晶体缺陷位错的基本类型与特征
晶体缺陷-位错的基本类型与特征
混合位错
总结词
混合位错是一种同时具有刃型和螺旋型 特征的晶体缺陷,其特征是晶体中某处 的原子既发生了平移又发生了螺旋式的 位移。
VS
详细描述
混合位错是刃型位错和螺旋位错的组合体 ,其原子位移同时包含了平移和螺旋式的 位移。混合位错通常出现在晶体的复杂区 域,如晶界、相界等。由于混合位错同时 具有刃型和螺旋型位错的特征,其对晶体 的性能影响也较为复杂,需要进行深入研 究。
滑移与攀移
在切应力作用下,位错能够沿滑移面整列移动,称为滑移; 而垂直于滑移面方向的移动称为攀移。这两种运动方式是 位错在塑性变形中的重要表现。
应变梯度与几何必须位错
当材料的局部区域发生不均匀变形时,会产生应变梯度, 进而促使位错的形成和运动,以协调这种不均匀变形。
位错与材料疲劳断裂
01
疲劳裂纹的萌生与扩展
强化机制
加工硬化
在塑性变形过程中,位错的运动和交 互作用导致材料逐渐变硬,即加工硬 化。这是金属材料常用的强化手段。
通过引入位错,可以增加材料的内应 力,从而提高其屈服强度。这种强化 机制称为位错强化。
位错与材料塑性变形
塑性变形机制
位错在受力时能够运动,从而改变材料的形状。这种运动 机制是金属等材料发生塑性变形的内在原因。
在循环载荷作用下,位错容易在材料的应力集中区域(如晶界、相界或
表面)聚集,形成位错塞积群,进而导致疲劳裂纹的萌生。裂纹的扩展
通常沿特定晶体学平面进行。
02
影响疲劳性能的因素
位错的运动和交互作用对疲劳裂纹的萌生和扩展具有重要影响,进而影
响材料的疲劳性能。例如,材料的抗疲劳性能可以通过引入阻碍位错运
动的合金元素来改善。
晶体缺陷的分类
ch3.2 晶体缺陷--线缺陷(位错)(06级)
第三章 晶体缺陷 ③ 滑移面必须是同时包含有位错线和滑移矢量的平面。位 错线与滑移矢量互相垂直,它们构成平面只有一个。 ④ 晶体中存在刃位错后,位错周围的点阵发生弹性畸变,既 有正应变,也有负应变。点阵畸变相对于多余半原子面是左右对 称的,其程度随距位错线距离增大而减小。就正刃型位错而言, 上方受压,下方受拉。 ⑤ 在位错线周围的畸变区每个原子具有较大的平均能量。 畸变区是一个狭长的管道。
第三章 晶体缺陷 (3) 柏氏矢量的唯一性。即一根位错线具有唯一的柏氏矢 量。它与柏氏回路的大小和回路在位错线上的位臵无关,位 错在晶体中运动或改变方向时,其柏氏矢量不变。 (4) 位错的连续性:可以形成位错环、连接于其他位错、终 止于晶界或露头于表面,但不能中断于晶体内. (5) 可用柏氏矢量判断位错类型 刃型位错: ξe⊥be,右手法则判断正负 螺型位错: ξs∥bs,二者同向右旋,反向左旋 (6) 柏氏矢量表示晶体滑移方向和大小.位错运动导致晶 体滑移时,滑移量大小|b|,滑移方向为柏氏矢量的方向。 (7) 刃型位错滑移面为ξ与柏氏矢量所构成的平面,只有一 个;螺型位错滑移面不定,多个。 (8) 柏氏矢量可以定义为:位错为柏氏矢量不为0的晶体缺 陷。
第三章 晶体缺陷 (3) 混合位错的滑移过程 沿位错线各点的法线方向在滑移面上扩展,滑动方向垂 直于位错线方向。但滑动方向与柏氏矢量有夹角。(hhwc1)
第三章 晶体缺陷
2. 位错的攀移
• 位错的攀移(climbing of disloction) :在垂直于滑移面方 向上运动 • 攀移的实质:刃位错多余半原子面的扩大和缩小,它是通过 物质迁移即原子或空位的扩散来实现的。 • 刃位错的攀移过程:正攀移,向上运动;负攀移, 向下运动 • 注意:只有刃型位错才能发生攀移;滑移不涉及原子扩散, 而攀移必须借助原子扩散;外加应力对攀移起促进作用,压 (拉)促进正(负)攀移;高温影响位错的攀移 • 攀移运动外力需要做功,即攀移有阻力。粗略地分析,攀移 阻力约为Gb/5。 • 螺型位错不止一个滑移面,它只能以滑移的方式运动,它是 没有攀移运动的。 • 攀移为非守恒(或非保守)运动,而滑移为守恒(或保守) 运动。
第三章晶体缺陷
•
