函数性质复习PPT教学课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

人教高中数学必修一B版《函数及其表示方法》函数的概念与性质说课教学课件复习(函数的概念)

人教高中数学必修一B版《函数及其表示方法》函数的概念与性质说课教学课件复习(函数的概念)

相应的 y 值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,
不表示“y 等于 f 与 x 的乘积”.在研究函数时,除用符号 f(x)外,还
常用 g(x),h(x)等来表示函数.
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
(2)f(x)与 f(a)的区别与联系:f(a)表示当 x=a 时,函数 f(x)的值, 是一个常量,而 f(x)是自变量 x 的函数,一般情况下,它是一个变量, f(a)是 f(x)的一个特殊值,如一次函数 f(x)=3x+4,当 x=8 时,f(8) =3×8+4=28 是一个常数.
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
2.两个函数相同 一般地,如果两个函数的定义域 相同 ,对应关系也 相同(即对 自变量的每一个值,两个函数对应的函数值都相等),则称这两个函 数就是同一个函数.
栏目导航
课件
课件
课件
课件
课件
课件
[解]
(1)对于A中的元素0,在f的作用下得0,但0不属于B,即A 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件

浙教版八上数学一次函数复习PPT课件

浙教版八上数学一次函数复习PPT课件

所以一次函数的解析式为y=x+2或y=-x+2.
2.一慢车和一快车沿相同路线从A地到B地,所行的路程与时 间之间的函数图象如图所示,试根据图象,回答下列问题:
(1)慢车比快车早出发____2___小时,快车追上慢车时行驶 了_2_7__6千米,快车比慢车早___4__小时到达B地;
(2)在下列3个问题中任选一题求解:①快车追上慢车需几 小时?②求慢车,快车的速度;③求A,B两地之间的距离.
(1)正比例函数与一次函数的图象
正比例函 正比例函数 y=kx(k≠0)的图象是经过点
数的图象
(0,0)和点(1,k)的一条直线
一次函数 y=kx+b(k≠0)的图象是经过点
一次函数 的图象
(0,b)和-bk,0的一条直线
一次函数 y=kx+b 的图象可由正比例函数
图象关系 y=kx 的图象平移得到,b>0,向上平移 b
利用一次函数解决分段函数问题
为响应国家节能减排的号召,鼓励市民节约用电,我 市从2012年7月1日起,居民用电实行“一户一表”的阶 梯电价,分三个档次收费,第一档是用电量不超过180千 瓦时实行“基本电价”,第二、三档实行“提高电价”, 具体收费情况如折线图,请根据图象回答下列问题:
(1)当用电量是180千瓦时时, 电费是___1_0__8__元; (2)第二档的用电量范围是1_8__0_<__x_≤_ 45;0 (3)“基本电价”是______0_._6__元/千瓦时; (4)小明家8月份的电费是328.5元,这个月他家用电多少 千瓦时?
置关系
相交
__k_1_≠_k_2__⇔l1和l2相交
平行 k1=k_2_,__b_1_≠_b_⇔2 l1和l2平行
两直线的交点坐标及一次函数的图象与坐标轴围成的三 角形的面积

