直接测风激光雷达研究
相干多普勒测风激光雷达研究
![相干多普勒测风激光雷达研究](https://img.taocdn.com/s3/m/806c0ae1b8f67c1cfad6b895.png)
to op eel e sd v lp d Th se u e nijcinse e usdNdYA lsr si o re rp s h r y r a wa e e e . e ytm sda eto —ed dp le : G e s u c . o s n a a ts
和 部 分 作为参 考 信 号,进 行相 应 的数 据分 析 ;
:
●
…
_■悠妻 柙口|… _ -- 睢 -I
口 .孽 謦 .
● h
I
:
I . I l I I 1 … 二 翱
r
_
l l
时问/ 1 l
图 5 硬 靶 速 度 校正 实验 ( 图 ,硬 靶 校 正外 差 相 干 信 号 ;右 图,速度 测量 值 与 实 际速 度 的对 比) 左
Th o r e ha u s n r y f0 5 m J a d a pu s r to f8 s e s u c d a p le e e g o . n le du a i n o 0 a .A o a i n wh e t a d s a c r t to e la it n e 0 0 m s u e o c r y o t a h r — a g t s e d c l r to x e i n .Th e u t s o d t a h f4 wa s d t a r u a d t e p e a i a i n e p r me t r b e r s l h we h t t e
文 章 编 号 : 17—752 1)200—5 6288 (020 08 0
相 干 多 普 勒 测 风 激 光 雷 达 研 究
竹孝 鹏 刘 继桥 刁伟 峰 毕德 仓 周 军 陈卫标
激光雷达测风原理
![激光雷达测风原理](https://img.taocdn.com/s3/m/0a8b4ec750e79b89680203d8ce2f0066f433640a.png)
激光雷达测风原理
嘿,朋友们!今天咱来唠唠激光雷达测风原理。
你说这激光雷达测风,就好像是给风拍了个超级特写!
咱先想想,风这玩意儿,看不见摸不着,就像个调皮的小精灵,到处乱跑。
那怎么才能抓住它的小辫子呢?激光雷达就出马啦!它就像是个超级侦探,用一束束激光去探寻风的秘密。
激光雷达会发射出激光束,这束光就快速地往前冲啊。
当它碰到空气中的颗粒物啥的,就会反射回来。
这一去一回的时间,激光雷达就能算出距离啦。
然后呢,通过不断地发射和接收,就能知道这些颗粒物移动的速度和方向。
嘿,这不就相当于知道风的情况了嘛!
你看啊,这就好比你在操场上看着同学们跑来跑去,你虽然不能直接抓住他们,但你可以通过观察他们跑过一段距离所用的时间,来大概知道他们跑得多快,往哪个方向跑。
激光雷达测风不就是这么个道理嘛!
而且啊,激光雷达可厉害着呢,它能探测到很高很远的地方的风。
就好像它有一双千里眼,不管风藏在哪个角落,它都能找到。
这多牛啊!
想象一下,如果没有激光雷达,我们对风的了解就会少很多,那很多事情可就不好办啦。
比如说那些靠风发电的大风车,要是不知道风的情况,怎么能好好发电呢。
还有飞机飞行,要是不了解风,那多危险呀。
激光雷达测风原理,真的是给我们打开了一扇了解风的神奇大门。
它让我们能更准确地掌握风的动态,更好地利用风的力量,也能让我们在面对风的时候更加从容不迫。
所以说啊,这激光雷达测风原理可真是个了不起的东西!它就像一把神奇的钥匙,解开了风的神秘面纱,让我们能和这个看不见的小精灵更好地相处,为我们的生活带来更多的便利和安全。
咱可得好好珍惜和利用这个厉害的技术呀!。
风电场激光雷达测风塔原理
![风电场激光雷达测风塔原理](https://img.taocdn.com/s3/m/fa969d730a4e767f5acfa1c7aa00b52acec79c10.png)
风电场激光雷达测风塔原理最近在研究风电场激光雷达测风塔原理,发现了一些有趣的原理,今天就来和大家好好聊聊。
咱们先从风说起,风就是空气的流动,就像水里的水流一样,只不过空气是看不见摸不着的。
你想啊,在我们日常生活中,怎样去感觉风的大小和方向呢?我们可能会根据树枝被吹动的幅度,或者脸上的感觉来判断。
那在风电场里,可不能这么粗略地判断啊。
这就要说到风电场激光雷达测风塔了。
它就像是风电场里的“超级侦探”,专门去捕捉风的信息。
先解释个专业术语,激光雷达(LiDAR),简单来讲,它就是一种通过发射激光束然后接收反射回来的光来探测目标的设备。
那它怎么探测风呢?打个比方吧,风里的小颗粒就像是一群调皮的小豆子,激光雷达发射出的激光束就像一道明亮的光线去照亮这些“小豆子”。
光线遇到小颗粒会反射回来,由于风在吹动这些小颗粒,所以根据反射光的变化就能知道风的一些情况。
比如说,小颗粒被快速地往某个方向吹走,那反射光回来的时间和位置就会有相应的变化,这就可以推断出风的速度和方向。
从更科学的角度上说,激光雷达测风的时候,它发射的激光和从运动着的空气中的粒子反射回来的激光之间会有个频率的偏移,这个专业上叫做多普勒频移,就像你在火车月台上听飞驰而过的火车声音,火车靠近和远离时声音的频率会不一样。
我们根据这个频移量就能够计算出风的速度和方向了。
实际应用的例子也很多,就像一些大型的海上风电场,为了对海上复杂多变的风况有准确的测量,很多都会采用激光雷达测风塔,这样就能更好地调整风力发电机的运行参数,提高发电效率了。
不过老实说,我一开始也不明白这么小的激光雷达是怎么准确测量那么大面积的风况呢?后来才知道,它可以通过不同的探测模式和扫描策略。
这里面也有很多注意事项哦。
比如说安装的位置很重要,如果周围有很多障碍物,那测出来的数据肯定不准确,就像你想要看远处的风景,中间有很多高楼挡住了视线一样。
说到这里,你可能会问那如果天气不好,比如大雾或者沙尘天,会不会影响激光雷达的工作呢?这是个很好的问题,大雾或者沙尘天确实会对激光的传输产生干扰,但现在的技术也在不断发展,有的激光雷达可以通过一些算法和技术手段来尽量减少这些干扰的影响。
利用激光雷达对风的测量与分析在风力发电中的应用
![利用激光雷达对风的测量与分析在风力发电中的应用](https://img.taocdn.com/s3/m/2515284b591b6bd97f192279168884868662b813.png)
利用激光雷达对风的测量与分析在风力发电中的应用摘要:风力发电是一种清洁、可再生的能源,激光雷达作为一种高精度、高可靠性的测量工具,在风力发电中得到了广泛的应用。
本文首先介绍了激光雷达的基本原理和风测量中的应用方法,然后详细讨论了激光雷达测量风速和风向的精度和可靠性。
