3第三章 配气机构

合集下载

第三章 配气机构

第三章 配气机构

第三章配气机构3.1 概述 (2)3.2 配气相位 (5)3.3 配气机构的零件和组件 (8)3.4 可变进气系统 (21)学习目标:1.掌握配气机构的组成及各零部件的结构特点;2.掌握配气相位、气门间隙;3.掌握凸轮轴的结构特点;4.掌握可变进气系统的结构类型特点。

学习方法:介绍发动机配气机构的结构及组成,通过实物教学和多媒体课件动态演示相结合,并和汽车拆装与调整实践教学相辅相承,使学生掌握各零部件的结构特点和安装要求。

学习内容:§3.1 概述§3.2 配气相位§3.3 配气机构的零件和组件§3.4 用配气相位图分析可调间隙的气门§3.5 可变进气系统学习重点:1.配气相位;2.气门间隙;3.凸轮轴的结构特点;4.可变进气系统的结构类型。

作业习题:1.影响充气效率的因素主要有哪些?2.配气机构的功用是什么?3.如何从一根凸轮轴上找出各缸的进排气凸轮和该发动机的发火顺序?4.气门弹簧起什么作用,为什么在装配气门弹簧时要预先压缩?5.挺柱的类型主要有哪些,液压挺柱有哪些优点?6.可变进气系统主要有哪几种型式?3.1 概述配气机构的功用就是根据每一气缸内所进行的工作循环和点火顺序的要求,定时打开和关闭各缸的进排气门,使新气及时进入气缸和废气及时排出气缸,使换气过程最佳。

好的配气机构应使发动机在各种工况下工作时获得最佳的进气量,以保证发动机在各种工况下工作时发出最好的性能。

发动机在全负荷下工作时,需获得最大功率和扭矩,这就要求在此工况下,配气机构应保证获得最大进气充量。

吸入的进气越多,发动机发出的功率和扭矩越大。

进气充满气缸的程度,常用充气效率 ( 也称充气系数 ) η v 表示。

即:ηv =M/Mo式中M -进气过程中,实际充入气缸的进气量;Mo -在进气状态下充满气缸工作容积的进气量。

一般情况下发动机充气效率η v 总是小于 l 的。

η v 的大致范围是:四冲程汽油机 0.7 ~ 0.85 ;四冲程非增压柴油机 0.75 ~ 0.90 ;四冲程增压柴油机 0.90 ~ 1.05 。

第三章配气机构

第三章配气机构
气门热量从气门座处散失)和避免受热变形。
• 有些发动机为了制造和维修方便,二者都用450。
42
锥面研磨
• 为保证良好密合,装配前应将气门头与气门座二者的 密封锥面互相研磨,研磨好的零件不能互换。
43
③气门直径
• 气门头部直径越大,气门口通道截面就越大,进、排 气阻力就越小。
44
45
(2)气门杆部
1-气门杆;2-气门弹簧; 3-弹簧座;4-锁片;5-卡环
4
一、气门的布置形式:
1.顶置式—位于缸盖顶上
气门行程大,充气好,燃烧室紧 凑,有利于燃烧及散热,有 利于提高压缩比和改善发动 机动力性(结构复杂,零件多)
5
2.侧置式—位于缸体一侧已趋于淘汰
a. 结构简单,高度低 b. 燃烧室结构不紧凑,散热大 c. 拐弯多,阻力大,进气不充分,排气不彻

6
二、 凸轮轴的布置位置
(4)优点:正时精度高,传动阻力小,无需张紧机构。
12
(5)正时记号(装配时必须对齐):保证配气正时。
A—B;
1—1为配气正时记号; 2—2为喷油正时记号;
13
2、链条传动(凸轮轴上置或中置用)
(1)特点:噪声小,可靠性、 耐久性不如齿轮传动,传 动性取决于链条的制造质 量。
(2)防止链条抖振,设有导 链板和张紧装置。
37
一、气门
• 作用:
• 燃烧室的组成部分; • 根据工作需要,实现燃烧室的开启与密封。
• 工作条件:
• 承受热负荷:进气门600~700K,排气门800~1100K; • 承受机械载荷:气体压力、气门弹簧力、落座惯性力等; • 作高速往复直线运动;冷却和润滑条件差; • 易被腐蚀(高温燃气中有腐蚀性的气体)。

