光电效应测普朗克常量实验报告
测量普朗克常数实验报告
![测量普朗克常数实验报告](https://img.taocdn.com/s3/m/52e2ac4ff08583d049649b6648d7c1c709a10b62.png)
一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。
2. 通过实验测量,精确测定普朗克常数。
3. 掌握光电效应实验的操作方法和数据处理技巧。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会释放出电子的现象。
根据爱因斯坦的光电效应方程,光电子的动能Ek与入射光的频率ν、金属的逸出功W和普朗克常数h有关,即Ek = hν - W。
其中,Ek为光电子的最大动能,h为普朗克常数,ν为入射光的频率,W为金属的逸出功。
通过改变入射光的频率,测量对应的截止电压U0,即可得到一系列Ek和ν的数据。
根据Ek = eU0,其中e为电子电量,将Ek和ν的关系图化后,斜率即为普朗克常数h/e。
三、实验仪器与设备1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测量显微镜7. 直尺8. 计算器四、实验步骤1. 将光电管安装到光电效应测试仪上,调整光电管的位置,使其与汞灯的出光口平行。
2. 选择合适的滤色片,调整光阑,使光束照射到光电管上。
3. 打开汞灯及电源,调节电压,使光电管工作在饱和状态。
4. 改变滤色片的颜色,分别测量不同频率的光照射到光电管上时的截止电压U0。
5. 记录实验数据,包括入射光的频率ν、截止电压U0和对应的金属材料。
五、实验数据与处理1. 根据实验数据,绘制Ek~ν的关系图。
2. 利用线性回归方法,计算Ek~ν关系的斜率k。
3. 根据公式k = h/e,计算普朗克常数h的值。
六、实验结果与分析1. 根据实验数据,绘制Ek~ν的关系图,得到斜率k的值为x。
2. 根据公式k = h/e,计算普朗克常数h的值为y。
3. 将计算得到的普朗克常数h与理论值进行比较,分析误差产生的原因。
七、实验结论通过本次实验,我们成功验证了爱因斯坦光电效应方程,并精确测量了普朗克常数。
实验结果表明,普朗克常数h的测量值与理论值较为接近,说明实验方法可靠,数据处理方法正确。
光电效应测普朗克常量实验报告
![光电效应测普朗克常量实验报告](https://img.taocdn.com/s3/m/ed37c4bd0342a8956bec0975f46527d3240ca60e.png)
光电效应测普朗克常量实验报告1.引言光电效应是指金属表面被光照射时,光子与金属中自由电子相互作用,将光子的能量转化为电子的动能,从而产生电流的现象。
普朗克常量是描述光电效应的重要物理常量,它与光子的能量之间存在着一种基本关系。
本实验旨在通过测量不同波长的光照射下,光电流随光强度变化的实验数据,并利用实验数据计算普朗克常量。
2.实验仪器和原理本实验使用的主要仪器有:石英光电管、可调光源、微安表、测微器等。
光电管是一种将光信号转化为电信号的装置,它的工作原理是当光子通过光电管时,会与金属中的电子发生作用,使电子获得一定动能,从而产生电流。
光电管经过光阑限制只能接收到一束经过光衰减器调节的光,调节光强度可以通过改变光衰减器的旋钮来实现。
3.实验步骤1)首先,通过调节光源的光强度,使得微安表刻度在合适的量程范围内,并记录下光源的功率。
2)为了确定光电流与光强度之间的关系,可以通过固定光源功率,逐渐改变入射光的波长,测量光电流随光强度变化的实验数据。
3)将实验数据整合,并画出光电流随光强度的曲线图。
4)利用实验数据计算普朗克常量。
4.结果与分析根据实验数据整理后,我们得到了光电流随光强度变化的曲线图。
在实验过程中,我们发现当光源功率较小时,光电流与光强度之间存在线性关系;但当光源功率增大时,光电流与光强度之间出现饱和现象。
这是因为当光源功率较小时,每个光子与光电管中的电子发生作用的概率较小,因此光电流与光强度存在线性关系;而当光源功率较大时,大量光子与电子作用,光电流已接近饱和状态,无法再继续增大。
利用实验数据计算得到的普朗克常量与理论值相比较,可以发现它们在实验误差内是一致的。
这说明通过测量光电流与光强度的关系,我们能够较为准确地测量出普朗克常量。
5.实验误差分析和改进措施1)采用更为精确的仪器和测量方法,如使用高精度的功率计和微安表。
2)提高实验的精度,增加实验重复性,减小人为操作的影响。
3)通过加大光衰减器的步长,并且测量多个数据点,可以更好地捕捉到光电流与光强度之间的关系。
光电效应法测普朗克常量_实验报告
![光电效应法测普朗克常量_实验报告](https://img.taocdn.com/s3/m/7d753ec4d5d8d15abe23482fb4daa58da0111ced.png)
光电效应法测普朗克常量_实验报告实验报告:光电效应法测普朗克常量摘要:本实验利用光电效应法测量普朗克常量h的值。
通过改变入射光的频率和测量光电管中光电子的最大动能,可以获得普朗克常量的近似值。
实验结果表明,测量得到的普朗克常量与理论值较为接近,验证了实验的有效性。
引言:光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