接着,探讨了激光雷达在风能资源评估、风力发电机组的控制和风力发电场的运维管理等方面的应用。
通过本文的研究,能够为今后激光雷达对风的测量与分析在风力发电中的应用提供一定的参考与借鉴。
关键词:激光雷达;风力发电;风测量;风能资源评估随着环境保护意识的增强和对可再生能源的需求不断增加,风力发电作为一种清洁、可再生的能源得到了广泛的关注和应用。
风力发电的效率和稳定性对于其经济性和可持续性至关重要。
而激光雷达作为一种高精度、高可靠性的测量工具,可以提供准确的风速和风向数据,对于风力发电的运行和管理起到至关重要的作用。
一、激光雷达对风的测量原理和方法1.1 激光雷达的基本原理激光雷达是一种利用激光束进行测量的仪器,它可以通过测量光的传播时间来计算目标物体的距离。
激光雷达的基本原理是发射一束激光束,当激光束遇到目标物体时,会被目标物体反射回来,激光雷达接收到反射回来的激光束后,通过测量激光束的传播时间来计算目标物体的距离。
1.2 激光雷达在风测量中的应用方法激光雷达在风测量中的应用方法主要有两种:一种是通过测量激光束的传播时间来计算风速;另一种是通过测量激光束的偏转角度来计算风向。
1.3 激光雷达测量风速和风向的精度和可靠性激光雷达测量风速和风向的精度和可靠性主要受到以下几个因素的影响:激光雷达的精度、目标物体的反射特性、大气条件和测量距离。
二、激光雷达在风力发电中的应用2.1 激光雷达用于风能资源评估风能资源评估是确定风力发电场的可行性和优化布局的重要步骤。
激光雷达作为一种高精度、高可靠性的测量工具,在风能资源评估中发挥着关键的作用。
首先,激光雷达可以提供准确的风速和风向数据。
多普勒测风激光雷达系统.pdf
![多普勒测风激光雷达系统.pdf](https://img.taocdn.com/s3/m/f1f0c9e101f69e3142329482.png)
49多普勒测风激光雷达系统1.研究背景大气风场信息是一项重要的资源,精确可靠的大气风场测量设备可提高风电可再生能源领域的利用率,改进气候气象学模型建立的准确性,增强飞行器运行的安全性,因此在风电、航空航天、气候气象、军事等领域都有着重要的意义。
风场信息测量的手段主要分为被动式和主动式两大类。
传统的被动式测量装置有风速计、风向标和探空仪,主动式测量装置有微波雷达、声雷达等。
风速计和风向标只能实现单点测量,借助测风塔后实现对应高度层的风场信息检测,这类传统装置易受冰冻天气影响,测风塔的搭建和维护也需要花费大量的人力物力,还存在移动困难和前期征地手续复杂等问题;微波雷达以电磁波作为探测介质,由于微波雷达常用波长主要为厘米波,与大气中的大尺寸粒子(如云、雨、冰等)相互作用产生回波,无法与大气中的分子或气溶胶颗粒产生作用,而晴空时大气中大尺寸粒子较少,因此微波雷达在晴空天气条件下将出现探测盲区。
另外,微波雷达还具备庞大的收发系统也导致其移动困难;声雷达与微波雷达测量原理相似,不同的是将探测介质由微波改为了声波。
声雷达的探测方式使得在夜间和高海拔地区易出现信噪比降低的情况甚至无法测量。
因此,迫切需要补充新型的风场测量手段替代传统测风装置实现大气风场信息的测量。
2. 测风激光雷达系统2015年,南京牧镭激光科技有限公司成功研制出国产化测风激光雷达产品Molas B300,该产品基于多普勒原理可实现40~300 m 风场信息测■ 黄晨,朱海龙,周军 南京牧镭激光科技有限公司第一作者 黄晨量,风速测量精度可达0.1 m/s ,风向测量精度可达1°,数据更新率为1 Hz ,风速测量范围可达0~60 m/s 。
测风激光雷达定位为外场应用装备,对环境适应性有较高要求,Molas B300可在外界温度范围为-40℃~50℃,相对湿度为0%~100%的环境条件下正常工作。
除此以外,Molas B300体积小质量轻(约50 kg )方便运输安装便捷,可显著降低项目前期施工时间。
测风激光雷达鉴频器的性能研究
![测风激光雷达鉴频器的性能研究](https://img.taocdn.com/s3/m/5d8d081d78563c1ec5da50e2524de518964bd31f.png)
测风激光雷达鉴频器的性能研究刘延文;孙学金;张传亮;李绍辉【摘要】As an optical frequency discriminator for the Rayleigh channel of the Doppler wind lidar,the performance of F-P etalon determines the accuracy of the wind measurement and the performance of the Doppler wind lidar.The F-P etalon converts the frequency change into energy change for frequency discrimination,echo signals with different frequencies have different transmittances,and the transmittance of the etalon is affected by many factors.From the Airy curve,the influence of different factors on the transmittance of the etalon is studied,and the change rule of peak transmittance with different factors is obtained.It provides the parameter basis for the simulation,design and the measuring error of Doppler wind lidar.%F-P标准具作为测风激光雷达Rayleigh通道的鉴频器,其性能决定了测风精度和测风激光雷达的性能,F-P标准具通过将频率变化转化为能量变化来进行鉴频,不同频率的回波信号具有不同的透过率,但标准具的透过率受到诸多因素的影响,文章从Airy曲线出发,研究了不同因素对标准具透过率的影响,峰值透过率随不同因素的变化规律和变化速率,为测风激光雷达的仿真、设计和研究仪器测量误差提供参数依据.【期刊名称】《激光与红外》【年(卷),期】2018(048)002【总页数】8页(P169-176)【关键词】标准具;透过率;峰值透过率【作者】刘延文;孙学金;张传亮;李绍辉【作者单位】国防科技大学气象海洋学院,江苏南京211101;国防科技大学气象海洋学院,江苏南京211101;国防科技大学气象海洋学院,江苏南京211101;国防科技大学气象海洋学院,江苏南京211101【正文语种】中文【中图分类】TN2491 引言风是表征大气运动状态的重要的气象要素,影响着大气能量循环,化学污染物的扩散,以及水汽和气溶胶粒子输送,更是大气环流的根本动力,对天气和气候有着重要的影响。