第三章 配气机构

第三章    配气机构

1.已知某型号发动机的进气提前角度数为 20°,气门叠开角度数为39°,进气持续 角度数为256°,排气持续角度数为249°, 画出其配气相位图。
第三节 气门传动组与气门组
一、气门传动组 组成 功用:定时驱动气门开闭,并保证气门有足够的开度和适当的 气门间隙。 摇臂轴 摇臂 凸轮轴 推杆
凸轮轴正 时齿轮
第三章
配气机构
第一节 配气机构的功用及组成
一、功用: 配气机构是进、排气管道的控制机构,它按照气 缸的工作顺序和工作过程的要求,准时地开闭进、排 气门、向气缸供给可燃混合气(汽油机)或新鲜空气 (柴油机)并及时排出废气。另外,当进、排气门关 闭时,保证气缸密封。 二、充量系数: 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可 能发出的功率愈大。新鲜空气或可燃混合气充满气缸 的程度,用充量系数hv表示。hv越高,表明进入气缸 的新气越多,可燃混合气燃烧时可能放出的热量也就 越大,发动机的功率越大。
的结构。为了改善换气,在可能的条件下,应尽量加大气门的 直径,特别是进气门的直径。 排列 : 一列 驱动:一根凸轮轴驱动
进排气道:
汽油机:臵于机体一侧,进气预热 ,提高汽油挥发性 柴油机:臵于机体两侧,防止进气预热,提高充气效率
2.四气门的排列及驱动 某些大排量、高转速、高功率的发动机,由于气门尺寸的限制, 每缸两个气门不能满足换气的需要,而采用三气门(两进一排)或四 气门(两进两排),因此必须有使两同名气门同步开闭的驱动装臵。 每缸采用四个气门时,其气门排列的方案有二种:
气门开启的结构方法:
利用摇臂驱动:摇臂设置在凸轮与气门杆之间,通过选择
摇臂两段长度比来改变气门升程的大小。(适用升程较大
发动机)
优点:气门间隙的调整方便。 缺点:结构复杂,使气缸盖总成结构不紧凑,尺寸大。 利用凸轮轴驱动:用凸轮轴直接驱动气门。 优点:零件少;气缸盖布置空间大,利于减小气门夹角。 缺点:气门升程不能太大。

03第三章配气机构

03第三章配气机构

易断裂处
2、气门导管:
作用:
为气门的运动导向,保证气门直线运动兼起导热作用。
工作条件:
倒角
工作温度较高,约500K。润滑困难,易磨损。
气缸盖
材料:
气门导管
用含石墨较多的铸铁,能提高自润滑作用。
加工方法:
外表面加工精度较高 内表面精绞 装配:
卡环:防止气门 导管在使用中脱 落。
气门杆与气门间隙0.05~0.12mm。
2、气门侧置式
进排气门都布置在气缸 的一侧,结构简单、零件数 目少。
气门布置在同一侧导致 燃烧室结构不紧凑、热量损 失大、进气道曲折、进气阻 力大,使发动机性能下降, 已趋于淘汰。
四、凸轮轴的布置型式:
1、凸轮轴下置:
不利因素:凸轮 轴与气门相距较 远,动力传递路 线较长,环节多, 因此不适用于高 速发动机。
点火顺序: 1—2—4—3
四缸发动机凸轮投影
凸轮轴的轴向定位:
作用:
为了防止凸轮轴在工作中产生轴向窜动和承受斜齿轮产生 的轴向力。
气缸体
凸轮轴颈
窜动量
止推板
隔圈(调节环) 正时齿轮
凸轮轴的 轴向间隙
利用调节环控制轴向窜动
凸轮轴的驱动:
A、齿轮传动:应用在下置凸轮 轴发动机。采用斜齿齿轮。
B、链条和齿形皮带传动:链条传动噪声小,用于 中置式或顶置式凸轮轴发动机。
凸轮轴正时 齿形带轮
张紧轮
中间轴齿 形带轮
曲轴正时 齿形带轮
2、挺柱
(1)作用:将凸轮的推力传给推杆或气门。 (2)挺柱的分类:
菌式
气门侧置式
筒式
气门顶置式
减小摩擦所造成的对 滚轮式 挺柱的侧向力。多用

第三章配气机构

第三章配气机构

*二、挺柱
作用: 将凸轮的推力(运动)传给推杆或气门,并承受凸轮轴旋转时所施加的侧向力,并将其传给 机体或者气缸盖。
1、 工作条件 由于挺柱底面与凸轮接触面积小,同时与凸轮间高速运动,导致接触压力很大,造成磨损严重,
因此要求挺柱必须耐磨。一般用镍铬合金铸铁制造。结构形式上包括机械挺柱和液力挺柱。
2、 机械挺柱 机械挺柱会存在偏磨损。
为提高散热性能: ① 气门头与气门座密封良好; ② 气门头与气门杆过渡部分应圆滑; ③ 气门杆与气门导管间隙尽可能小。
充钠冷却
**5、 每缸气门数
(1) 一般发动机为一进一排两气门,且进气门比 排气门大15%~30%。两气门发动机多采用 半球形燃烧室.
(2) 现代汽车普遍采用每缸三、四、五个气门。 其中四气门的应用最为广泛。四气门发动机 每缸两个进气门和两个排气门.四气门发动机 多采用蓬形燃烧室.
气门间隙一般由发动机制造厂根据试验确定。
第三节 气门组
气门组包括气门、气门导管、气门座及气门弹簧等。 气门组应保证气门能够实现气缸的密封。
**一、气门 *1、 工作条件、要求、材料及组成
(1)工作条件 热负荷大:气门直接与高温燃气接触,受热严重,散热难(接触面积小),因此,气门的温度很高。 排气门由于废气的加热作用温度高,为600~800°;进气门由于受到新气的冷却作用,温度稍低, 约为300~400°。 受力情况:气门承受气缸内气体压力和气门弹簧力的作用,以及由于配气机构运动件的惯性力使 气门落座时受到冲击。 腐蚀情况:与腐蚀性气体接触而受到腐蚀。
整个机构刚性差。
2 、凸轮轴中置式(通常位于机体的上部) 优点:传动机构刚度有所增加; 缺点:凸轮轴驱动变复杂。
** 3 、凸轮轴上置式 优点:运动件少,气门传动链短,机构刚度最好; 缺点:凸轮轴驱动复杂。