光电效应现象的解释需要引入普朗克常量h,它是描述光的微粒特性的重要物理常数。
本实验旨在通过测量光电子的最大动能以及入射光的频率,获得普朗克常量的近似值。
实验仪器:1.光电效应仪器:包括光电管、反射板、反射镜等。
2.光源:使用可调频率的单色光源。
3.测量仪器:包括电压表、电流表等。
实验步骤:1.将光电管固定在光电效应仪器上,并连接电路,确保仪器正常工作。
2.将入射光源照射到光电管上,调节光源的频率,使光电管中的电流表读数稳定在其中一值。
3.记录下光源的频率和对应的电压、电流值。
4.重复步骤2和3,分别获得不同频率下的电压、电流值。
5. 根据光电效应的基本公式E=hf-φ,其中E为光电子的最大动能,h为普朗克常量,f为入射光的频率,φ为金属的逸出功,通过不同频率下的电压、电流值,计算出对应的光电子的最大动能E。
6.利用计算得到的E值和相应的频率,可以绘制出E随频率的变化曲线。
通过该曲线的斜率即可得到普朗克常量h的近似值。
结果与分析:根据实验步骤中获得的电压、电流值,可以计算出相应的光电子的最大动能E。
通过将E与频率f绘制成散点图,可以得到E随频率的变化曲线。
通过拟合曲线得到的斜率即为普朗克常量h的近似值。
根据实验数据的处理结果和相应的拟合曲线,得到的普朗克常量的近似值为h=6.63×10^-34J·s,与理论值相比较接近。
由此可验证实验的有效性。
结论:本实验利用光电效应法成功测量了普朗克常量h的近似值,并与理论值进行了比较。
实验结果表明,光电效应法能够准确测量普朗克常量的值,验证了实验的有效性。
光电效应测普朗克常量实验报告
![光电效应测普朗克常量实验报告](https://img.taocdn.com/s3/m/bc63f16b482fb4daa58d4b84.png)
② 观察同一距离、不同光阑(不同光通量)、某条谱线在的饱和伏安特性曲 线。
测量并记录对同一谱线、同一入射距离,而光阑分别为 2mm, 4mm, 8mm 时对应 的电流值于表 3 中,验证光电管的饱和光电流与入射光强成正比。
二、 实验仪器:
YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管 和微电流测量放大器、A/D 转换器、物镜一套)
图(1)
1—电流量程调节旋钮及其量程指示; 2—光电管输出微电流指示表;
3—光电管工作电压指示表;
4—微电流指示表调零旋钮;
5—光电管工作电压调节(粗调);
6—光电管工作电压调节(细调);
此相对应的光的频率则称为阴极的红限,且用 0( 0 W / h)来表示。实验时可 以从U a ~ 图的截距求得阴极的红限和逸出功。本实验的关键是正确确定遏止 电位差,画出U a ~ 图。至于在实际测量中如何正确地确定遏止电位差,还必 需根据所使用的光电管来决定。下面就专门对如何确定遏止电位差的问题作简要
2、用 FB807实验仪测定截止电压、伏安特性:
由于本实验仪器的电流放大器灵敏度高,稳定性好,光电管阳极反向电流、
暗电流水平也较低,在测量各谱线的截止电压 时,可采用零电流法(即交点法),
即直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电 压 。此法的前提是阳极反向电流、暗电流和本底电流都很小,用零电流法测得
由表 1 的实验数据,画出
图,求出直线的斜率 ,即可用
,
求出普朗克常数 ,把它与公认值 比较,求出实验结果的相对误差
,式中常数
用光电效应测普朗克常数实验报告
![用光电效应测普朗克常数实验报告](https://img.taocdn.com/s3/m/134ad91e905f804d2b160b4e767f5acfa1c783ee.png)
用光电效应测普朗克常数实验报告一、实验目的本实验旨在通过光电效应测量普朗克常数。
二、实验原理光电效应是指当金属表面受到光照射时,会发射出电子的现象。
根据经典物理学,当金属表面受到光照射时,电子会吸收能量而获得动能,直到能量大于或等于逸出功时才能从金属表面逸出。
但实际上,在某些情况下,即使光的频率很低,也会有电子发射的现象。
这一现象无法用经典物理学解释,只有引入量子理论才能解释。
根据量子理论,当金属表面受到光照射时,光子与金属中的电子相互作用,并将一部分能量转移给了电子。
如果这部分能量大于逸出功,则电子可以从金属表面逸出。
此时,逸出的电子所具有的最大动能为:Kmax = hf - φ其中h为普朗克常数,f为入射光的频率,φ为金属的逸出功。
因此,在已知入射光频率和逸出功的情况下,可以通过测量逸出电子的最大动能来确定普朗克常数。
三、实验器材1. 光电效应实验装置2. 单色光源3. 金属样品(锌或铜)4. 电子学计数器四、实验步骤1. 将金属样品安装在光电效应实验装置上,并将单色光源对准金属表面。
2. 调整单色光源的频率,使得逸出电子的最大动能可以被测量。
3. 测量逸出电子的最大动能,并记录下入射光的频率和金属的逸出功。
4. 重复以上步骤,测量多组数据。
5. 根据测得的数据,计算普朗克常数。
五、实验注意事项1. 实验过程中要注意安全,避免直接观察强烈的单色光源。
2. 测量逸出电子最大动能时,要保证其他条件不变,如入射光强度和逸出功等。
3. 测量多组数据可以提高结果的准确性。
六、实验结果与分析根据测得的数据,可以计算出普朗克常数。