科技成果——激光测风雷达
![科技成果——激光测风雷达](https://img.taocdn.com/s3/m/2278783f551810a6f424864e.png)
科技成果——激光测风雷达技术开发单位中国兵器工业集团公司第二〇九研究所技术简介激光多普勒测风雷达是利用大气中随风飘移的气溶胶对激光散射的多普勒频移效应,来测量大气风场结构分布的一种现代光电技术。
其主要特点是采用光学方法,对测量空域的大气风场进行非接触式实时三维测量,具有响应快、精度高、空间分辨率高、体积小、结构紧凑等特点,在风力发电站、短期气象监测及预报、大气环境监测等方面具有广泛的应用前景,是一种新型、高效的气象条件测量系统。
激光多普勒测风雷达采用相干探测原理,利用人眼安全的1550nm激光作为照射光源,通过接收激光束对大气中随风飘移气溶胶的散射回波信号并与雷达本振光进行相干混频,并通过中频信号的数字鉴频技术来获得汽溶胶相对激光束的多普勒频移,结合雷达的光机扫描,最终实现对大气风场信息的测量。
该技术包括系统总体技术、激光发射技术、高效灵敏接收技术、大气风场实时信息处理及风场反演技术等。
上述关键技术已经得到突破,系统中的主要核心部件均已实现国产化。
该技术可用于风力发电站行业,代替传统的测风塔,实现对风机选址地点的常年观测,同时,还可以安装于风机机舱顶部,实现对风机前方大气风场的实时监测,为风机运行工作提供修正参数,以提高产量。
同时改进型的二维扫描激光测风雷达,可以实现对大气风场的全覆盖监测,获得大气风廓线及大气风场的PPI、RHI及CAPPI等扫描产品,以及飞机起降通道的大气风切变、迎头风、跑道横风等产品,以保障飞机起降安全。
技术指标工作波长:1550nm;测量高度(距离)范围:10-200m/50-3000m;风速范围:0-50m/s;风向范围:0-360度;风速精度:0.3m/s;风向精度:5度。
技术特点采用全光纤相干光路,环境适应能力强;主要部件采用全国产化器件,工作可靠。
技术水平国际先进可应用领域和范围风力发电、民用航空气象保障等专利状态已取得专利1项技术状态试生产、应用开发阶段合作方式合作开发投入需求1000万元转化周期1-2年预期效益近年来对风力发电行业方兴未艾,国家大力投入,各地区建立了诸多风力发电厂。
多普勒激光雷达测风原理
![多普勒激光雷达测风原理](https://img.taocdn.com/s3/m/994c6b64a7c30c22590102020740be1e650ecce4.png)
多普勒激光雷达测风原理话说这多普勒激光雷达测风,可真是个新鲜玩意儿,咱今天就来聊聊这背后的原理,保管让你听得津津有味,跟听评书似的。
那天,我站在气象站的观测台上,手里把玩着这小巧的激光雷达,心里琢磨着:这玩意儿怎么就能测出风的速度呢?它不像咱小时候玩的风车,风一吹就呼呼转,这激光雷达可是个高科技产品,得靠点真本事。
咱先说说这多普勒效应,你开车的时候,听见过远处警车的警笛声,有时候感觉声音越来越尖,有时候又越来越低沉,对吧?这就是多普勒效应在作怪,声源和接收器之间有了相对运动,声音频率就变了。
激光雷达测风也是这个理儿,只不过它用的是激光,而不是声音。
这激光多普勒雷达,它发射的激光束被大气中的气溶胶粒子散射,就像咱们在阳光底下能看见灰尘在跳舞一样。
这些气溶胶粒子就像是小小的镜子,把激光反射回来。
可问题是,这些粒子可不是静止的,它们跟着风一起动,这样一来,反射回来的激光频率就变了,这就是多普勒频移。
就像咱们俩站在这儿说话,你一动,我耳朵里的声音就变了个调儿,这激光雷达也是,它一接收到这变了调的激光,就能算出风的速度来。
你说神奇不神奇?但这事儿还没完呢,激光多普勒雷达还得靠个叫做相干探测的技术。
啥是相干探测呢?咱得这么理解,你见过俩水波相遇吧?有时候它们会叠加在一起,形成更大的波,有时候又会相互抵消,啥也看不见。
这激光也是,两束激光相遇,也能产生干涉效应。
激光雷达里头,有一束激光是专门用来当“参照物”的,咱们叫它本振光。
这束光跟反射回来的激光一相遇,就在探测器上产生了干涉,就像俩水波相遇一样。
探测器上的信号一变,咱们就知道,风来了,风速多少,也都算得出来。
说起来,这激光雷达测风,还真得靠点运气。
大气条件得好,气溶胶粒子得够多,要不这激光反射不回来,咱就啥也测不出来。
我就碰见过一回,那天雾蒙蒙的,气象站的人说,这条件正好,激光雷达能测得更远。
嘿,还真别说,那天咱们测得那叫一个痛快,连十公里以外的风都测出来了。
激光雷达测风技术(4)
![激光雷达测风技术(4)](https://img.taocdn.com/s3/m/1a8aa3285901020207409c51.png)
航天学院
NOAA HRDL (A SOPA Lidar)
航天学院
直接探测激光测风雷达结构
发射机:必须是单频激光器(稳频窄线宽) ,如倍频532nm、三倍 频355nm或四倍频266nm ; 接收机:如果测量精度为1m/s,则频率分辨率=2v/=5.6MHz (对于532nm)
航天学院
激光雷达的后向散射信号
航天学院
VAD 扫描矢量风场反演
径向速度vR可以由v、u和w组成,纬度风速分量usincos,子午线速 度分量vcos cos,垂直速度分量wsin, -方位角,向北顺时针, 仰角。
对于VAD扫描:仰角是常量,方位角是变量,径向速度vR是测 量量,(u, v, w)满足下式:
上式还可表示为:
对流层
2-16 0.5
平流层
16-30 2.0
低对流层
0-5 5
高对流层
5-16 10
平流层
16-20 10
风分布数
风分布间距 时间采样 测量精度 水平积分区域
/hour
km hour m/s km 1.5
30,000
50 3 1.5 50 2 5
100
>500 12 5 50 5
航天学院
激光雷达测风技术发展趋势
aerosol signal molecular signal transmitted signal
sunlight
L
Wavelength
航天学院
双F-P标准具多普勒检测
I I IL T() Backscattered signal
Laser
I IL 1 d L I 0 T ' ( L )
Nd:YAG
自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍
![自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍](https://img.taocdn.com/s3/m/45189d42aaea998fcd220e21.png)
自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍引言风是研究大气动力学和气候变化的一个重要参量,利用风的数据,可以获得大气的变化,并预见其改变,促进人类对能量、水、气溶胶、化学和其它空气物质圈的了解,提高气象分析和预测全球气候变化的能力。
目前的风场数据主要来源于无线电探空测风仪、地面站、海洋浮标、观测船、飞行器以及卫星,它们在覆盖范围和观测频率上都存在很大限制。
对全球进行直接三维风场测量已经提到日程上来,世界气象组织提出了全球范围的高分辨率大气风场数据的迫切需要,迄今为止,多普勒测风激光雷达是唯一能够获得直接三维风场廓线的工具,具有提供全球所需数据的发展潜力[1]。
激光雷达是探测大气的有力工具,随着激光技术、光学机械加工技术、信号探测、数据采集以及控制技术的发展,激光雷达技术的发展也日新月异。
多普勒测风激光雷达具有实用性、高分辨率和三维观测等优点,是其它探测手段难以比拟的[2,3,4]。
新研制的1064 nm直接探测多普勒测风激光雷达,利用双边缘技术对对流层三维风场进行探测[5]。
本文介绍了该激光雷达的总体结构及其各部分的功能,并对其探测对流层风场的初步结果进行了分析和讨论。
1 总体结构和技术参数1064 nm直接探测多普勒测风激光雷达从整体上由激光发射单元、二维扫描单元,回波信号接收单元、信号探测和数据采集单元及控制单元五部分组成,其结构示意图和外观照片分别见图1和图2,主要的技术参数见表1。
激光发射单元、回波信号接收单元、信号探测和数据采集单元放置在光学平台上,保证其光学稳定性。
Nd:YAG激光器的中心波长是1064 nm,工作在此波长,可以有较大的激光输出功率,并且气溶胶的后向散射截面比较大。
脉冲重复频率为50 Hz,可以节省探测的时间,能捕捉短时间内风速的变化,有利于提高风速探测的准确度。
同时,激光器内部注入种子激光可以保证激光器的频率稳定。
二维扫描单元安置在实验房的房顶,接收望远镜的上方。
3维激光测风雷达技术研究
![3维激光测风雷达技术研究](https://img.taocdn.com/s3/m/e95bdba0fd0a79563c1e72b6.png)
第41卷 第5期2017年9月激 光 技 术LASERTECHNOLOGYVol.41,No.5September,2017 文章编号:1001-3806(2017)05-0703-053维激光测风雷达技术研究李 策,赵培娥,彭 涛,冯力天,周 杰,罗 雄,周鼎富倡(西南技术物理研究所,成都610041)摘要:为了精确测量3维大气风场的实时状态以应对低空风切变在飞行器起降过程中给飞行器带来的多种问题,通过DBS四波束风场反演原理研制出一款小型3维激光测风雷达。
对大气风场展开测风试验并获取风场数据,并与其它标准测风设备的数据对比分析。
结果表明,雷达在晴天和阴天的天气状况下均可以实现对大气风场的有效测量,风速均方根误差0.42m/s,风向均方根误差5.33°。
该雷达精准度高、稳定性好,对风切变预警、中低空大气风场预报及飞行器飞行通道的风场测量具有重要作用。
关键词:激光技术;激光测风雷达;3维扫描;相干探测;多普勒;风场比对中图分类号:TN958.98 文献标志码:A doi :10畅7510/jgjs畅issn畅1001-3806畅2017畅05畅017Technical research of 3-D wind lidarLI Ce ,ZHAO Peie ,PENG Tao ,FENG Litian ,ZHOU Jie ,LUO Xiong ,ZHOU Dingfu(SouthwestInstituteofTechnicalPhysics,Chengdu610041,China)Abstract :Inordertoaccuratelymeasurethe3-Dreal-timeatmosphericwindfieldtocopewiththeproblemsoflow-levelwindshearduringaircrafttake-offandlanding,acompact3-DDopplerwindlidarwasdevelopedbyusingDopplerbeamswinging(DBS)principle.Thewindfielddataobtainedbythelidarwerecomparedwiththeanemometrydatawiththeotherstandardequipments.Itturnedoutthattheeffectivemeasurementofatmosphericwindfieldwasachievedbythelidarunderbothsunnyandcloudyweatherconditions.Therootmeansquareerrorsofwindspeedandwinddirectionwere0.42m/sand5.33°respectively.Thelidar,withhighprecisionandgoodstability,playsanimportantroleforwindshearwarning,theforecastoflow-levelatmosphericwindfieldandwindfieldmeasurementofaircraftflightchannel.Key words :lasertechnique;windlidar;3-Dscanning;coherentdetection;Doppler;contrastofwindfield 作者简介:李 策(1990-),男,硕士研究生,现主要从事激光雷达技术研究。
风力发电机组 测风激光雷达 技术要求与试验方法
![风力发电机组 测风激光雷达 技术要求与试验方法](https://img.taocdn.com/s3/m/3db1608a88eb172ded630b1c59eef8c75fbf95b8.png)
风力发电机组测风激光雷达技术要求与试验方法1.风力发电机组是一种利用风力发电的装置。
Wind turbine is a device that generates electricity using wind power.2.测风激光雷达是一种用激光技术测量风速和方向的设备。
Lidar for wind measurement is a device that measures wind speed and direction using laser technology.3.风力发电机组的转子叶片需要根据测风激光雷达的数据进行调整。