汽车构造课件第三章配气机构

汽车构造课件第三章配气机构

总结
1
配气机构的基本原理
了解配气机构的基本工作原理和构成。
配气机构对对汽车功率、燃油经济性
和排放性能的影响。
3
配气机构的未来发展方向
展望配气机构在高效能、低排放和智能 化方面的未来发展趋势。
参考文献
• 杨敏. 汽车构造课件[M]. 北京:机械工业出版社,2021. • David C. Vizard. How to Power Tune Rover V8 Engines[M].
2
调节气门升程
配气机构可调节气门的升程,从而控制燃气进出气缸的量。
3
提供动力
配气机构保证内燃机正常运转,为发动机提供动力。
常见的配气机构种类
OHC配气机构
凸轮轴位于汽缸头部,通过摇臂 和气门直接控制进排气。
OHV配气机构
凸轮轴位于汽缸盖内,通过摇杆 和气门间接控制进排气。
DOHC配气机构
两根凸轮轴位于汽缸盖内,分别 控制进气和排气气门。
单凸轮轴与双凸轮轴的区别
1 单凸轮轴
只有一根凸轮轴,用于控制进排气门的开闭。
2 双凸轮轴
有两根凸轮轴,分别控制进气和排气气门。
关注的问题
配气机构的重要性
探讨配气机构在发动机中的重 要作用和影响。
配气机构的维护与保 养
提供维护和保养配气机构的建 议和注意事项。
配气机构的发展趋势
介绍配气机构的未来发展方向 和创新技术。
汽车构造课件第三章配气 机构
本章介绍汽车配气机构的基本原理、作用以及常见种类,同时探讨配气机构 对汽车性能的影响与未来发展方向。
什么是配气机构?
定义
配气机构是指控制气缸进气和排气门开闭时机的机械装置。

第三章 配气机构

第三章  配气机构

二、主要零件检修
一、气门间隙的检查与调整
1.前提:气门必须处于完全关闭状态
2.第一种方法:二次调整法
第一步:把一缸活塞转到压缩上止点 第二步:按“双排不进”检查调整一半气门 第三步:转动曲轴一圈,检查调整另一半气门
3.气门间隙调整方法
气门间隙调整
4.逐缸法
定义:指一个气缸一个气缸的气门逐缸调整 第一步:使第一缸处于压缩上止点,检 查调整第一缸的气门间隙 第二步:转动曲轴,使下一缸处于压缩 上止点,进行检查调整
第三步:如此类推,直到调完所有气缸的气门
二、配气机构主要零件的检修
1.气门导管的更换
第一步:判断气门导管是否要更换 第二步:将旧的气门导管从缸盖上取出 第三步:选配新导管
第四步:将新导管压入气缸盖 第五步:检查新导管与气门杆的配合间隙
2.气门的检修
第一:气门常见的耗损
第二:气门的检验
第三:气门工作面的修理
1.按凸轮轴位置可分为:下置式、中置式、上置式。 2.按曲轴和凸轮轴的传动方式不同分为:齿 轮传动、链条传动、齿形带传动.
3.按每一缸的气门数量分为双气门式、多气门式
四、配气机构的工作原理
凸轮轴是通过正时齿轮由曲轴驱动的。四冲程发动机完 成一个工作循环,曲轴旋转两周,各缸进、排气门各开 启一次,凸轮轴只需转一周。 当凸轮基圆部分与挺柱接触时,挺柱不升高,气门 关闭,当凸轮凸起部分与挺柱接触时,将挺柱顶起, 挺柱通过推杆,使摇臂顺时针转动,摇臂的长臂端 向下推动气门,压缩气门弹簧,将气门头部推离气 门座而打开,当凸轮凸起部分的顶点转过挺柱后, 便逐渐减小了对挺柱的推力,气门在其弹簧张力的 作用下,开度逐渐减小,直至最后关闭,使气缸密 封。
第五节、配气机构主要零件的检修