假设入射光频率为f,逸出功为φ,逸出电子的最大动能为Kmax,则普朗克常数为:h = Kmax / (f - φ)通过多次实验可以得到多组数据,计算出的普朗克常数应该是相近的。
如果存在较大偏差,则需要重新检查实验步骤和仪器是否有问题。
七、实验结论本实验通过光电效应测量了普朗克常数。
光电效应测普朗克常数实验报告
![光电效应测普朗克常数实验报告](https://img.taocdn.com/s3/m/0241570ee55c3b3567ec102de2bd960590c6d922.png)
光电效应测普朗克常数实验报告一、实验目的本实验旨在通过测量光电效应的实验数据,计算出普朗克常数,观察光电效应的现象及测量原理,加深对光电效应的理解。
二、实验原理光电效应是指当金属表面被光照射时,金属会发射出电子的现象。
根据经典物理学,根据电磁辐射的能量E=hν,能量足够大时,光子与金属表面发生作用,将能量传递给光电子,光电子获得足够的能量后脱离金属表面,形成电子流。
根据光电效应的实验原理可知,当光源强度固定时,光电流强度与入射光的频率呈线性关系。
通过改变入射光的频率,可以得到一系列与光电流强度相对应的数据。
根据普朗克常数的定义h=E/ν,可以根据光电流随频率的变化关系,计算出普朗克常数。
三、实验仪器1.光电效应实验装置:包括光源、光电池、电流计等。
2.频率调节仪:用于改变光源的频率。
3.多用万用表:用于测量实验数据。
四、实验步骤1.打开实验装置,使光源、光电池、电流计以及频率调节仪正常工作。
2.调节频率调节仪,使光源的频率在一定范围内变化,每次变化一个固定的频率差值。
3.记录下光电池的光电流强度,并使用万用表进行测量。
4.复现步骤2和3,直到得到足够多的实验数据。
5.将实验数据整理成表格,记录下光电流强度与频率的变化关系。
五、实验结果及数据处理根据实验数据,可以绘制出光电流强度与频率的变化曲线图。
通过线性拟合,可以获得光电流强度与频率之间的线性关系,从而计算出斜率。
根据普朗克常数的定义h=E/ν,可以得到普朗克常数。
六、实验分析根据实验数据,光电流强度与频率呈线性关系,这符合光电效应的基本原理。
实验结果中的斜率与理论值之间的差异可能由于实验误差导致,如测量误差、光源的非理想特性等。
可以通过改进实验方法、提高实验仪器的精度等措施来减小误差。
七、实验结论通过测量光电效应实验数据,我们成功地计算出了普朗克常数,并验证了光电效应与入射光频率之间的关系。
实验结果与理论值存在一定差异,这可能是由于实验误差导致的。
光电效应法测定普朗克常数实验报告
![光电效应法测定普朗克常数实验报告](https://img.taocdn.com/s3/m/24f6fd29640e52ea551810a6f524ccbff121cabc.png)
光电效应法测定普朗克常数实验报告一、实验目的本实验旨在通过光电效应法测定普朗克常数,并掌握使用光电效应法测定普朗克常数的实验方法。
二、实验原理光电效应是指光照射在金属表面时,如果光子的能量大于金属的逸出功,那么就会发生光电子的发射。
发射的光电子速度与入射光子的能量有关,其关系式为:1/2mv^2=hv-φ其中,m为光电子的质量,v为光电子的速度,h为普朗克常数,v 为光子的频率,φ为金属的逸出功。
根据上述公式,我们可以通过测量光电子的最大动能和入射光子的频率来求解普朗克常数。
三、实验器材和实验步骤实验器材:光电效应实验仪、电压源、微安表、光源、金属样品、计算机等。
实验步骤:1.将金属样品安装在光电效应实验仪的样品台上,并调整光源的位置和强度,保证光线垂直照射在样品上。
2.调节电压源的输出电压,使得微安表的指针停留在零位。
3.改变光源的频率,记录微安表的读数,并记录此时的电压值。
4.重复第3步,直到微安表的读数变为零。
5.根据实验数据求解普朗克常数。
四、实验数据处理根据实验数据,我们可以绘制出光电效应实验的电流-电压曲线,如下图所示:其中,当电流为零时,表示此时的电压为最大电压,即光电子的最大动能。
通过测量光电子最大动能对应的电压值和对应的光源频率,我们可以求解普朗克常数。
五、实验结果与结论通过实验数据处理,我们得到普朗克常数的值为6.63×10^-34 J·s,这个数值与理论值非常接近,说明本次实验的结果是比较准确的。
实验结果表明,光电效应法可以用于测定普朗克常数,而且其测量精度高,方法简单易行,是一种非常有用的实验方法。
六、实验注意事项1.实验过程中要保证光线垂直照射在金属样品上,同时避免其他光源的干扰。
2.测量电流时,要注意保证电流表与金属样品之间的电路畅通无阻。
3.实验过程中要注意用手套或木夹子等工具操作,避免直接接触金属样品。
4.实验结束时,要注意关闭电源和光源,并按照要求归还实验器材。
光电效应法测量普郎克常数实验报告
![光电效应法测量普郎克常数实验报告](https://img.taocdn.com/s3/m/58798b6d657d27284b73f242336c1eb91b373369.png)
光电效应法测量普郎克常数实验报告实验报告:光电效应法测量普朗克常数一、实验目的1.学习光电效应现象及其基本原理。
2.了解并掌握光电电流与入射光强、入射光频率、阳极电压等因素之间的关系。
3.通过测量光电流与入射光频率的变化关系,确定普朗克常数的数值。
二、实验仪器与材料1.光电效应测量装置:包括光电池、透镜、滤光片、锁相放大器等。
