定会先取出顶点A,再取出顶点B。

图论的基本算法

图论的基本算法
例如:对于有向图
可求得拓扑有序序列: ABCD 或 ACBD
对于下列有向图
B
A
D
C
不能求得它的拓扑有序序列。
因为图中存在一个回路 {B, C, D}
求拓扑序列
FUNC toporder(var dig:adjlisttp):boolean; init(top2); m:=0; ve[1..n]:=0 while Not empty(top1) do [ j:=pop(top1); push(top2,j); m:=m+1; k:=firstadj(dig,j); while k<>0 do [ 入度(k):=入度(k)-1; if 入度(k)=0 then push(top1,k); if ve[j]+dut(<j,k>)>ve[k] then ve[k]:=ve[j]+dut(<j,k>); k:=nextadj(dig,j,k) ] ] if m<n then return(false) else return(true);
endF;
拓扑排序
核心问题:给一些序关系,排出全序!
一个一个排 先排最大 然后第二大… 具体实现?
每次取0出度点 枚举所有点吗? 0出度只可能是1出度变来的! O(n+m)
神经网络
在兰兰的模型中,神经网络就是一张有向图,图中的节点 称为神经元,而且两个神经元之间至多有一条边相连,下 图是一个神经元的例子:
图中,X1—X3是信息输入渠道,Y1-Y2是信息输出渠道, C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个 内在参数。
神经元按一定的顺序排列,构成整个神经网络。在兰兰 的模型之中,神经网络中的神经无分为几层;称为输入层、 输出层,和若干个中间层。每层神经元只向下一层的神经元 输出信息,只从上一层神经元接受信息。

与图论相关的算法

与图论相关的算法
if map[q^.v].visited=false then dfs(q^.v); q:=q^.nextarc; end; end;
广度优先搜索
procedure bfs(i:integer); var p:arcptr;
closed,open:integer; q:array[1..maxn] of integer; begin 访问并处理顶点i; map[i].visited:=true; 顶点i进入队列q; closed:=0; open:=1; repeat
编号都不超过k的路径。 递推公式:
t(k)[i,j]= t(k-1)[i,j] or (t(k-1)[i,k] and t(k-1)[k,j])
Johnson算法
Johnson算法常用于求顶点个数较多的稀 疏图的每对点间最短路问题。
感兴趣的同学请参阅《国际信息学奥林 匹克竞赛指导——实用算法的分析与程 序设计》
inc(closed); v:=q[closed]; p:=map[v].firstarc; while p<>nil do begin
if map[p^.v].visited=false then begin 访问并处理顶点q^.v; map[q^.v].visited=true; inc(open); q[open]:=q^.v; end;
q:=q^.nextarc; end; until closed=open; end;
计算连通分支数
count:=0; for i:=1 to n do
map[i].visited:=false; for i:=1 to n do
if map[i].visited=false do begin inc(count); dfs(i); end;

图论的几种算法

图论的几种算法
A
A
B
C
D
B
C
建模:
点——陆地 岛屿
边——桥 D
2、定义
一个图G由一个顶点集V和一个边的集E组成。 E中每个元素e是连接顶点集 V中两个顶点u和v的边。
图G=<V,E>:
点集 V = {v1,v2, ...,vn} 边集 E = {e1,e2, ...,em}
其中 ek=vivj
例:
v1 e3 v4 e2
1
1 3 Inf 1 0
A
Inf 6 2 Inf 3
Inf Inf 2
Inf
Inf

3 Inf Inf 3 5

:
d (1) ij

min{di(j0)
,
d (0) i1

d (0) 1j
}
D(2)

(di(j2) )n
:
d (2) ij

min{di(j1)
,
d (1) i2

d (1) 2j
}
D(n)

(di(jn) )n
:
d (n) ij

min{di(jn1)
,
d (n1) i ( n 1)

d (n1) ( n 1)

1
0
1
0
1

v3
1 1 1 1 0
(2)关联矩阵(点边)
1 i点为j边端点 R (rij )nm rij 0 否则

v1
e1
e4
e5 e8
e6 v5 e7
v4
e3
v2
1 0 0 1 1 0 0 0

图论算法介绍

图论算法介绍
1
y1 6
4
2 51
2
1
x1
7
图1.2(d )
y3
5 3 x2 3 8 y5
N
D

x2
)
S2

{
y1
,
y3},而N
D

S2
)
S 2 {y1,y3,y5}.
l( y1) min{l( y1),l(x2 ) w((x2,y1))} min{6,3 2} 5,
1
)).

