《智能控制》课程考试试题B及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《智能控制》课程考试试题B
《智能控制》课程考试试题B参考答案
一、填空题
(1) 高级机器人 (2) 智能规划与调度 (3) 自动制造系统 (4) 故障检测与诊断 (5) 小深(Deep Junior)
(6) 卡斯帕洛夫(Kasparov) (7) 硬件 (8) 软件 (9) 智能 (10) 智能化
(11) 选择模糊控制器的结构 (12) 选取模糊控制规则 (13) 确定模糊化的解模糊策略,制定控制表 (14) 确定模糊控制器的参数
(15) 傅京孙 (16) 萨里迪斯 (17) 蔡自兴
(18) 生物的进化机制 (19) 进化计算 (20) 反馈机制
二、选择题
1、C
2、A
3、A
4、C
5、D
6、D
7、B
8、C
9、A 10、C
三、问答题
1、答:在研究了智能控制的二元、三元结构理论、知识、信息和智能的定义以及各相关学科的关系之后。蔡自兴教授提出了四元智能控制结构,把智能控制看作是自动控制、人工智能、信息论和运筹学四个学科的交集,如图1所示,其关系可用下式来描述。
IC = AI ∩ CT ∩ IT ∩ OR
图1 智能控制的四元结构
把信息论作为智能控制结构的一个子集是基于下列理由的:
(1) 信息论是解释知识和智能的一种手段;
(2) 控制论、系统论和信息论是紧密相互作用的;
(3) 信息论已成为控制智能机器的工具;
(4) 信息熵成为智能控制的测度;
(5) 信息论参与智能控制的全过程,并对执行级起到核心作用。
2、答:传统控制理论在应用中面临的难题包括:
(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。
智能控制具有下列特点:
(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制,即组织级。高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。
(3) 智能控制是一门边缘交叉学科。实际上,智能控制涉及更多的相关学科。智能控制的发展需要各相关学科的配合与支援,同时也要求智能控制工程师是个知识工程师。
(4) 智能控制是一个新兴的研究领域。无论在理论上或实践上它都还很不成熟、很不完善,需要进一步探索与开发。
3、答:传统控制理论在应用中面临的难题包括:
(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。
智能控制具有下列特点:
(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制,即组织级。高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。
(3) 智能控制是一门边缘交叉学科。实际上,智能控制涉及更多的相关学科。智能控制的发展需要各相关学科的配合与支援,同时也要求智能控制工程师是个知识工程师。
(4) 智能控制是一个新兴的研究领域。无论在理论上或实践上它都还很不成熟、很不完善,需要进一步探索与开发。
3、答:模糊控制器值得研究的特性有静态和动态特性。对于静态特性,包括模糊控制规则的完整性、相容性和交互性,以及模糊控制器的鲁棒性。对于动态特性,包括模糊控制器的稳定性、灵敏性、可控性、收敛性、重复性(再现性)、精确性(精度)和映射特性等。
图2为一自组织模糊控制器的结构图:
图2 自组织模糊控制器的结构
它由基本层和自组织层两级构成;前者为一常规模糊语义控制器,后者对每一输入/输出响应的采样进行评价,并对控制器产生一个修正。该结构能够自动获得模糊控制器的规则库。当用FLC控制对象(装置)至期望响应时,新条件一旦出现,规则就被产生和修正。该控制器的主要部分有性能评价、对象建模、规则库更新和FLC保持等。
性能评价单元用于分析精确装置有关性能目标的状态矢量(位置误差PE,误差变化CE),并对已辨识过的规则进行修正,以补偿任何恶劣性能的影响。修正是通过标量来调整规则结论的。采用可接受和不可接受两种阶跃响应相平面轨迹作为性能目标。
装置(对象)模型用于考虑装置规则修正时的输入-输出极性、规则库更新单元用于检查哪条或哪几条规则可对当前的恶劣性能产生响应,并进行修正。自组织模糊控制器在学习试验过程中的连续采样时间内,不断(迭代)地改善规则库。
4、答:递阶控制理论可被假定为寻求某个系统正确的决策与控制序列的数学问题,该系统在结构上遵循精度随智能降低而提高(IPDI)的原理,而所求得的序列能够使系统的总熵为最小。递阶智能机器的一般结构是由三个控制层级,即组织级、协调级和执行级构成的。
这三个控制层级的功能和结构如下: