gamma函数的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
gamma函数的性质
Beta函数和Gamma函数是最基本也是最重要的两个特殊函数,它们如同基石般奠定了整个特殊函数论大厦的基础。部分理论应用如下:应用 a.Beta函数和Gamma函数提供了大部分超几何函数(Hypergeometric functions)的理论基础。Gauss 超几何级数的积分表示便是借助了Beta积分。而Mellin-Barnes积分表示则是借助了Gamma函数的性质,这使得超几何级数在复平面上的延拓得以通过一种统一的形式得以实现。应用b.分数阶微积分,也就是通常牛顿-莱布尼茨微积分的推广,也依赖于Beta和Gamma函数的定义。你可以看一下Riemann-Liouville分数阶积分的定义。而由整数阶导数到分数阶导数(复数阶导数)的插值就是来源于Gamma函数实际上是阶乘n!的插值这一性质。应用c.Riemann zeta function 的一个基本的积分表示其核心就是Gamma函数。而许多zeta函数的推广都离不开Gamma函数。应用place变换和Mellin变换,这两个十分重要的积分变换,可以十分好的统一在Gamma函数的积分表示上。也就是说,Gamma函数是指数函数的Mellin变换,同时还是幂函数的Laplace变换。应用e.Beta函数本身可以用来构造概率分布。而高维的Beta函数,例如Dirichlet, Liouville型的Beta函数也在概率统计中有这重要的应用价值。应用f. Selberg 构造的一个特别重要的multidimensional Beta integral在解决Macdonald Conjecture的过程中也起到了很大的作用。而它本身现在也成为了一个十分重要的研究对象。总之,从Gamma和Beta函数出发,已经生长出了足够我们穷
尽一生去探究的数学分支,它们的重要性就包含在其中吧~