3第三章 配气机构

3第三章  配气机构

一 、气门组的构造
1.气门 如图3-5所示的进气门、排气门及分解图。
汽车发动机的进、排气门,由气门头部和气门杆两部分构成。 气门顶面对有平顶、凸顶和凹顶(如图3-6)等形状。目前 应用最多的是平顶气门。凹顶气门头部与气门杆有较大的过渡圆 弧,用作进气门时,可以减小进气阻力,其受热面积大,不适合 作排气门。
高压腔内。由于机油不能压缩,因此液力挺柱如同机构挺柱一样向上移
动,使气门开启。磨损后无法调整只能更换。
液力挺柱的工作原理:(如图3-16a、b、c所示)
4.气门间隙 功用是将推杆和凸轮传来的运动和作用力,改变方向传给气门使
其开启。
气门间隙的大小因机型而异。通常进气门间隙为0.25~0.30 mm; 排气门间隙为0.30~0.35 mm。 气门间隙的大小可用塞尺测量。因磨损等原因,在发动机使用过程 中,气门间隙的大小会发生变化,因此设有气门间隙调整螺钉或调整垫
3.宝马发动机的VALVETRONIC技术
Valvetronic 改变进 气门的正时与升程, Valvetronic 系统有一支 与一般发动机一样的凸轮 轴,而且还有一个由一支 偏心轴与滚轴及顶杆所组 成的机构,并由步进马达 (如图3-33)所带动,通 过接收来自油门位置的信 号,步进马达改变偏心凸 轮的偏移量,经由一些机 械传动间接地改变进气门 的动作。
• 其VTEC控制阀作动的条件有下列几点因
• • • • •
素: 1)发动机转速 2)行车速度节 3)气门位置 4)发动机负载(由进气压力感知器 所侦测) 5)发动机温度
i-VTEC高、低转速范围内的负荷变化如图2-24所示。
可变长度进气歧管示意图,如图3-25所示。
2.丰田发动机的VVT-i 1995年,装备改进版VVT系统的VVT-i面世了,VVT-i中多出的I, 意思是Intelligent -“智能”

第三章 配气机构解析

第三章 配气机构解析
为气门叠开角。
第二节
气门驱动组的主要机件
一、凸轮轴及其驱动装置
(一)凸轮轴的功用
1. 驱动和控制各缸气门的开启和关闭,使
其符合发动机的工作顺序、配气相位及 气门开度变化规律等要求。 2. 驱动汽油泵、机油泵和分电器等。
(二)凸轮轴的构造
凸轮轴主要由凸轮、凸轮轴轴颈等组成。
对于下置式凸轮轴,还有偏心轮(用于驱动汽
(2)吸收气门在开启和关闭过程中传动零件所产 生的惯性力,以防止各种传动件彼此分离而 破坏配气机构正常工作。
三、摇臂和摇臂组
1.功用:
将推杆或凸轮 传来的推力传给 气门使其开启。
2. 结构
摇臂装在摇臂轴上,摇臂轴通过
摇臂轴支座装在气缸盖上。摇臂是
一个不等臂杠杆,其长臂一端驱动 气门。
3. 浮动式摇臂
其摇臂没有 中间支承轴,是 在导槽中浮动的 安装。摇臂的一 端安装在气缸盖 的液力挺柱上, 另一端驱动气门, 凸轮抵在摇臂的
入中间惰轮传动
1. 齿轮传动
(3)正时齿轮都用斜齿轮并用不同材料制成,以
减小噪声和磨损。通常小齿轮用中碳钢,大齿轮柴
油机用钢而汽油机用夹布胶木或塑料。
1. 齿轮传动
(4)正时齿轮上有正
时记号,装配时必须
使记号对齐,以保证
配气正时。
2. 链条传动
(1)链条传动使用寿命
长,但噪声大,一般用
于上置凸轮轴的发动机
a-气门锁片固定;b-圆柱销固定 1-气缸盖;2-气门杆;3-气门弹簧;4-气门弹簧振动阻尼器;5-气门油封;6-气门弹 簧座;7-气门锁片;8-圆柱销;9-气门导管
三、气门导管
1. 作用
(1 ) 为气门运动导向。
(2)

汽车维修初级课件:第三章 配气机构

汽车维修初级课件:第三章 配气机构

2021/3/10
汽车发动机构造
3.2 配气定时及气门间隙
三、气门间隙:为保证气门关闭严密,通常发动机在冷态
装配时,在气门杆尾端与气门驱动零件(摇臂、挺柱或凸 轮)之间留有适当的间隙。
气门间隙
摇臂
气门杆
2021/3/10
汽车发动机构造
3.2 配气定时及气门间隙
2、必要性:发动机工作时,气门将因温度升高而膨胀,如果
气门及其传动件之间,在冷态时无间隙或间隙过小,则在热态 时,气门及其传动件的受热膨胀势必引起气门关闭不严,造成 发动机在压缩和作功行程中漏气,而使功率下降,严重时甚至 不易起动。为了消除这种现象,通常在发动机冷态装配时,留 有气门间隙,以补偿气门受热后的膨胀量。有的发动机采用液 力挺柱,挺柱的长度能自动变化,随时补偿气门的热膨胀量, 故不需要预留气门间隙。
1.进气提前角 (1)定义:在排气冲程接近终了,活塞到达上止点之前,进气门便 开始开启。从进气门开始开启到上止点所对应的曲轴转角称为进气 提前角(或早开角)。进气提前角用α表示,α一般为10°~30°。 (2)目的:进气门早开,使得活塞到达上止点开始向下运动时,因 进气门已有一定开度,所以可较快地获得较大的进气通道截面,减 少进气阻力。
其中气门组零件包括气门、气门 座圈、气门导管、气门弹簧、气门弹 簧座和气门锁夹等;气门传动组零件 则包括凸轮轴、挺柱、 推杆、摇臂、 摇臂轴、摇臂轴座和气门间隙调整螺 钉等。下置凸轮轴由曲轴定时齿轮驱 动。发动机工作时,曲轴通过定时齿 轮驱动凸轮轴旋转。当凸轮的上升段 顶挺柱时,经推杆和气门间隙调整螺 钉推动摇臂绕摇臂轴摆动,压缩气门 弹簧使气门开启。当凸轮的下降段与 挺柱接触时,气门在气门弹簧力的作 用下逐渐关闭。
汽车发动机构造