二十二-二次函数复习课PPT课件

二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的

x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6

高一函数复习ppt课件.ppt

高一函数复习ppt课件.ppt
1.已知函数的解析式(具体函数), 求定义域问题的类型:
使解析式有意义:
解析式有意义的情况:
(1)若解析式是整式,则函数的定义域为全体实数R; (2)若解析式中含有分式,则分母不为零; (3)若解析式中含有偶次根式,则被开方数为非负数;
(4)若解析式中含有 x0 ,则底数x不为零;
(5)若解析式中含有对数式,则真数大于零,底数 大于零且不等于1; (6)实际问题中不仅要考虑解析式的意义,还应该 注意其实际意义; (7)若解析式中含有以上某几种情况,则应该去它 们的交集
x [ 3, 2 ] [ 2 , 3] 22
三,求函数值的问题
设函数y f (x),x A,如果自变量x 取值为a,则由法则f确定的y的值叫做 函数在x a时的函数值,记为f (a)
例9、(12江西理3)若函数
f
(x)
x2
1,
x
1
,则
f ( f (10))
lg x, x 1
A 、lg、101 B、2 C、1 D、0
bx ex
c f
(ad
0)
的函数,把其化为一个常数和另一个
函数的和(差)的形式,即
f (x) ax b k m (k, m是常数)或
cx d
cx d
f (x)
ax2 bx c dx2 ex f
k
dx2
m ex
f
(k, m是常数)
即对那个函数进行求取值范围即可;
例14,求下列函数的值域
例13,(2010重庆文第4题)函数 y 16 4x 的值域是( )
A. [0, ) B. [0, 4]
C. [0, 4) D. (0, 4)
4x 0 0 16 4x 16 y [0, 4)

3.2.1函数的性质-单调性课件(人教版)

3.2.1函数的性质-单调性课件(人教版)
(1 ) < (2 ),那么就称函数() 有(1 ) > (2 ),那么就称函数
在区间上单调递增.
()在区间上单调递减.
就叫做函数 () 的单调递增区间, 就叫做函数 () 的单调递增区间,
简称增区间.
简称减区间.
(2)用定义法证明函数的单调性
(1)取值;
课堂例题
例1 根据定义,研究函数() = + ( ≠ 0)的单调性。
追问1:由初中知识可知,一次函数图象的上升还是下降取决于谁?
追问2:根据单调性的定义,判断单调性的关键是比较 (1 )和(2 ) 的大小?
那如何比较(��1 )和(2 )的大小呢?
分析:根据函数单调性的定义,需要考察当1<2时,(1)<(2)还是
章节:第三章 函数的概念与性质
标题:3.2函数的基本性质 (1)
单调性


1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
1.理解增函数、减函数的概念及函数单调性的定义;会根
据单调定义证明函数单调性; 理解函数的最大(小)值
及其几何意义;
2.学会运用函数图象理解和研究函数的性质.
(1)>(2).根据实数大小关系的基本事实,只要考察(1)-(2)与0
的大小关系.
解:函数()=+( ≠ 0)的定义域是,∀1,2 ∈ ,且1<2,
则(1)-(2)=(1+)-(2+)=(1-2).
由1<2,得1-2<0.所以
(2)任意取1 ,2 ∈ (−∞, 0],
当1 <2 时,有(1 ) < (2 ).
函数() = ||在区间(−∞, 0]上是单调递增的.

锐角三角函数复习课课件

锐角三角函数复习课课件

90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。

高中数学1.3函数的基本性质 PPT课件 图文

高中数学1.3函数的基本性质 PPT课件 图文

f (x)
1、单调函数的图象特征; 2、函数单调性的定义; 3、证明函数单调性的步骤;
作业 1:证明函数 f(x)=x+4x在(0,1)上是减函数. 2、 证明函数f(x)=x 3 在(-∞,+∞)上是增函数.
思考:讨论函数 f(x )x22ax 3
在(-2,2)内的单调性.
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的基本性质ppt课件

函数的基本性质ppt课件


1
即函数f(x)=x+ 为奇函数.

函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+


解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).