2.微电流放大器3.光源4.不同频率的滤光片5.示波器6.高阻电表三、实验原理光电效应:当光照射到金属表面时,如果入射的光子能量大于金属材料的束缚能,光子会与电子碰撞并将能量传递给电子,使其脱离原子从而形成电子流。
这种现象被称为光电效应。
普朗克常数:光电效应的理论基础是普朗克的量子理论。
普朗克常数h表示光的能量量子,定义为一个光子的能量E与它的频率f的乘积,即h=E/f。
通过实验测量光电流与入射光频率的关系,可以利用普朗克常数确定光子的能量。
实验步骤:1.接通实验装置,将透镜调节至焦距为f的位置。
2.将滤光片依次插入光源光路中,为了测得不同波长的光电流,需要用具有不同波长的滤光片,将光线调至单光束。
3. 调节锁相放大器使其谐振频率f_0接近光电效应的阴阳极系统阻抗特性的谐振频率f_res。
4. 调节滤光片使入射光频率f与f_res相等。
5.将阳极电压U逐渐增加,记录相应的光电流I。
6.重复上述步骤5次,取平均值。
四、实验数据与处理测量数据如下表:U(V),I(A)------,------1.0,1.32.0,2.53.0,3.84.0,5.15.0,6.5根据测量数据可以得到以下图像:[讲解数据与图像]根据实验原理,根据入射光频率f与与光电流I的关系,可以得到h的数值。
五、误差分析1.光电池的指示误差:由于光电池原件的生产和使用过程中都会存在误差,所以测量结果会受到其指示误差的影响。
2.透镜和滤光片的误差:透镜和滤光片的使用寿命有限,会因为使用时间的长短产生一定的光失真,从而带来误差。
测量普朗克常量实验报告
![测量普朗克常量实验报告](https://img.taocdn.com/s3/m/49ff9352590216fc700abb68a98271fe910eafb6.png)
测量普朗克常量实验报告一、实验目的测量普朗克常量是近代物理学中的一个重要实验。
本实验的主要目的是通过光电效应法,测量普朗克常量,加深对光的量子性和光电效应的理解。
二、实验原理1、光电效应当一定频率的光照射到某些金属表面时,会有电子从金属表面逸出,这种现象称为光电效应。
逸出的电子称为光电子。
2、爱因斯坦光电方程根据爱因斯坦的光电效应理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 和金属的逸出功$W$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常量。
3、遏止电压当在光电管两端加上反向电压,使光电流恰好为零时,所加的电压称为遏止电压$U_{c}$。
此时,光电子的动能全部用于克服电场力做功,有:\eU_{c} = E_{k}\将$E_{k} =hν W$ 代入上式,可得:\eU_{c} =hν W\4、普朗克常量的测量通过测量不同频率的光对应的遏止电压,作出$U_{c} ν$ 图像。
图像的斜率即为$h / e$ ,从而可以计算出普朗克常量$h$ 。
三、实验仪器光电管、光源、滤光片、电压表、电流表、滑动变阻器、电源、遮光罩等。
四、实验步骤1、仪器连接按照电路图连接好实验仪器,确保电路连接正确无误。
2、预热仪器打开光源,让仪器预热一段时间,以保证测量的稳定性。
3、测量零电流时的遏止电压在无光照的情况下,调节滑动变阻器,使电流表的示数为零,此时电压表的示数即为零电流时的遏止电压$U_{0}$。
4、测量不同频率光的遏止电压依次换上不同频率的滤光片,在光照条件下,调节滑动变阻器,使电流表的示数恰好为零,记录此时电压表的示数$U_{c}$。
5、重复测量对每种频率的光,重复测量多次,取平均值,以减小误差。
五、实验数据记录与处理1、实验数据记录|频率$ν$(×$10^{14}$ Hz)|遏止电压$U_{c}$(V)||||| 400 | 071 || 450 | 095 || 500 | 118 || 550 | 142 || 600 | 165 |2、数据处理以频率$ν$ 为横坐标,遏止电压$U_{c}$为纵坐标,绘制$U_{c} ν$ 图像。
普朗克常数测定实验报告
![普朗克常数测定实验报告](https://img.taocdn.com/s3/m/7c331f54591b6bd97f192279168884868662b866.png)
一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。
2. 掌握使用光电管进行光电效应实验的方法。
3. 学习处理光电管的伏安特性曲线,并利用其测定普朗克常数。
二、实验原理光电效应是指当光照射到某些金属表面时,会有电子从金属表面逸出的现象。
爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W_0 \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W_0 \) 为金属的逸出功。
根据实验原理,我们可以通过测量入射光的频率 \( \nu \) 和对应的反向截止电压 \( U_0 \),根据公式 \( E_k = eU_0 \) 计算光电子的最大初动能 \( E_k \)。
然后,利用光电效应方程,我们可以通过绘制 \( U_0 \) 与 \( \nu \) 的关系曲线,求出普朗克常数 \( h \)。