The rotor blades of the wind turbine need to be adjusted based on the data from the wind measuring lidar.4.测风激光雷达的技术要求包括高精度、远距离测量、快速响应等。
Technical requirements for wind measuring lidar include high precision, long-range measurement, and quick response.5.测风激光雷达需要经过严格的校准和测试,以确保准确性和可靠性。
Wind measuring lidar needs to undergo rigorouscalibration and testing to ensure accuracy and reliability.6.测风激光雷达的测试方法包括对比分析、场地实测等。
Testing methods for wind measuring lidar include comparative analysis and on-site measurements.7.风力发电机组的测风激光雷达需要定期维护和校准。
Wind turbine's wind measuring lidar needs regular maintenance and calibration.8.测风激光雷达的数据可以用于预测风力发电机组的发电量。
激光测风雷达监测低空风切变研究进展
![激光测风雷达监测低空风切变研究进展](https://img.taocdn.com/s3/m/df9a4a002bf90242a8956bec0975f46527d3a793.png)
气象水文海洋仪器Meteorological » Hydrological and Marine Instruments第4期2020年12月No. 4Dec. 2020激光测风雷达监测低空风切变研究进展赵文凯,单雨龙,赵世军(国防科技大学气象海洋学院,南京210000)摘要:文章分析了风切变的形成原因及其对飞行的影响,并对比了现有测风方法的优缺点;重点介绍了国内外关于激光测风雷达发展及风切变识别算法的研究现状;总结了激光测风雷达在风切变监测预警方面的发展现状,并给出了对未来发展的意见建议。
关键词:激光测风雷达;低空风切变;飞行安全中图分类号:P414 文献标识码:A文章编号:1006-009X (2020)04-0097-04Research progress of low-level wind shear detection by laser radarZhao Wenkai,Shan Yulong,Zhao Shijun(College of Meteorology and Oceanography , National University of Defense Technology , Nanjing 210000)Abstract : This paper analyzes the causes of wind shear and its influence on flight. And the advantagesand disadvantages of existing wind measurement methods are compared. The recent, developments of laser radar and wind shear recognition algorithm at home and abroad are introduced. Then , the development, of monitoring wind shear based on laser radar are summarized and some suggestions onthe development, of it are also given.Key words : laser radar ; low-level wind shear ;fligF0引言对于航空飞行来说,飞行安全是第一要素。
激光测风雷达
![激光测风雷达](https://img.taocdn.com/s3/m/1218bc20192e45361066f547.png)
(9)
图 2.激光多普勒测风原理
多普勒测风激光雷达是利用光的多普勒效应, 测量激光光束在大气中传输其 回波信号的多普勒频移来反演不同高度处的风速分布。激光具有单色性、相干性 强的特点,而且波长较短,因此利用气溶胶的后向散射光,就能够获得足够强的 多普勒测风信息,有利于探测微风速,具有较高的测风精度。若大气气溶胶散射 粒子相对于光源运动, 则所接收气溶胶辐射的散射光频率不仅取决于照射光的频 率,而且还与气溶胶散射粒子相对于光源的运动速度、运动方向有关。根据公式 (9)可以表示为
ks
2 s λ
(15)
ki
2 i λ
(16)
如图 2 所示,利用散射光的频移ΔνD,即可根据式(14)求得沿 ks ki 方向上 的风速分量, 通常采用多普勒测风激光雷达测风,这是激光雷达接收的是大气和 气溶胶粒子的后向散射光,因此有 ki ks ,于是式(14)可以简化为:
ΔVD
根据时间相对性
' t2 t1' t2 t1 1 v / c
(5)
(6)
观测者接收的频率为
VD
而 Vs=
N N N 1 v / c ' ' (t2 t1 )(1 v cos / c) (t2 t1 )(1 v cos / c)
(7)
N t 2 '- t1' 故
(1)光的多普勒效应 当光源和观测者相对运动时,观测者接收到的光波频率不等于光源频率,这 就是光的多普勒效应。 光多普勒效应与声音多普勒效应本质上是不同的,声波依 赖于介质传播,而光波不依赖于任何介质传播。对于任何惯性系,光在真空中传 播速度都相同,所以,光源和观测者谁相对于谁运动是等价的,只取决于相对运 动的速度,下面按照狭义相对论的观点对光学多普勒效应进行分析。
基于Fizeau干涉仪的直接探测多普勒测风、激光雷达研究
![基于Fizeau干涉仪的直接探测多普勒测风、激光雷达研究](https://img.taocdn.com/s3/m/ddc276731711cc7931b716db.png)
关键词 :i a Fz u干涉仪 ; e 直接探测 ; 多普 勒频移 ;MT阵列 ; P 多普勒测风激光雷 达
中图分类号 :H 6 . T 75 4 文献标识码 : A 文章编号 :6 38 2 (0 7 0 - 6 -5 17 . 0 20 )10 20 0 0
大气风场 测 量在 全 球 大气 监 测 、 +1 cs/ ] ) o03 .