1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),

函数的基本性质 复习课件.ppt

函数的基本性质 复习课件.ppt

优秀课件
29
规律方法总结
(3)①若f(x)是偶函数,则f(x)= f(|x|),反之亦真.
②若f(x)为奇函数,且0在定义域 内,则f(0)=0.
③若f(x)=0且f(x)的定义域关于 原点对称,则f(x)既是奇函数又是偶 函数.
优秀课件
30
(2)作差:即f(x2)-f(x1)(或f(x1)- f(x2)),并通过通分、配方、因式分解 等方法,向有利于判断差的符号的方 向变形.
优秀课件
18
课堂互动讲练
(3)定号:根据给定的区间和x2- x1的符号,确定差f(x2)-f(x1)(或f(x1) -f(x2))的符号.当符号不确定时,可 以进行分类讨论.
优秀课件
27
规律方法总结
2.理解函数的奇偶性应注意的问题 (1)定义域在数轴上关于原点对称是 函数f(x)为奇函数或偶函数的必要但不充 分条件.f(-x)=-f(x)或f(-x)=f(x)是定 义域上的恒等式.
优秀课件
28
规律方法总结
(2)奇偶函数的定义是判断函数奇偶性 的主要依据.为了便于判断函数的奇偶性 有时需要先将函数进行化简,或应用定义 的等价形式:f(-x)=±f(x)⇔f(-x)∓f(x)= 0⇔f(f-(xx) )=±1(f(x)≠0).
13
三基能力强化
3.(教材习题改编)函数f(x)=x2- 2x,x∈[a2+1,4]的最大值为________.
答案:8
优秀课件
14
课堂互动讲练
考点一 函数单调性的判断与证明
函数的单调性用以揭示随着自 变量的增大,函数值的增大与减小 的规律.在定义区间上任取x1、x2, 且x1<x2的条件下,判断或证明 f(x1)<f(x2)或f(x1)>f(x2),这一过程 就是实施不等式的变换过程.

二次函数yaxhk的图象和性质PPT课件

二次函数yaxhk的图象和性质PPT课件

y = ax2 + k
y = a(x - h )2
上下平移 |k|个单位
左右平移
y = ax2 |h|个单位
结论: 一般地,抛物线 y = a(x-h)2+k 与y = ax2形状相同,位置不同。
抛物线y=a(x-h)2+k有如下 特点:
(1)当a>0时, 开口向上; 当a<0时,开口向下;
(2)对称轴是直线x=h;
2.抛物线的左右平移 (1)把二次函数y=(x+1) 2的图像, 沿x轴向左平移3个单位, 得到___y_=_(x_+_4_)_2____的图像; (2)把二次函数___y_=_(x_+_2_)_2+_1___的图像, 沿x轴向右平移2个单位,得到y=x 2+1的图像.
3.抛物线的平移: (1)把二次函数y=3x 2的图像, 先沿x轴向左平移3个单位, 再沿y轴向下平移2个单位, 得到_y_=_3_(_x_+_3_)2_-2____的图像; (2)把二次函数___y_=_-_3(_x_+_6_)2___的图像, 先沿y轴向下平移2个单位, 再沿x轴向右平移3个单位, 得到y=-3(x+3) 2-2的图像.
2
y 1 x2 2
y 1
有什么关系?
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
平移方法1:
y 1 (x 1)2 1
-2
2
-3
y
1 2
x
2向下平移 1个单位
y
1 2
x
2
1
-4 -5 -6
向左平移 y 1 (x 1)2 1
1个单位
2
-7

一次函数复习 课件(共30张PPT)

一次函数复习 课件(共30张PPT)

当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2

解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y

第1讲二次函数的图象和性质复习课件(共39张PPT)

第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.