Sk1 Sk {xk1},Pk1 Pj (x j ,xk1). 3.若k v 1,则用k 1替代k并转2;若k v 1,则停止.
例2 考虑图1.2(a)所示的加权图(G, w). Moore-Dijkstra
算法执行如下:
4
2 51
2
1
x1
7
图1.2(c)
y3
5 y4
3 y5
N
D

x1
)
S1

N
D

S0
)
S 0 {y1,y4 ,y5}.
l( y1) min{l( y1),l(x1) w((x1,y1))} min{7,1 5} 6,
y1ቤተ መጻሕፍቲ ባይዱ
4 y3
7
25
51
y4
x0 1
2
3
y2
7
y5
图1.2(a)
7 x0 0
1
y1
4
2 51
2

y2
7
图1.2(b)
y3
5 y4
3 y5

图论中的基本概念与算法

图论中的基本概念与算法

图论中的基本概念与算法图论是数学的一个分支,研究的是图的性质和图之间的关系。

图是由一些点和连接这些点的边组成的数学结构。

在图论中,我们探索了一些基本的概念和算法,本文将就这些内容进行探讨。

一、图的基本概念1. 顶点(Vertex):图中的一个点被称为顶点,也可以被称为节点或者结点。

2. 边(Edge):图中的边是连接两个顶点的线段,用于表示两个顶点之间的关系。

3. 有向图(Directed Graph):有向图是一种图,其中的边是有方向的,即从一个顶点指向另一个顶点。

4. 无向图(Undirected Graph):无向图是一种图,其中的边没有方向,即两个顶点之间的关系是互相的。

5. 加权图(Weighted Graph):加权图是一种图,每条边都有一个权重或者距离,用于表示顶点之间的距离或者代价。

6. 路径(Path):路径是图中连接两个顶点的边的序列。

7. 环(Cycle):环是一种路径,其起点和终点相同。

二、图的基本算法1. 广度优先搜索(Breadth-First Search,BFS):BFS是一种用于图中遍历或者搜索的算法。

它从一个起始顶点开始,依次访问与之相邻的顶点,然后再访问与这些顶点相邻的顶点,依次类推。

2. 深度优先搜索(Depth-First Search,DFS):DFS是一种递归的遍历算法。

它从一个起始顶点开始,沿着一条路径尽可能深地访问顶点,直到不能继续为止,然后回退并选择另一条路径。

3. 最小生成树(Minimum Spanning Tree,MST):最小生成树是一个无环连通子图,它包含图中的所有顶点,并且总权重最小。

常用的算法有Prim算法和Kruskal算法。

4. 最短路径问题(Shortest Path Problem):最短路径问题是找出图中两个顶点之间的最短路径。

常用的算法有Dijkstra算法和Floyd-Warshall算法。

5. 拓扑排序(Topological Sorting):拓扑排序是一种对有向无环图进行排序的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sum:=0; for i1:=2 to n do begin 沉思片刻: min:=10e20; mini:=0; 能用最小生成树算法解决的 for i2:=i1 to n do if ans[i2].le<min then 图是什么样的图? begin min:=ans[i2].le; mini:=i2; end; for i2:=i1+1 to n do sum:=sum+min; if leng(ans[i1].en,ans[i2].en)<ans[i2].le ans[1]:=ans[mini]; then ans[mini]:=ans[i1]; begin ans[i1]:=ans[1]; ans[i2].st:=ans[i1].en; ans[i2].le:=leng(ans[i1].en,ans[i2].en); end; end; writeln(sum:0:2); close(input);close(output); end.
3.如何求最小生成树
核心:选取哪n-1条边 方法一:基于搜 索的两种算法
深度优先遍历 广度优先遍历
广度优先遍历 深度优先遍历
结论:若要使权值总和最小,必须所有情况均需搜索,当顶点数 和边数较大时,复杂度很高。 同学们,你们有