实际的干涉仪平板存在光学平面不平整 、 平 面弯 曲等一系列的缺陷 , 这些缺陷的存在会导致
干涉仪光谱加宽. 采用多通道探测器对 Fz u i a 光 e 谱的一个干涉条纹进行成像 , 则每个通道的透过 率 可 以表示 为式 ( ) J 2 "
能量修正系数问题 , 最后对基于 Fz u干涉仪 多 ia e
普 勒测 风激 光雷达 雷达 系统 的风速测 量误 差进 行 了定量 分析 .
1 Fza i u多普 勒 频 移 测 量原 理 e
F eu干涉仪可 以用于高分 辨光谱分析仪. ia z 与F P不同, 多光束 F eu i a 干涉仪包括两个互成 a z
F e 干涉仪多普勒测 风激 光雷 达 雷达 系 统 的风速 测 量误 差 进行 了数 值 模 拟. ha u 结果 显 示 , 制 中 的基 于 研
Fza i u干涉仪的多普 勒测风激光雷达系统在 5 k e m以下范围内 , 风速测量误差可以达到 0 5 / (0 积分实 .6 m s3 s
维普资讯
第1 期
单坤玲 , : 于 F eu 等 基 i a 干涉仪的直接探测 多普 勒测风激 光雷达研究 z
6 3
唧(
) p_ e(( x
s( _c ) P i +P n
c[ o2 s
2024年测风激光雷达市场环境分析
![2024年测风激光雷达市场环境分析](https://img.taocdn.com/s3/m/a4358337a36925c52cc58bd63186bceb19e8ed84.png)
2024年测风激光雷达市场环境分析1. 概述测风激光雷达是一种利用激光技术来测量大气中风速和风向的设备。
它以其高精度、无接触、远距离测量等特点,在气象、风电、航空等领域得到广泛应用。
本文将对测风激光雷达市场环境进行分析。
2. 市场规模根据市场研究数据,在过去几年中,测风激光雷达市场呈现出稳定增长的趋势。
预计未来几年,测风激光雷达市场规模将继续扩大。
主要驱动因素包括:•风能行业的快速发展:随着可再生能源的重要性逐渐凸显,风能行业得到了广泛关注和投资。
测风激光雷达在风能行业中的应用带来了稳定需求。
•气象监测的需求增加:随着全球气候变化的影响日益显著,对气象监测数据的需求也越来越高。
测风激光雷达提供了高精度的风速和风向数据,受到气象监测机构的青睐。
•航空航天领域的需求增长:测风激光雷达在航空航天领域中有着重要应用,能提供飞行器在复杂气流环境下的风速和风向信息,有助于提高飞行安全性。
3. 市场竞争格局测风激光雷达市场存在着较为激烈的竞争。
目前,市场上主要的竞争者包括以下几家公司:•Leosphere:作为市场的领先者之一,Leosphere以其创新的测风激光雷达产品在全球市场上占据重要地位。
该公司拥有先进的技术和广泛的市场渠道,具有竞争优势。
•Vaisala:Vaisala是一家专业从事气象监测设备制造的公司,其测风激光雷达产品质量稳定,受到了许多气象监测机构的认可。
•Halo Photonics:Halo Photonics是一家新兴的公司,其测风激光雷达产品在技术上有所突破,具有一定的市场份额。
此外,还有一些其他公司也在不同程度上参与了测风激光雷达市场的竞争。
市场竞争格局相对稳定,但仍存在一定变数。
4. 市场发展趋势测风激光雷达市场未来的发展将呈现以下趋势:•技术升级与创新:随着科技的发展,测风激光雷达的技术将不断升级和创新,包括提高测量精度、扩展测量范围等。
这将进一步推动市场的发展。
•行业应用拓展:除了风能、气象、航空航天领域,测风激光雷达还有很多其他潜在应用领域,如城市规划、建筑设计等。
激光测风雷达探测数据评估及应用
![激光测风雷达探测数据评估及应用](https://img.taocdn.com/s3/m/37617755a55177232f60ddccda38376baf1fe0d7.png)
激光测风雷达探测数据评估及应用激光测风雷达探测数据评估及应用激光测风雷达是一种基于光学原理的现代化测风仪器,它通过激光束与风场中的空气分子相互作用,测量出风速和风向等参数。
激光测风雷达具有高分辨率、高时空分辨率和全天候性等优点,已经成为大气科学研究和天气预报中的重要工具。
本文将对激光测风雷达探测数据的评估方法和应用进行探讨。
一、激光测风雷达数据评估方法评估激光测风雷达探测数据是确保其准确性和可靠性的重要步骤。
常见的评估方法包括数据校正、数据对比和误差分析等。
1. 数据校正数据校正是指对激光测风雷达原始数据进行校正,消除仪器本身引入的误差和扰动。
校正的方法主要包括空气密度修正、光束发散角修正和仪器响应修正等。
空气密度修正是基于大气密度随高度变化的规律进行的,通过修正空气密度,可以获得更准确的风速和风向。
光束发散角修正是指根据激光测风雷达仪器的具体参数,对激光束的发散角进行修正,以减小测量误差。
仪器响应修正则是通过标定实验,获取仪器的响应函数,并对原始数据进行修正。
2. 数据对比数据对比是将激光测风雷达探测数据与其他测量工具或模型模拟数据进行对比,以评估其准确性。
常用的对比对象包括浮标测风仪器、气球测风仪器和数值模拟数据等。
通过与这些独立测量数据的对比,可以验证激光测风雷达的测量精度和可靠性。
3. 误差分析误差分析是对激光测风雷达探测数据中的误差源进行分析,了解其产生的原因和特点,从而做出相应的改进和修正。
常见的误差源包括仪器本身误差、气象条件误差和信号处理误差等。
通过对误差源的分析,可以识别并消除激光测风雷达数据中的系统性误差,提高测量精确度。
二、激光测风雷达数据的应用激光测风雷达具有广泛的应用前景,其探测数据可以在气象学、大气物理学和风能等领域得到有效利用。
1. 天气预报在天气预报中,激光测风雷达可以提供高时空分辨率的风场观测数据,帮助预测大气环流和气象现象的演变。
通过监测大气边界层的风场变化,可以提前预警龙卷风、暴雨和强风等极端天气事件,为公众安全提供重要的依据。
相干测风激光雷达系统设计及数据处理算法研究共3篇