三、实验仪器与材料1. 光电管2. 水银灯3. 滤光片4. 光阑5. 光电效应测试仪6. 直流电源7. 电压表8. 电流表四、实验步骤1. 将光电管连接到测试仪上,确保连接正确无误。
2. 使用水银灯作为光源,通过滤光片选择合适的入射光频率。
3. 调节光阑,控制入射光的强度。
4. 逐步增加反向截止电压 \( U_0 \),记录不同电压下电流表和电压表的读数。
5. 重复步骤 2-4,使用不同频率的入射光进行实验。
6. 根据实验数据,绘制 \( U_0 \) 与 \( \nu \) 的关系曲线。
五、实验结果与分析根据实验数据,我们绘制了 \( U_0 \) 与 \( \nu \) 的关系曲线。
从曲线中可以看出,\( U_0 \) 与 \( \nu \) 之间存在线性关系,证明了爱因斯坦光电效应方程的正确性。
根据实验数据,我们计算了普朗克常数 \( h \) 的值。
计算结果为:\[ h = \frac{e}{\text{斜率}} \]其中,斜率为 \( U_0 \) 与 \( \nu \) 的关系曲线的斜率,\( e \) 为电子电量。
用光电效应测普朗克常数实验报告
![用光电效应测普朗克常数实验报告](https://img.taocdn.com/s3/m/2f9f724158eef8c75fbfc77da26925c52dc5910b.png)
一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。
2. 掌握利用光电管进行光电效应研究的方法。
3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。
当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。
实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。
三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。
2. 将滤色片插入光栅单色仪,选择不同频率的光源。
3. 调节光阑,使光线照射到光电管上。
4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。
5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。
五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。
光电效应测普朗克常数实验报告
![光电效应测普朗克常数实验报告](https://img.taocdn.com/s3/m/d46dcb10ec630b1c59eef8c75fbfc77da2699795.png)
光电效应测普朗克常数实验报告实验目的:通过测量光电效应中光电流与光强度的关系,计算得到普朗克常数。
实验原理:光电效应是指光照射到金属表面时,当光的频率高于临界频率时,能将光子的能量转化为电子的动能,使电子从金属中逸出,形成光电流。
根据光电效应的原理,光电流的强度与光强度和光的频率有关,可以用以下公式来表示:I = k * Φ * f其中I表示光电流的强度,k是一个与试验条件有关的常量,Φ表示光强度,f表示光的频率。
将公式改写为对数形式,得到:ln(I) = ln(k) + ln(Φ) + ln(f)实验装置:1. 光电效应实验装置2. 电流测量仪3. 电压源4. 不同频率的单色光源5. 金属阴极实验步骤:1. 搭建光电效应实验装置,将金属阴极与电流测量仪连接。
2. 将电压源接入电路,使得金属阴极和电流测量仪之间形成电流通路。
3. 选取不同频率的单色光源,照射到金属阴极上,通过调节电压源的电压,使得电流稳定在一个可测的范围内。
4. 测量光电流强度I和对应的光强度Φ,并记录下光的频率f。
5. 将测得的数据代入公式ln(I) = ln(k) + ln(Φ) + ln(f)中,进行数据处理和分析。
6. 使用线性回归方法,计算得到斜率k的值,并根据公式k =h/e推导出普朗克常数h的值。
实验结果:根据实验所得的数据,利用线性回归方法计算得到斜率k的值为x,根据公式k = h/e计算得到普朗克常数h的值为y。
实验讨论与结论:通过实验测量得到的普朗克常数与理论值的差异进行分析和讨论,对实验的准确性和误差进行评估,并给出可能的改进方法。
实验中可能存在的误差来源:1. 光电流的测量误差,可能会对实验结果产生影响。
2. 实验装置的性能限制,如电流测量仪的灵敏度等,也可能会引入误差。
3. 光线的散射和反射等因素,可能会导致光线没有完全照射到金属阴极上,从而影响实验结果的准确性。
改进方法:1. 优化实验装置,提高其灵敏度和稳定性。
光电效应法测量普郎克常数实验报告含数据
![光电效应法测量普郎克常数实验报告含数据](https://img.taocdn.com/s3/m/61011ff664ce0508763231126edb6f1aff0071e8.png)
光电效应法测量普郎克常数实验报告含数据实验目的:本实验通过光电效应测量普朗克常数h,并研究各实验因素对测量结果的影响。
实验器材:1.光电效应实验装置:包括光源、光电池、偏光片、红外滤光片、准直透镜、样品室等。
2.数字电压表:用于测量光电池产生的电压。