第3章 配气机构

第3章 配气机构

气门关闭点
同名凸轮的相对角位置
排气过程
进气过程
3.2.5 气门间隙
概念: 为保证气门关闭严密,通常发动机在冷态 装配时,在气门杆尾端与气门驱动零件(摇臂、 挺柱或凸轮)之间留有适当的间隙。
气门 进气门 间隙 0.25~0.30mm
排气门
0.30~0.35mm
气门间隙的门烧坏。 2.气门间隙过大:传动零件之间、气 门和气门座之间撞击严重,加速磨 损。
材料: 进气门570K~670K (铬钢或铬镍钢) 排气门1050K~1200K (硅铬钢)
组成:头部、杆部
杆部
头部
工作条件:
A.进气门570K~670K,排气门1050K~1200K; B.头部承受气体压力、气门弹簧力等; C.冷却和润滑条件差; D.被气缸中燃烧生成物中的物质所腐蚀。
要求:
应用车型:
奥迪100,捷达,桑塔纳, 广州标致505
作业
教材P70
2.为什么一般在发动机的配气机构 中留气门间隙?
二、气门传动组和驱动组
1.传动组组成: 挺柱、推杆、摇臂、摇臂轴等。 2.驱动组组成:
凸轮轴、凸轮轴轴承、止推装置等。
功用:定时驱动气门开闭,并保证气门有足
够的开度和适当的气门间隙。
2.链条传动
张紧机构
导链板

用于中置式和上置式凸轮轴的传 动,尤其是上置式凸轮轴的高速汽油 机采用较多。
(视频)
3.齿带传动

用于上置式凸轮轴的传动。 主要优点: 噪声小、质量轻、成本低、工作 可靠、不需要润滑;齿形带伸长量小, 适合有精确定时要求的传动。 轿车发动机多采用。
正时皮带(视频)
M ——进气过程中,实际进入气缸的新

第3章配气机构

第3章配气机构

• 1.配气定时工作原理

配气定时就是进、排气门的实际开闭时刻,通常用相对于上、下止点曲拐位置的曲轴转角的环
形图来表示。这种图形称为配气定时图(如图3-7所示)。
• 2.可变配气定时典型机构

20世纪90年代初,日本本川公司推出了一种既可改变配气定时,又能改受气门运动规律的可变
气门正时和气门升程电子控制机构,称为VTEC机构。其配气凸轮轴上布置了高速机低速两种凸轮,采用了
并将气门杆所承受的热量传给汽缸盖。气门导管为一空心管状结构,如图3-19所示。气门导管压装在汽缸
盖上的导管孔中,其外圆柱面与导管孔的配合有一定的过盈量,以保计良好的传热性能和防止松脱。有些
发动机为防止气门导管脱落,利用卡环对气门导管定位。气门导管的下端仲入气道,为减小对气流造成的
阻力,仲入气道的部分制成锥形。
但位于气门组上方,凸轮轴直接通过摇臂来驱动气门开启和关闭,省去了推杆,使往复运动质量大大减小。
但此种布置使凸轮轴距离曲轴较远,因此不便于使用齿轮传动,现多采用同步齿形胶带传动。这种结构形
式的气门传动组主要由凸轮轴、同步齿形胶带、摇臂、摇臂轴等组成。
第4页/共36页
上一页 下一页 返回
3.1配气机构的功用及组成
锁片或锁销与气门杆定以保证气门迅速回座,保证气门和气门座密封。
• ②必须克服在气门开闭的过程中气门及传动零件产生的惯性力。
• ③高速度、长时间运转下具有良好的耐久性。
• ④保证气门不会发生跳动。
第15页/共36页
上一页 返回
3.4气门传动组
图3-2凸轮轴中置式配气机构
第23页/共36页
返回
图3-3凸轮轴顶置式配气机构
第24页/共36页

第三章 配气机构

第三章 配气机构

第三章配气机构§3-1凸轮机构凸轮机构的分类:按凸轮形状分:1)盘形凸轮2)移动凸轮3)圆柱凸轮按从动件型式分:1)尖底从动件;2)滚子从动件;3)平底从动件按维持高副接触分(锁合);1)力锁合→弹簧力、重力等2)几何锁合:等径凸轮;等宽凸轮凸轮机构的优点:结构简单、紧凑、设计方便,可实现从动件任意预期运动,因此在机床、纺织机械、轻工机械、印刷机械、机电一体化装配中大量应用。