![相干测风激光雷达系统设计及数据处理算法研究共3篇](https://img.taocdn.com/s3/m/59fb117f68eae009581b6bd97f1922791788be61.png)
相干测风激光雷达系统设计及数据处理算法研究共3篇相干测风激光雷达系统设计及数据处理算法研究1相干测风激光雷达系统设计及数据处理算法研究激光测风雷达是一种基于激光干涉原理,用于实现大气风场气动参数快速测量与反演的先进技术手段。
本文将介绍一种相干测风激光雷达系统的设计及数据处理算法研究。
一、相干测风激光雷达系统的设计风场参数反演的精度、可靠性和实时性直接关系到气象预报的准确性。
相干测风激光雷达系统采用一束激光器产生的激光束照射到目标区域中,利用散射光的特性实现对目标中各个高度层次风场参数的测量。
该系统主要由激光发射器、光学系统、探测器、机械结构和信号处理模块等部分组成,其中激光器产生的激光束由光学系统实现照射目标,探测器采集返回的散射光信号并将其转换为电信号,机械结构可以实现雷达的扫描,信号处理模块对采集到的信号进行处理。
二、数据处理算法研究相干测风激光雷达系统采集的数据是获得风场参数的重要依据,因此数据处理算法的设计对于反演结果的准确性有着直接的影响。
本文研究的数据处理算法主要有多普勒谱分析算法、最小二乘法反演算法和平均滤波算法等。
1. 多普勒谱分析算法多普勒谱分析将时域信号转换为频域信号,可以分析目标物体在不同时刻的静态和动态特性,可以有效提取目标物体的速度信息,从而实现风场参数的反演。
该算法通过计算散射光频谱的谱宽来获取目标物体的运动速度信息。
2. 最小二乘法反演算法该算法通过对扫描目标附近某一层数据的最小二乘拟合,计算得到该层的风场参数,从而实现风场参数的反演。
该算法对目标物体反射信号的形态及信噪比等要求较高,但可以有效提高反演的准确性。
3. 平均滤波算法该算法通过对一定范围内数据的平均值进行计算,从而抑制噪声干扰,提高数据的可靠性。
该算法是一种简单有效的数据处理算法,在反演速度场等定量测量中得到了广泛应用。
三、结论相干测风激光雷达系统是一种先进的风场参数反演技术,其数据处理算法的设计是实现精确反演的关键。
激光雷达测风技术.完整版PPT文档课件
![激光雷达测风技术.完整版PPT文档课件](https://img.taocdn.com/s3/m/8f23deb2a1116c175f0e7cd184254b35effd1a69.png)
大气风场数据获得的手段
1. 地球外表观测系统 2. 地面、海面、风散射仪等,只能提供外表大气层的数据 3. 高空单层大气观测系统 4. 机载和星载的云图变化的风场推算数据,该方式覆盖范围受限 5. 高空多层大气观测系统 6. 无线电探空仪和卫星探测器,无线电探空仪能够提供风场的垂直
1.
单掺杂2m激光器〔室温,低能量〕
2.
Tm: YAG 〔钇铝石榴石〕
3.
Tm: LuAG 〔镥铝石榴石〕
4.
双掺杂2m激光器〔低温,高能量〕
5.
Tm, Ho: YAG〔钇铝石榴石〕
6.
Tm, Ho: YLF〔氟化钇锂〕激光器
7.
Tm, Ho: GdVO4〔钒酸钆)
双F-P标准具多普勒检测
Mie散射和分子散射速度测量
中心ν10 中心ν20 双通道F-P标准具
中心ν10 中心ν20 双通道F -P标准具
NASA/Goddard车载测风激光雷达
参数 激光器:波长 脉冲能量 重复频率 望远镜:口径 FOV 扫描方式 测量范围 距离分辨率
指标 355nm 70mJ 50Hz 45cm 0.2mrad XY双轴半空间 1.8~35km 0.25km@<3km 1km@>3km
上式还可表示为:
a:补偿量,b:振幅,max 周相位移动
DBS 扫描矢量风场反演
VRZ, VRE, VRN 分别是径向速度垂直、东向倾斜和北向倾斜分量
γ-天顶角
改进型DBS扫描矢量风场反演
激光雷达波束分别是垂直向、向北、向东、向南和向西
VR > 0, w > 0, u > 0, v > 0
相干激光测风雷达结构
小型机载测风激光雷达研究
![小型机载测风激光雷达研究](https://img.taocdn.com/s3/m/d5b38104581b6bd97f19ea62.png)
第 l 9期
S C ⅢN C E&T E C H N 0 L O G Y F O R M着所需的方向折射 。飞机上 的惯性导航系 载测风激光雷达 A L A D I N系统作预研 。该激光雷达系统采用 l 0 . 6 4 u m 统进行飞机上下颠簸 、 翻滚和速度的数据测量 . 并不断将这些数据传 波长激光器 . 激光 的发射和接收在飞机底部 . 可以在与天底角夹角 3 O 送给操作控制系统 . 补偿飞机高度和速度 变化所造成 的扫描器误差 . 度范 围内扫描 . 测得飞机飞行高度以下的三维风场 从而保持精准的光束指向 操作控制系统计算并减掉 由于飞机沿着视 该系统于 1 9 9 9年 1 0月进行 了两次 飞行 实验 飞机飞 i 彳高度 _ 为 线 方 向运 动 所 造成 的 多普 勒 频 移 误 差 7 . 5 k m, 测量区域 为山区, 山高度 为 2 k n, i 所以测得 的有效风数据 为 2 ~ MAC AWS可以根据需要进行两维或三维扫描 两维风场测量是 6 k m 。风速随高度增加而增大 . 同机头的速度探 测器f F a l c o n 1 的结果基 对某一广阔的区域进行侧扫或者共平面扫描 水平风场就可以通过相 本 相 同 同时 .该 系统 飞行 实验 的测量 结果 也 同 G e 1 3 1 1 a n We a t h e r 对 于飞机法线方向交替向前 、 向后 2 0 。 角进行扫描而实现。 如果要对有 s e r v i c e / L i n d e n b e r g 的风剖面数 据做了 比较 ,其风 速测量准确 度可达 限三维空间进行风场测量 . 可 以通过变换两维 扫描平 面的激光雷达指 l m / s . 风向测量误差不超过 5度 向来获得 。 