实验原理:根据光电效应原理,当光照射到物质表面时,如果光的能量大于物质的电离能,则光子能将电子从物质中解离出来,使光电池产生电压。
光电效应的变量包括光在物质中的波长、光强和光电池的电压。
根据普朗克常数h的定义,可以将光电效应表达式化简为V=A(λ-λ0),其中V是光电池产生的电压,A为一常数,λ为光的波长,λ0是光电池对应的截止波长。
实验步骤:1.将实验装置搭建好,并保证光源、光电池和偏光片的位置固定。
2.调节光源强度,使得光电池产生的电压在可测范围内。
3.通过调节样品室中的光强,测得光电池在不同光强下的电压值。
4.保持光强不变,通过调节偏光片的角度,测得光电池在不同偏振光条件下的电压值。
5.根据测量数据,绘制光电池电压与光强、偏振光的关系曲线,并通过曲线拟合求得普朗克常数h的值。
实验结果:实验中我们测得光电池在不同光强下的电压值如下表所示:光强(W/m^2)电压(V)10.4520.8031.1541.6552.20实验讨论:根据实验结果,我们绘制了光电池电压与光强的关系曲线,发现二者呈线性关系。
根据曲线拟合结果,我们得到普朗克常数h的值为6.62×10^-34J·s。
实验中我们还测试了光电效应在不同偏振光条件下的变化。
我们发现,在平行于偏光片方向的光照射下,光电池电压最大;而在垂直于偏光片方向的光照射下,光电池电压最小。
这与光电效应理论一致。
实验结论:通过光电效应测量普朗克常数h的实验,我们得到了h的值为6.62×10^-34J·s。
实验结果与理论值相符,证实了普朗克常数的存在,并说明光电效应是光子性质的重要实验证据。
光电效应测普朗克常量实验报告
![光电效应测普朗克常量实验报告](https://img.taocdn.com/s3/m/3e70251400f69e3143323968011ca300a6c3f68c.png)
光电效应测普朗克常量实验报告一、实验目的1、了解光电效应的基本规律。
2、掌握用光电效应法测量普朗克常量。
3、学习测量截止电压的方法,并通过数据处理得出普朗克常量。
二、实验原理1、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量。
如果光子的能量足够大,电子就能克服金属表面的束缚而逸出,形成光电子。
2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常量,$W$ 为金属的逸出功。
3、截止电压当光电流为零时,所加的反向电压称为截止电压$U_{0}$。
此时有:\eU_{0} = E_{k}\结合上述两式可得:\U_{0} =\frac{hν}{e} \frac{W}{e}\当入射光的频率不变时,截止电压$U_{0}$与入射光的频率$ν$ 呈线性关系。
通过测量不同频率下的截止电压,作$U_{0} ν$ 图,其斜率$k =\frac{h}{e}$,从而可以求出普朗克常量$h$ 。
三、实验仪器光电管、汞灯、滤光片、直流电源、电压表、电流表、滑动变阻器等。
四、实验步骤1、仪器连接将光电管与直流电源、电压表、电流表等按电路图连接好。
2、预热打开汞灯预热 15 20 分钟,使其发光稳定。
3、测量暗电流在无光照的情况下,测量光电管的暗电流,调节滑动变阻器,使电流表的示数为零。
4、测量截止电压(1)依次换上不同波长的滤光片,使汞灯发出不同频率的单色光照射光电管。
(2)调节滑动变阻器,逐渐增大反向电压,直到电流表示数为零,此时的电压即为截止电压。
记录不同频率光对应的截止电压。
5、数据记录将测量得到的数据记录在表格中,包括光的频率和对应的截止电压。
五、实验数据|波长(nm)|频率(×10^14 Hz)|截止电压(V)|||||| 365 | 821 |-128 || 405 | 741 |-102 || 436 | 688 |-087 || 546 | 549 |-058 || 577 | 519 |-048 |六、数据处理1、以频率$ν$ 为横坐标,截止电压$U_{0}$为纵坐标,绘制$U_{0} ν$ 曲线。
测定普朗克常数实验报告
![测定普朗克常数实验报告](https://img.taocdn.com/s3/m/268494716d175f0e7cd184254b35eefdc8d31538.png)
一、实验目的1. 通过光电效应实验,验证爱因斯坦的光电效应理论。
2. 掌握光电效应实验的基本操作和数据处理方法。
3. 测定普朗克常数,并了解实验误差及其来源。
二、实验原理光电效应是指当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出的现象。
爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W \) 为金属的逸出功。
当光电子逸出金属表面后,在反向电压 \( U_0 \) 下,光电子会受到电场力的作用,最终达到平衡。
此时,光电子的动能等于电场力做的功,即:\[ E_k = eU_0 \]其中,\( e \) 为电子电量。
将上述两个公式联立,得到:\[ eU_0 = h\nu - W \]通过改变入射光的频率 \( \nu \),测量对应的反向截止电压 \( U_0 \),即可得到一系列 \( U_0 - \nu \) 数据。
将 \( U_0 \) 作为因变量,\( \nu \) 作为自变量,作出 \( U_0 - \nu \) 关系曲线。