没有更好的方法?
Kruskal算法
练一练:写出上图用Kruskal算法实 现最小生成树的过程?
例3、有一张城市地图,图中的顶点为城市,无向边代表两个城 市间的连通关系,边上的权为在这两个城市之间修建高速公路 的造价,研究后发现,这个地图有一个特点,即任一对城市都 是连通的。现在的问题是,省会城市 A 到其它四座城市的最短 距离分别是多少。
最短路径问题
一类是求从某个顶点 源点)到其它顶点(终点) 的最短路径
2、Kruskal算法的实现 ① 将图的存储结构转换成边集数组表示的 形 式 elist,并按照权值从小到大排好序;
② 设数组C[1..n-1]用来存储最小生成树的所有边, C[i]是第i次选取的可行边在排好序的elist中的下 标。
③ 设一个数组 S[1..n] , S[i] 都是集合,初始时 S[i]= [ i ]。
1 Dist Path 0 C1
2 4 C1,C2
3 7 C1,C2,C3
4 8 C1,C2,C4
5 9 C1,C2,C3 ,C5
例3、有一张城市地图,图中的顶点为城市,无向边代表两个城 市间的连通关系,边上的权为在这两个城市之间修建高速公路 的距离,研究后发现,这个地图有一个特点,即任一对城市都 是连通的。现在的问题是,从省会城市A出发游览各城市一遍, 而所走路程最少,试编程输出结果。
分析:
是求最小生成树吗?(因为也是求遍 历每个点,使总和最小;也是无向带权图) 方法一:穷举 方法二:宽度优先搜索 方法三:等代价搜索法
思考:如何判断欲加入的一条边是
否与生成树中已保留的边形成回路?
①设最小生成树为 T=(V,TE),设置边的集合 TE的初始状态为 [1] [2] [3] [4] [5] ……[n] ,将图 G中的边按权值从小到大排 好序。 ②找权值最小的边(i,j),且i、j不属同一集合。 ③将i、j所在集合合并。 重复n-1次②~③。最后的T即为最小生成树。
program boring(input,output); var a:array[0..1000]of record x,y:longint; end; ans:array[0..1000]of record st,en:longint; le:double; end; n,i1,i2,mini:longint; min,sum:double;
可以证明:具有n个顶点的带权连通图,其对应的 生成树有 n-1 条边。
2.什么是图的最小生成树
权值最小的生成树,称为图的最小生成树。 下图(B)、(C)、(D)均是图(A)的生成树,其权和分别为20、 33和19,前两个并不是最小生成树,只有图(D)是最小生成树。
请思考:
具有n个顶点的带权连通图,其对应的生成树有n-1条 边! 那么到底选哪n-1条边呢?
i:=1;{获取的第i条最小生成树的边} j:=1;{边集数组的下标} While i<=n-1 Do Begin For k:=1 To n Do Begin If elist[j].fromv in s[k] Then m1:=k ; } {取出第 j条边,记下两个顶点分属的集合序号
If elist[j].endv in s[k] Then m2:=k ; End; If m1<>m2 Then Begin C[i]:=j;i:=i+1; { 找到的elist第j条边满足条件,作为第 s[m1]:=s[m1]+s[m2] ;{合并两个集合} i条边保留} s[m2]:=[ ]; {另一集合置空} End; j:=j+1; {取下条边,继续判断} End; ④ 输出最小生成树的各边:elist[C[i]]
2、Prim算法的实现
图的存储?
① 从文件中读入图的邻接矩阵g; ② 边集数组elist初始化; For i:=1 To n-1 Do Begin elist[i].fromv:=1; elist[i].endv:=i+1; elist[i].weight:=g[1,i+1]; End;