函数的性质ppt课件

函数的性质ppt课件
社会学
在社会学中,函数被用于描述和分析各种社会现象。例如,犯罪率是社会环境和政策的函数,教育程度 是个人背景和社会环境的函数等。
05
总结与展望
总结
函数的导数
函数的导数是指函数在某一点处的切线斜 率,可以反映函数的变化速率和方向。
函数的单调性
函数的单调性是指函数在某区间上的函数 值变化趋势,可以分为单调递增和单调递 减两种情况。
周期性的判断
可以通过寻找是否存在这样的T来 判断函数是否具有周期性。
凹凸性
凹函数
如果函数f(x)在区间I上任 一点处的切线的斜率都大 于0,则称f(x)为凹函数。
凸函数
如果函数f(x)在区间I上任 一点处的切线的斜率都小 于0,则称f(x)为凸函数。
凹凸性的判断
可以通过计算二阶导数来 判断函数的凹凸性。
函数的值域是指因变 量取值范围。
02
函数的性质
奇偶性
奇函数
如果函数f(x)满足f(-x)=-f(x),则 称f(x)为奇函数。
偶函数
如果函数f(x)满足f(-x)=f(x),则称 f(x)为偶函数。
奇偶性判断
根据奇偶函数的定义,可以通过计 算f(-x)与f(x)的关系来判断函数的奇 偶性。
单调性
概率统计
在概率统计中,函数用于描述随机变量的概率分布和统计特征。通过函 数,我们可以表示和解决许多实际问题,如概率密度函数和分布函数等 。
函数在自然科学中的应用
物理学
在物理学中,函数被广泛应用于描述物体的运动、力的相互作用、电磁场等。例如,牛顿 第二定律 F=ma 就描述了力与加速度之间的关系,而加速度是速度的函数。
函数的表示方法
01
02
03

第12章一次函数期末复习一次函数的图象及其性质课件

第12章一次函数期末复习一次函数的图象及其性质课件
一条 直线 .特别地,正比例函数y=kx(k≠0)的图象 是一条过 原点 的直线.
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立

函数的基本性质PPT精品课件

函数的基本性质PPT精品课件

k p= V 例2:物理学中的玻意耳定律
(k为正常数) 告诉我们,对于一定量的气体,当其体积V减小时, 压强p将增大。试用函数的单调性证明之。 分析:按题意,只要证明函数在区间上是减函数 即可。
点此播放讲课视频
1 探究: y= 画出反比例函数 x 的图象。 (1)这个函数的定义域I是什么? (2)它在定义域I上的单调性是怎样的?证明 你的结论。
例2.将进货单价40元的商品按50元一个售 出时,能卖出500个,若此商品每个涨价1 元,其销售量减少10个,为了赚到最大利 润,售价应定为多少? 解:设利润为 x 元,每个售价为 x 元,则 每个涨( x -50)元,从而销售量减少 10( x 50)个, 共售出500-10(x-50)=100-10x(个) 2 ∴ y=(x-40)(1000-10x) =-10(x-70) 9000 (50 x<100) ∴ x = 70时 ymax = 9000 ∴答:为了赚取最大利润,售价应定为70 元.
考点二 函数奇偶性的判定
判断函数的奇偶性,应该首先 分析函数的定义域,在分析时,不 要把函数化简,而要根据原来的结 构去求解定义域,如果定义域不关 于原点对称,则一定是非奇非偶函 数.
课堂互动讲练
例2 判断下列各函数的奇偶性: 1 2 (1)f(x)=lgx +lg 2; x 1+x (2)f(x)=(x-1) ; 1-x x2+x,x<0 (3)f(x)= 2 - x +x,x>0; lg(1-x2) (4)f(x)= . |x-2|-2
基础知识梳理
3.奇偶函数的定义域有何特点? 【思考·提示】 若函数f(x)具 有奇偶性,则f(x)的定义域关于原点 对称.反之,若函数的定义域不关于 原点对称,则该函数无奇偶性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级期中复习专题
函数的性质
一、基础训练:
1.(1)已知f (x) x2 2(1 a)x 2在( , 4]
上是减函数求实数a的取值范围