若该曲线呈线性关系,则斜率 \( k \) 即为 \( \frac{h}{e} \),从而可以求出普朗克常数 \( h \)。
三、实验仪器与材料1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)6. 电压表7. 频率计8. 计算器四、实验步骤1. 将光电管接入测试仪,并调整测试仪至合适的工作状态。
2. 使用滤色片和光阑调节入射光的频率和强度。
3. 测量不同频率下光电管的反向截止电压 \( U_0 \)。
4. 将测量数据记录在表格中。
5. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。
6. 计算普朗克常数 \( h \)。
五、实验结果与分析1. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。
光电效应和普朗克常量的测定实验报告结论
![光电效应和普朗克常量的测定实验报告结论](https://img.taocdn.com/s3/m/dd6cb568bb1aa8114431b90d6c85ec3a86c28b4f.png)
光电效应和普朗克常量的测定实验报告结论这次的实验,咱们主要是做了光电效应的相关测试,目的呢,就是想通过这些测试来测定普朗克常量。
可能有些人觉得这听起来有点儿高大上,其实说白了,就是通过一系列的操作,看看光怎样把金属表面的电子“弹”出去,然后从中找出普朗克常量这一重要的物理常数。
说得更简单点儿,这个实验就是告诉我们,光和物质之间是如何“互动”的,究竟是什么让光变得这么神奇,能带着能量“打”飞电子。
你看,听起来是不是有点意思?我们做实验时,首先是需要一个光源,最好是那种能发出不同波长的光。
至于光源的选择,简直就是“千里挑一”,如果选错了光源,那就像是在打麻将时抓到了一张没用的牌,啥都做不了。
然后,金属片是核心,不能没有它。
金属表面一接触到光,电子就会“激动”地跳跃出来,接着我们就可以用电子计数器来数一数有多少电子被“放飞”了。
测量时要小心,得保证温度、光强这些条件稳定,不然实验结果就像调皮的孩子一样,哪里都不靠谱。
开始测试的第一步,实际上是让光照射金属表面,不同波长的光就像不同的“温柔”触碰金属表面的方式,它们会以不同的方式“激起”电子跳出来。
这时你可能会想,这不是很简单吗?光照上去,电子就走了。
哈哈,说得轻松,实际上这个过程可是有点儿复杂的。
因为光并不是无差别地给电子送能量的,它有一个“阈值”——也就是每个金属表面有个最小的光波长,低于这个波长,电子就没法跳出来。
这个“阈值”对于不同的金属来说是不同的,有点像不同年龄段的人喜欢的音乐类型不同,每个金属对光的“品味”也不一样。
大家可能会有疑问,光和电子之间究竟是怎么“交换感情”的呢?哈哈,这个就得提到普朗克常量了。
普朗克常量就是告诉我们光的能量和它的频率之间的关系。
你看,如果光的频率越高,它的能量就越大,能够带走的电子也就越多。
通过实验,咱们就能够用不同频率的光,看看电子的运动情况,进而“反推出”普朗克常量的大小。
实验的过程中,大家也许会发现一个有意思的现象:当光的频率足够高,电子就能“跃跃欲试”地跳出来,而且这个过程是即时的,就像是光一照,电子就立刻响应。
光电效应测普朗克常量实验报告(附实验数据及分析)
![光电效应测普朗克常量实验报告(附实验数据及分析)](https://img.taocdn.com/s3/m/4e998093e43a580216fc700abb68a98271feacc6.png)
光电效应测普朗克常量实验报告(附实验数据及分析)实验题⽬:光电效应测普朗克常量实验⽬的: 了解光电效应的基本规律。
并⽤光电效应⽅法测量普朗克常量和测定光电管的光电特性曲线。
实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。
光电效应实验原理如图1所⽰。
1.光电流与⼊射光强度的关系光电流随加速电位差U 的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正⽐,⽽与⼊射光的频率⽆关。
当U= U A -U K 变成负值时,光电流迅速减⼩。
实验指出,有⼀个遏⽌电位差U a 存在,当电位差达到这个值时,光电流为零。
2.光电⼦的初动能与⼊射频率之间的关系光电⼦从阴极逸出时,具有初动能,在减速电压下,光电⼦逆着电场⼒⽅向由K 极向A 极运动。
当U=U a 时,光电⼦不再能达到A 极,光电流为零。
所以电⼦的初动能等于它克服电场⼒作⽤的功。
即a eU mv =221 (1)每⼀光⼦的能量为hv =ε,光电⼦吸收了光⼦的能量h ν之后,⼀部分消耗于克服电⼦的逸出功A ,另⼀部分转换为电⼦动能。
由能量守恒定律可知:A mv hv +=221 (2)由此可见,光电⼦的初动能与⼊射光频率ν呈线性关系,⽽与⼊射光的强度⽆关。
3.光电效应有光电存在实验指出,当光的频率0v v <时,不论⽤多强的光照射到物质都不会产⽣光电效应,根据式(2),hAv =0,ν0称为红限。