缺点:1)点、线接触易磨损;2)凸轮轮廓加工困难;3)行程不大§3-2配气机构的作用是按照发动机每一缸内所进行的工作循环和发火顺序的要求,定时开启和关闭各气缸的进、排气门,使新鲜可染混合气(汽油机)或空气(柴油机)得以及时进入气缸,废气得以及时从气缸排除。

新鲜空气或可染混合气被吸入气缸越多,则发动机可能发出的功率越大,新鲜混合气或空气充满气缸的程度,用充气效率来表示。

充气效率=在进气行程中实际进入气缸的新鲜空气或可染混合气的质量/充满气缸工作容积的质量。

充气效率越高,表明进入气缸内的新鲜空气或可染混合气质量越多,燃烧混合气可能发出的热量越大,发动机的功率越大。

对一定容积的发动机而言,V一定,质量与进气终了的T和P有关,进气的T和P越低,进气质量越大,充气效率越高。

但由于进气系统对气体造成阻力使进气终了时的气缸内压力下降,有因为上一轮循环中残余的高温废气,使进气终了气体温度升高,实际进入气体的质量总小于在一般张态下的充满气缸气体的质量。

也就是说,充气效率总小于1。

一般为0.8~0.9。

一、配气机构的分类配气机构可以从不同角度分类。

按气门的布置型式,主要有气门顶置式和气门侧置式;按凸轮轴的布置位置,可分为凸轮轴下置式,凸轮轴中置式;和凸轮轴上置式;按曲轴和凸轮轴的传动方式,可分为齿轮传动式和链条传动式和齿带传动式。