③ 求出最小生成树的n-1条边; For k:=1 To n-1 Do Begin min:=maxint;m:=k; For j:=k To n-1 Do {查找权值最小的一条边} If elist[j].weight<min Then Begin min:=elist[j].weight ;m:=j;End; If m<>k Then {把权值最小的边调到第k个单元} Begin t:=elist[k];elist[k]:=elist[m];elist[m]:=t;End; j:=elist[k].endv; {j为新加入的顶点} For i:=k+1 To n-1 Do {修改未加入的边集} Begin s:=elist[i].endv; w:=g[j,s]; If w<elist[i].weight Then Begin elist[i].weight:=w;elist[i].fromv:=j;End; End; End; ④ 输出;
1.保证构建的图是连通的 2.图中所有权值之和最小 3.图中不能存在环路
这是我们想要的结果
★这类问题,可归纳为图的最小生成树问题
1.什么是图的生成树
(1)顶点是图的全部顶点;
一个图的生成树 (2)边是图的部分边,且将图中所有顶点通 具备三个条件: (3)不构成回路
由此可以看出,一个图的生成树是不唯一的
例2、无聊的小呆(boring.pas/in/out) 【题目描述】寒假里,小呆很无聊,于是去找同样无聊的皮球玩。同样无聊 的皮球想了一个非常无聊的游戏。皮球在纸上随机点了不重合的N个点,然 后让小呆用线把它们连在一起。小呆很顺利地完成了任务。“那么现在,你 再画一次,这次你必须使连接所有点的线条加在一起的长度最短。”小呆晕 了半天,不知该如何下手。但这对于你来说是小菜一碟,来吧,让我们来鄙 视一下小呆。 【输入文件】输入文件的第一行是一个整数N(N<=1000),表示一共有N 个点。而后会出现N行数据,每行会用两个整数X;Y描述一个点的位置。 【输出文件】输出文件中只要求出现一行,一个实数,表示所画线的长度之 和的最小值(结果四舍五入保留两位小数)。 【样例输入】boring.in 分析: 5 11 (1)建图(实际上是完全图) 12 13 (2)算法:最小生成树的Kruskal 24 34 (3)编写程序 【样例输入】boring.out 4.41
1 、 Dijkstra 算法(从一个顶点到其余各顶点的最短路径,单源 最短路径) 从某一个顶点Vi到其余任一顶点Vj的最短路径,可能是它 们之间的边(Vi,Vj),也可能是经过k个中间顶点和k+1条边 所形成的路径(1≤k≤n-2)。
(1)先求出从源点Vs到其余顶点的路径长度,放 在dist数组中,找出其值最小的元素(假设为 dist[m]),该元素值就是从源点Vs到终点Vm的 最短路径长度,把Vm并入集合S中。 (2)以Vm作为新考虑的中间顶点,对S以外的每 个顶点Vj,比较dist[m]+G[m,j]与dist [j]的 大小,若前者小,表明加入了新的中间顶点后 可以得到更好的方案,即可求得更短的路径, 则用它代替dist[j] 。 (3)重复以上过程n-2次,即可在dist数组中得到从源点到其余各终点的最段 路径长度。
图论算法
图论在信息学竞赛中占了很大部分 , 很多实际 问题可以用图论来解决。 江苏省金湖中学 张厚林
图的一些典型算法
最小生成树 最短路径 拓扑排序 关键路径
例1、最优工程造价 [ 描述] 有一张城市地图,图中的顶点为城市,无向边代表 两个城市间的连通关系,边上的权为在这两个城市之间修建高 速公路的造价,研究后发现,这个地图有一个特点,即任一对 城市都是连通的。现在的问题是,要修建若干高速公路把所有 城市联系起来,问如何设计可使得工程的总造价最少。
方法二:基于贪 心的两种算法
Prim算法
Kruskal算法
Prim算法
练一练:写出上图用Prim算法实现 最小生成树的过程?
①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态 均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入 到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not(Y∈S);将 顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE) 。
课上小练:写出下图C1到其它点的最短路径。
初始时:
1 Dist Path C1 0 2 4 C1,C2 3 8 C1,C3 4 5 6
相关文档
最新文档