(2).函数f (x) ax 2 在(-2,+)上为增函数, x2
求实数a的取值范围

(3).函数f(x)在区间(-4,7)上是增函数,
则y=f(x-3)的递增区间为( )。
见识独到 修养深厚
看 沉思 寥寥数语 一针见血
茅塞顿开 精益求精炫耀来自才 先生批评劝戒警勉 育我成人
淡淡地笑道 警勉而略带揶揄
惶恐不安 发人深省 鞭策至今
五件小事是从课内写到课外, 表现钱先生在课内对学生— ———,在课外对学生—— ——。
教学目标
▪ 了解回忆性文章的特点 ▪ 体会先生爱生之心、作者
例3、函数f(x)=
ax+b 1+x 2
是定义在(-1,1)上的奇函数,
且f( 1 )= 2 . 25
(1)确定f(x)函数的解析式。
(2)证明f(x)在(-1,1)上是增函数。
(3)解不等式f(t-1)+f(t)<0。
第一课时
谢稚柳几乎是一位全 能的艺术家,他精通 书画鉴定、美术理论、 绘画、书法、诗词等 各个艺术领域。就以 绘画而论,山水、花 鸟、人物、鞍马,他 无所不能,且均有独 到的艺术成就,可谓 博大精深。
竹 竹鸟图
山寺松泉
教学目标
▪ 了解回忆性叙事文的主要 特点
▪ 初步学会按照内容划分文 章的段落层次概括中心
▪ 感受作者对老师的真切感 情
检测预习
▪ 呵斥 敷衍 懊丧 蕴寓 癖好 临摹 寥寥 揶揄 悚然 悼念 伫立 鞭策
▪ 灵柩
疾言厉色
络绎不绝 语重心长
▪ 娓娓动听 茅塞顿开
▪ 促膝长谈 一瓣心香
A(-2,3)
B(-1,10)
C(-1,7)
D(-4,10)
2.已知f (x) x5 ax3 bx 8,且f(-2)=10,
则f(2)=
.
3.已知f(x)为奇函数,当x>0时,f(x)=(1-x)x,
则x<0时,f(x)=
.
4.已知函数f(x)=ax2 bx 3a b为偶函 数,其定义域为[a-1,2a],则f(x)的值域 是________.
炫耀诗才 先生批评
第二课时
教学目标
▪ 了解回忆性文章的特点 ▪ 初步学习细致观察的作用
以及实际应用
▪ 体会先生爱生之心、作者 敬师之情
回忆性叙事文的特点
▪ 选择典型事例 ▪ 挖掘重点词语 ▪ 体悟真挚情感
作文马虎 找我谈话
寄 夜幕降临 促膝长谈
园 读
熟谙癖好 给予培养
书 先生评画 终生受益
炫耀诗才 先生批评
敬师之情 ▪ 初步学习细致观察的作用
以及实际应用
拓展阅读 《父亲的爱》
▪ 概括说明本文写了有 关爹的哪几件事
▪ 通过这些具体的事例, 说明父亲的爱具有怎 样的特点
初步感知
▪ 这是一篇回忆性的记叙


▪ 事情发生的地点在寄园

▪ “情”是文章的中心内

深容入感知

关于“寄园” 为何难忘 是怎样的一种感情
我在童年和少年时代曾
在寄园求学,得到钱名 山先生的教诲,令我终 生难忘,迄今对他充满 感恩和怀念
作文马虎 找我谈话
寄 夜幕降临 促膝长谈 园 欣赏书画 读 书 先生评画
二:典型例题:
例1、已知函数f(x)=x2 2ax 2, x [5, 5] (1).当a=-1时,求函数f(x)的最大值和最小值。 (2)求实数a的取值范围,使y=f(x)在区间
[5, 5]上是单调函数。
例2、函数定义域为(-1,1),f(x)为奇函数, 又f(x)是增函数。如果有f(1-a)+f(1-a2 )<0, 求实数a的取值范围。
作文马虎 找我谈话
严格要求 教育有方
(轻轻地)抚摸 (温和地)问 (语重心长地)说
惭愧 后悔 懊丧 从此不敢怠慢
夜幕降临 促膝长谈
学识渊博 寄教于乐
上下五千年 纵横九万里 娓娓动听
络绎不绝 新奇愉快
熟谙癖好 给予培养
激发兴趣 因材施教
熟谙学生 奉献珍藏
迷上了画画 爱上了文艺
先生评画 终生受益
相关文档
最新文档