按每气缸气门数目,有二气门式、四气门式等。

1.气门的分布型式气门顶置式配气机构应用最广泛,其进气门和排气门都倒挂在气缸上。

第3章配气机构

第3章配气机构

三(四)
一缸:处在压缩上止点(进关1、排关2 ) 五缸:压缩行程中(排关10) 三缸:进气行程中(排关6 ) 二缸:排气行程中(进关4) 六缸:进气上止点(进开、排开) 四缸:作功行程中(进关8)
第一次可调气门为:1、2、10、6、4、8
把飞轮转360度,即把第六缸转到压缩上止点,即可调余下的气门。
锁销式:在杆端制圆柱形径向通孔,把锁销扦入孔中。
锁片 锁销
2、气门导管: 功用:保证气门直线运动,使气门与座正确配合。
工作条件:热力负荷大。
(耐磨、耐高温、强度高) 材料:灰铸铁,球墨铸铁。 防落装置:在气门导管与缸盖间用卡环定位。 气门杆与导管间应留0.05 ~ 0.12mm 间隙。
气门导管
卡环
使进、排气尽可能充分。
2、选择适当的进、排、气门开启和持续的时间、
配气机构工作过程
曲轴与凸轮轴传动比为2:1
第一节
气门式配气机构的布置及传动
1、组成:气门组、气门传动组 2、布置型式:
顶置
按气门的布置型式
侧置
上置
按凸轮轴的布置型式
中置 下置
按凸轮轴的传动方式
齿轮传动式 带传动式 二气门式
按每缸气门数分
气门与气门座之间的研磨
4、气门弹簧:
功用:使气门迅速回位,紧密闭合,并防止气门在发动机机振动时发生
跳动,破坏密封性。 材料:高炭锰钢(刚度大)
安装:安装时应给弹簧一定的预紧力,
防止气门随发动机振动而跳动。 防共振措施: 1) 提高弹簧钢度(f固有>>f激发) 等螺距 变螺距 双簧结构
2) 采用变螺距弹簧。 (工作时,螺距小的一端逐渐迭合,有效圈数不断变化,f固有不断变化) 3)采用双簧结构: 两簧刚度不同,固有频率也不同。若一簧 发生共振,另一簧可减振。一簧断列,另 一簧还可工作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、气门导管的检修
气门导管的修理:气门导管与气门杆的配合间隙大于使用限度应更 换气门导管。 气门导管的检修如图3-14所示。
4、气门弹簧的检修 气门弹簧的自由长度用游标卡尺测量,其自由长度不小于标准长度 的10%,如图3-14。气门弹簧的轴线与端面应垂直,不垂直度误差不大 于2°。
气门弹簧有裂纹、缺陷、自由长度超限、变形超限和弹力明显降低, 有上述情况之一都必须更换气门弹簧,不允许修复后再继续使用。 气门弹簧的检修如图3-15所示。
2.挺柱 挺柱是凸轮的从动件,其功用是将来自凸轮的运动和作用力传给推 杆或气门,同时还承受凸轮轴所施加的侧向力,并将其传给机体或气缸
盖。
构造:在挺柱体中装有柱塞,在柱塞上端压力推杆支座。柱塞被柱 塞弹簧向上推压,其极限位置由卡环限定。柱塞下端的单向阀保持架内 装有单向阀弹簧和单向阀。发动机润滑系统中的机油经进油孔进入内油 腔,并在机油压力的作用下推开单向阀充满高压腔。 原理:当气门关闭时,在柱塞弹簧的作用下,柱塞与推杆支座一起 上移,使气门及其传动件相互接触而无间隙。当凸轮顶起挺柱时,挺柱 体上移,高压腔内的机油压力遽然升高,使单向阀关闭,机油被封闭在
二、气门组的检验与维修
1、气门的检修 气门的检验:主要是检验气门杆的弯曲变形,如图3-12所示。
气门修理:气门工作锥面磨损或烧蚀,需要在气门光磨机上 进行修磨,修磨需在杆部较正后进行,。 气门出现下列耗损之一应予换新。 1)载货汽车的气门杆的磨损量大于0.10mm,轿车的气门杆 的磨损大于0.05mm,或出现明显的台阶形磨损。
齿轮传动、链条与链轮传动、齿形皮带传动示意图,如图3-3所 示。
4.按气门驱动形式分类
按气门驱动形式分类则有如图3-4所示的摇臂驱动、摆臂驱动和 直接驱动3种类型。
第一节 气门组
本节主要介绍的内容有:
● 气门组的构造 ● 气门组的检验与维修
一 、气门组的构造
1.气门 如图3-5所示的进、排气门及分解图。
2、采用液压挺柱的发动机气门脚响故障的诊断排除 液压挺柱能自动地消除气门间隙,减少发动机工作时的噪声,而 且在发动机检修中无需调整气门间隙。这种发动机如果在运转中出现 气门脚响,说明液压挺柱有故障,其原因可能是: 1)发动机机油油面过高或过低,致使有气泡的机油进入液压挺 柱中,形成弹性体而产生气门脚响。
2)机油压力过低,液压挺柱中缺少润滑油,使空气进入液压挺
柱中,产生气门脚响。 3)发动机长期放置不用,使液压挺柱被过分压缩,重新起动后 没有得到足够的机油补充而使空气进入,产生气门脚响。 4)液压挺柱失效。
第三节 气门正时
本节主要介绍的内容有:
● 配气正时的相关术语 ● 可变气门正时与升程
一、配气正时的相关术语
VVT-i 控制器通过转动凸轮轴,从而达到气门的正时改变(此为 VVTL-i的凸轮轴)。VVT-i发动机是如何做到变化进气时的气门正时 的呢?它就是在如图3-28中,有一个VVT-i控制器,通过转动此控制 盘,而来提早或延迟气阀的开与关的时间。所以,VVT-i与BMW Vanos 一样的原理,VVT-i用类似的机置来做到“连续式”的可变气门正时, 只是VVT-i是用电动方式来驱动控制器,而Vanos则是用油压的方式, 两者皆能跟着不同发动机转速来达到气门正时的连续性变化!
2.气门导管
功用是对气门的运动导向,保证气门作直线往复运动,使
气门与气门座或气门座圈能正确贴合。此外,还将气门杆接受
的热量部分地传给气缸盖。气门导管实物如图3-9。 有的发动机不装气门导管,气门直接在气缸盖上加工出气 门杆孔,作为气门的导向孔。
3.气门锁片 气门杆与弹簧连接有两种方式。一种是锁夹式,在气 门杆端部的沟槽上装有两个半圆形锥形锁夹,弹簧座紧压
汽车发动机的进、排气门均为菌形气门,由气门头部和气门 杆两部分构成。 气门顶面对有平顶、凸顶和凹顶(如图3-6)等形状。目前 应用最多的是平顶气门。凹顶气门头部与气门杆有较大的过渡圆 弧,用作进气门时,可以减小进气阻力,其受热面积大,不适合 作排气门。