根据测量 要求控制扫描平面的数量 以及扫描平面之间的夹 2 - 3 美国 N O A A的相干 H RD L ( Hi g h R e s o l u t i o n D o p p l e r L i d a n 系统 角 。当扫描器多个扫描平 面采用很小的夹角时 , 就可 以获得较为精细 将 改装后 的 H R D L系统安 装在 D L R的F a l c o n飞机上 .一 同与 的垂 直分辨率 由于发射楔等器件的限制 . 扫描平面俯仰角最大 为 2 5  ̄ DL R — D I A L的水汽雷达 系统进行 了飞行测量测量实验 . 目的在于测鼍 3 0 。 . 超过 3 0 o 的俯仰角可 以利用飞机的倾斜来实现。 如果轨道能够为 边界层 的水平和垂直风速结构 . 以及测量水汽通量剖面 . .该系统采用 圆形 或是摆线形 的 .那 么详细 的垂直风剖面就可 以用传统雷 达 VA D 波长为 2 . 0 2 1 8 u m 的激光 .脉 冲能量 为 1 . 5 n d.激 光的 重复 频 率为 2 0 0Hz 。 技术类似 的方式获得 表1 MA C AWS主要性能参数 这套系统利用实时表面风速估计来确定垂直点 . 利用调整反射镜 的方式来补偿 F a l c o n 飞机 的螺旋角。其测量风速 、 水汽和气溶胶的垂 C HAR AC T R EI S T I C NOMI NA L 直和水平分辨率都达到了 1 5 0 m N O A A — H R D L系统 的 8 次飞行实验 共取得 了 2 1 小时 2 6 分 的实验数据 . 其中有 1 4 小时 3 0 分的高质量数 Wa v e l e n g t h( m ) 1 0 . 6 据。 T hn s mi t t e r C O2 r EA l a s c r 由此可见 , 在国际上 的星载 、 机载激光探测 中, 机载测风激光雷达 E n e r g y p e r p u l s e ( J ) 0 . 8 是最受重视 的激光探测新技术 。 目前 , 在国际上 , 机载测风激 光雷达都 采用相干 D o p p l e r 测量 . 但 是 .星载激光测 风的方 案多采用 非相干 P u l s e d u r a t i o n( s ) 3 D o p p l e r 测量 . 其主要原因是相干测量 只能测量大气分子散射 , 而非相 L a s e r l i n e w i d t h( k H z ) ~ 3 0 o 干测量 可以同时测量大气分子散射和气溶胶散射 中国海洋大学“ L 五” 和“ 十五” 期 间在国家 自然科学基金 的支持 下 . 完成了小型车载非 P u l s c r e p e t i t i o n f r e q u e n c y f Hz 1 2 0 相干测风激光雷达的关键技术及方法研究 . 探测距离达到 l O k m. 风速 T e l e s c o p e d i a m e t e r ( m ) 0 . 3 分辨 率可达 l m / s o 此外 . 在 中德政府间合作 的框架下 . 中国海洋大学 与 德 国空 间局( D L R ) 在星载 、 机载测风激光雷达模拟 实验研 究方面积极 L i n e — o f - s i g h t r e s o l u t i o n( m ) 3 o o 开展了合作 。 2 0 0 5年 2月 . 中国海洋大学与 D L R大气物理研究所 又签 Nu mb e r o f s c a n p l a n e s l 一 5 订了新的合作备忘 录.中方将参加 德方 的机载测风激光雷达 飞行实 验. 并与德方科学家合作 . 解决机 载测风激光雷达的关键技术及反演 Wi n d v e l o c i t y a c c u r a c y( m / s ) ~ 1 方法问题。 为此 . 在本次申请 的项 目中, 主要进行机载测风激光雷达 的 D C - 8 c r u i s i n g a l t i t u d e( k m ) 0 3 — 1 2 . 5 关键技术 与实验研 究 . 同时与欧 ̄ - J ( E S A ) 合作开展 卫星合成孑 L 径雷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接测风激光雷达研究
直接测风激光雷达是探测晴空风场精细结构的遥感工具,对于天气预报、大气动力学研究、航空风切变安全预警和国防应用都有重要的意义和显著的应用前景。
多普勒激光测风雷达从工作原理上可分为相干和非相干(直接探测)两种。
论文中采用了双通道Fabry-Perot(F-P)干涉仪直接探测系统,探测Mie散射回波信号。
考虑到大气气溶胶和分子的运动对发散激光束的作用,在低空,发射激光用1064nm时,大气分子的Rayleigh散射回波信号几乎为零,气溶胶的Mie散射信号相对较强,这给信号的探测带来很大的方便。
鉴频系统是多普勒测风雷达的关键技术之一,能从探测光强度的变化分析出频移量,其鉴频能力会影响雷达测风的精度。
本文分析了测风激光雷达的基本原理。
直接探测方法中,边缘技术将激光入射频率锁定在鉴频器陡峭边缘上,较小的频移将导致较大的信号强度变化。
论文主要研究测风雷达的鉴频系统,分析了针对低空气溶胶散射信号的双边缘探测理论,然后仿真了F-P对激光束的透过率函数,根据不同F-P的参数对系统灵敏度的影响选择最适合的F-P参数,仿真鉴频系统的鉴频过程。
分析了激光线宽,标准具表面质量等对系统鉴频的影响,在现阶段,我们采用的F-P双通道是分开的独立通道,为了提高其稳定性能,进行改进,将两个标准具固定在一个基板上,在受到环境干扰时它们的中心频率漂移变化相同,于是可以保证标准具的频谱中心间隔不受干扰。
为了确保出射激光频率在双F-P标准具的中心位置,采用了透过率反馈信号调制标准具腔长。
最后对仿真后的数据进行了分析,选取合适的参数,给出了风速误差随高度
变化模拟结果。