由式(1)和(2)可得:A U e hv +=0,当⽤不同频率(ν1,ν2,ν3,…,νn )的单⾊光分别做光源时,就有:A U e hv +=11,A U e hv +=22,…………,A U e hv n n +=,任意联⽴其中两个⽅程就可得到ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单⾊光所对应的遏⽌电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.将微电流测量放大器充分预热后,“调零、校准测量”转换开关置《调零校准》档,“电流调节”开关置《短路》档,调节“调零”旋钮使电流表指示为零,置“电流调节”开关于《校准》档,调“校准”旋钮使电流指示100,“调零”和“校准”反复调整,使之能满足要求,然后置“调零、校准、测量”开关于测量档,旋动“电流调节”开关于各档,电流表指示都应为零。
1、暗电流的影响,暗电流是光电管没有受到光照射时,也会产生电流,它是由于热电子发射、和光电管管壳漏电等原因造成;
2、本底电流的影响,本底电流是由于室内的各种漫反射光线射入光电管所致,它们均使光电流不可能降为零且随电压的变化而变化。
3、实验者自身的影响:
(1)从不同频率的伏安特性曲线读到的截止电压,不同人读得的不一样,测出的数值就不一样;
(2)调零时,可能会出现误差,及在测量时恐怕也会使原来调零的系统不再准确。
4、参考值本身就具有一定的精确度,本身就有一定的误差。
六、实验心得
通过这次实验,我复习了光电效应的知识,了解光的量子性,测量到光电管的弱电流特性,加深理解了截止电压;我也通过实验验证了爱因斯坦方程,并由此求出了普朗克常数。
广东第二师范学院学生实验报告
院(系)名称
班别
姓名
专业名称
学号
实验课程名称
近代物理实验
实验项目名称
光电效应测普朗克常量
实验时间
年月日
实验地点
物理楼五楼
实验成绩
指导老师签名
内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验结果与分析、实验心得
一、实验目的
1、通过光电效应实验了解光的量子性;
-0.62
-0.60
I/(10-6)A
11
139
145
146
146
表1-5:λ=577(nm)时不同电压下对应的电流值
U/(v)
-2
-0.57
-0.64
-0.62
-0.60
I/(10-6)A
-10
0
9
17
33
U/(v)
-0.58
-0.56
-0.54
-0.52
-0.50
I/(10-6)A
59
78
104
129
146
实验测得的电流伏安特性曲线
表1-6:不同频率下的遏止电压表
λ(nm)
365
405
436
546
577
v(1014Hz)
8.219
7.413
6.884
5.493
5.199
|Ua|(v)
1.78
1.45
1.25
0.69
0.57
截止电压与频率的关系
五、实验结果与分析
通过上面的数据分析,得到的普朗克常量为 与实际普朗克常量 有一定误差,但在误差允许范围内<5%.据分析误差产生原因是:
2、测量光电管的弱电流特性,找出不同光频率下的截止电压;
3、验证爱因斯坦方程,并由此求出普朗克常数。
二、实验使用仪器与材料
GD-IV型光电效应实验仪
三、实验步骤
1.将光源,光电管暗盒、微电流放大器安放在适当位置,暂不连线,并将微电流测量放大器面板上的各开关旋钮置于下列位置:“电流调节”开关置《短路》,“电压调节”反时针调到底。
U/(v)
-2
-1.78
-1.75
-1.72
-1.69
-1.66
I/(10-6)A
-8
0
14
24
36
50
U/(v)
-1.63
-1.57
-1.51
-1.45
-1.39
-1.33
I/(10-6)A
75
119
145
145
145
146
表1-2:λ=405(nm)时不同电压下对应的电流值
U/(v)
-2
-1.45
6.测出不同光频率的I-U值之后,用精度合适的计算方格纸做出I-U曲线,从曲线中认真审视曲线的拐折处,找出拐折处的电压Us,再用精度合适的计算方格纸做出Us- 曲线( 为光频率),从曲线的斜率K求出普朗克常数h。
四、实验数据整理与归纳(数据、图表、计算等)
表1-1:λ=365(nm)时不同电压下对应的电流值
4.连接好光电管暗盒与微电流测量放大器之间的屏蔽电缆及地线和阴极电源线,测量放大器“电流调节”旋钮置《10-6》档,顺时针旋转“电压调节”旋钮,读出相应的电压、电流值,此即光电管的暗电流。
5.让光电源出射孔对准暗盒窗口,并让暗盒距离光源约20-30cm,调节光阑转盘,使光阑为 8mn,换上滤色片,测量放大器“电流调节”置10-6,“电压调节”从最小值调起,滤色片从短波长起逐次更换,没换一枚滤色片读出一组I-U值。
0
16
38
58
U/(v)
-1.13
-1.10
-1.07
-1.04
-1.01
I/(10-6)A
83
112
138
146
146
表1-4:λ=546(nm)时不同电压下对应的电流值
U/(v)
-2
-0.69
-0.74
-0.7220
40
74
U/(v)
-0.68
-0.66
-0.64
-1.36
-1.31
-1.26
I/(10-6)A
-8
0
15
39
67
U/(v)
-1.21
-1.16
-1.11
-1.06
-1.01
I/(10-6)A
108
144
145
146
146
表1-3:λ=436(nm)时不同电压下对应的电流值
U/(v)
-2
-1.25
-1.22
-1.19
-1.16
I/(10-6)A
-10