气门与气门座或气门座圈之间靠锥面密封。气门锥面与气门 顶面之间的夹角称为气门锥角(如图3-7)。进、排气门的气门 锥角一般均为45°,只有少数发动机的进气门锥角为30°。 气门杆有较高的加工精度和较低 的粗糙度,与气门导管保持较小的配 合间隙,以减小磨损,并起到良好的 导向和散热作用。 外表面为锥面的气门锁夹来固定 上气门弹簧座,气门锁夹内表面有多 种形状,相应地气门尾端也有各种不 同形状的气门锁夹槽。
中空气门杆的气门
内装钠冷却空气;风冷发动机和轿车发动机上得到成功的应用。
一般发动机每个气缸有两个气门,即一个进气门和一个排气门如 图3-8(a)所示。进气门头部直径比排气门大15%~30%,凡是进气门和 排气门数量相同时,进气门头部直径总比排气门大。 现代高性能汽车发动机普遍采用每缸三、四、五个气门,其中尤 以四气门发动机为数最多,四气门发动机每缸两个进气门,两个排气 门如图3-8(b)所示。 三气门发动机每缸两个进气门,一个排气门,排气门头部直径比 进气门大。凡是进气门数比排气门数多的发动机,排气门头部直径总 是比进气门大如图3-8(b)所示。 四气门发动机多采用篷形燃Байду номын сангаас室,火花塞布置在燃烧室中央,有 利于燃烧3-8(c)。 五气门发动机每缸三个进气门,两个排气门如图3-8(d)所示。
配气正时的相关术语如图3-19的图释。 以曲轴转角表示的进、排气门开闭时刻及其开启的持续时间称作配 气正时。 进气提前角:进气门在进气行程上止点之前开启谓之早开。从进气 门开到上止点曲轴所转过的角度称作进气提前角,记作α。 进气延迟角:进气门在进气行程下止点之后关闭谓之晚关。从进气 行程下止点到进气门关闭曲轴转过的角度称作进气迟后角,记作β。 排气提前角:排气门在作功行程结束之前,即在作功行程下止点之 前开启,谓之排气门早开。从排气门开启到下止点曲轴转过的角度称作 排气提前角。记作γ。 排气延迟角:排气门在排气行程结束之后,即在排气行程上止点之 后关闭,谓之排气门晚关。从上止点到排气门关闭曲轴转过的角度称作 排气延迟角,记作δ。
高压腔内。由于机油不能压缩,因此液力挺柱如同机构挺柱一样向上移
动,使气门开启。磨损后无法调整只能更换。
液力挺柱的工作原理:(如图3-16a、b、c所示)
3.推杆 推杆处于挺柱和摇臂之间,其功用是将挺柱传来的运动和作用力传 给摇臂。 4.摇臂/摆臂与间隔补偿器(气门间隙) 功用是将推杆和凸轮传来的运动和作用力,改变方向传给气门使其
开启。
气门间隙的大小因机型而异。通常进气门间隙为0.25~0.30 mm; 排气门间隙为0.30~0.35 mm。 气门间隙的大小可用塞尺测量。因磨损等原因,在发动机使用过程 中,气门间隙的大小会发生变化,因此设有气门间隙调整螺钉或调整垫
块等气门间隙调整装置。气门间隙实体图如图3-17所示。
二、气门传动组的检验与维修
4)发动机负载(由进气压力感知器所侦测)
5)发动机温度
第一段:低速,三件式的摇臂独立运作,因此左侧摇臂作动左侧的进 气门,通过左侧低升程凸轮所带动;右侧摇臂作动右侧进气门,藉由右侧 中升程凸轮所带动,这两者凸轮的正时都与中凸轮(此时并没有动作)来 得低。 第二段:中速,油压(如图3-22所示的图中橘色的部份)将右侧及左 侧的摇臂连接在一起,这时中置摇臂仍独立运作,即然右凸轮大于左凸轮,
缩写。结构图如图2-23所示。
i-VTEC高、低转速范围内的负荷变化如图2-24所示。
可变长度进气歧管示意图,如图3-25所示。
2.丰田发动机的VVTi与VVTLi技术 1995年,装备改进版VVT系统的VVT-i面世了,装备的发动机是当 时另一副性能发动机1JZ-GE。VVT-i中多出的I,意思是Intelligent -“智能”,VVT-i取消了两段式的开启和关闭选择,演化成为可以对进 气侧凸轮轴进行无级地提前或延后的工作,就像普通的自动波箱与 CVT波箱间的区别一样。除了控制系统的升级以外,VVT-i工作的原理 上与VVT基本上是相同的。如图3-26所示。
第三章 配气机构
本章主要介绍的内容有:
● ● ● ● ● 配气结构分类 气门组 气门正时 进气系统 排气系统
分类
1.按气门的布置位置分类
按气门布置方式分类可分为气门侧置和顶置两种形式,如图3-1 所示。
2.按凸轮轴的布置位置分类 按凸轮轴位置可分上、中、下三种布置方式,如图3-2所示。
3.按传动方式分类
1、凸轮轴的检修 2、正时齿轮的检修 3、摇臂与摇臂轴的检修 4、液压挺杆的检修 5、气门间隙的调整 气门间隙的调整方法如 图3-18所示,有逐缸调整法 和两次调整两种方法。 (1)逐缸调整法:
(2)两次调整法:
三、气门传动组的故障与排除
1、气门脚响的特征和诊断排除 气门脚响的特征是: 1)声响为清脆、连续而有节奏的“嗒、嗒、嗒”声,位置集中 在气缸上方气门室盖附近。 2)怠速时声响明显。发动机转速升高时,声响频率随之同步加 快,强度稍有增大。发动机高速运转时的噪声往往会将气门脚声响淹 盖。 3)发动机水温变化时声响没有明显变化。 4)进行断缸检查时声响没有明显变化。
丰田的VVTL-i发动机全名就是-Variable Valve 正时 & 升程 Intelligent,它跟VVT-i是不同的发动机,这发动机也用类似Honda VTEC的原理,在原来的VVT-i发动机上的凸轮轴,多了可以切换大小 不同角度的凸轮(凸轮),也利用“摇臂”的机置来决定是否顶到高 角或小角度的凸轮,而作到“可连续式”地改变发动机的正时(正 时),重叠时间(重叠相位角)与“两阶段式”的升程(升程)!如 图3-27所示。
二、可变气门正时与升程
1.本田发动机的VTEC与i-VTEC技术 VTEC全名就是Variable valve Timing & lift Electronic Control system,翻成中文是“电子控制可变气门正时和升程”系统 如图3-20。
相关文档
最新文档