(2)质量平衡: 与化学反应方程式相同,缺陷反应方程式两边的质量应该相等。需 要注意的是缺陷符号的右下标表示缺陷所在的位置,对质量平衡无 影响。 (3)电中性: 电中性要求缺陷反应方程式两边的有效电荷数必须相等。 2. 缺陷反应实例 1)杂质(组成)缺陷反应方程式──杂质在基质中的溶解过程 杂质进入基质晶体时,一般遵循杂质的正负离子分别进入基质的 正负离子位置的原则,这样基质晶体的晶格畸变小,缺陷容易形成。 在不等价替换时,会产生间隙质点或空位。
浓度超过平衡浓度。
在晶体中,位于点阵结点上的原子并非静止的,而是以其平衡位置为中 心作热振动。原子的振动能是按几率分布,有起伏涨落的。当某一原子具有足 够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作 用,跳离其原来的位置,使点阵中形成空结点,称为空位。 离开平衡位置的原子有三个去处: 一是迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位,称 为肖脱基(Schottky)空位; 二是挤人点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子, 则称为弗兰克尔(Frenkel)缺陷; 三是跑到其他空位中,使空位消失或使空位移位。
6.缔合中心 电性相反的缺陷距离接近到一定程度时,在库仑力作用下会缔合成一组 或一群,产生一个缔合中心, VM和VX发生缔合,记为(VMVX)。
(二) 缺陷反应表示法
对于杂质缺陷而言,缺陷反应方程式的一般式:
1.写缺陷反应方程式应遵循的原则 与一般的化学反应相类似,书写缺陷反应方程式时,应该遵循 下列基本原则: (1)位置关系 (2)质量平衡 (3)电中性
4.1-2晶体缺陷的基本类型and位错缺陷的性质
晶界: 两个空间位向不同 的相邻晶粒之间的 界面。
晶粒间界面缺陷分类:
大角度晶界: 晶 粒 位 向 差 大 于 10 度 的晶界。 其结构为几个原子范 围内的原子的混 乱排列, 可视为一个过渡区。
小角度晶界: 晶粒位向差小于 10度的晶界。
2.堆垛间界
我们知道金属晶体常采用立方密积的结构形式,而立方密积 是原子球以三层为一组,如果把这样的一组三层记为 ABC,则晶
4.1.2 线缺陷
当晶格周期性的破坏是发生在晶体内部一条线的周围近邻,
这就称为线缺陷。位错就是线缺陷。
刃型位错 螺旋位错 1.刃型位错 A A B
G
H
F b B E
刃型位错
设想晶体的上部沿ABEF平面向右推移, A B 原来与AB
重合,经过这样的推压后,相对于AB滑移一个原子间距b,EF
§4.1 晶体缺陷的基本类型
本节主要内容: 4.1.1 点缺陷 4.1.2 线缺陷 4.1.3 面缺陷
晶体缺陷(晶格的不完整性):晶体中任何对完整周期性
结构的偏离就是晶体的缺陷。 结构缺陷: 没有杂质的具有理想的化学配比
的晶体中的缺陷,如空位,填隙
晶体的缺陷 原子,位错。 化学缺陷: 由于掺入杂质或同位素,或者化学 配比偏离理想情况的化合物晶体中 的缺陷,如杂质,色心等。
1.弗仑克尔缺陷和肖特基缺陷
弗仑克尔缺陷 当晶格中的原子脱离格点后,移到间隙位置形成填隙原 子时,在原来的格点位置处产生一个空位,填隙原子和空位成 对出现,这种缺陷称为弗仑克尔缺陷。
肖特基缺陷
当晶体中的原子脱离格点位置后不在晶体内部形成填隙原
子,而是占据晶体表面的一个正常位置,并在原来的格点位置 产生一个空位,这种缺陷称为肖特基缺陷。
晶体中的位错
晶体中的位错晶体是由大量的原子或离子按照一定的规律排列形成的,具有高度的有序性和周期性。
然而,在晶体中,由于制备、加工等原因,有时候不同的晶体原子并不完全对齐,形成了一些错位,这些错位就称作位错。
位错是晶格缺陷的一种,是晶体中最常见的缺陷之一。
本文将重点介绍晶体中的位错。
一、位错的定义和分类位错是晶体中的缺陷,是一种原子排列顺序的失误或对晶体构造发生的不规则的紊乱。
从形式上来看,位错其实是一条线,称为位错线。
位错线是一个平面的分界线,分别将位错的正侧和负侧分开,两侧的原子堆积方式互不相同。
按照线向和方向,位错可分为长位错和短位错;按照线型,位错可分为直线位错和环状位错;按照纵向位置,位错可分为面内位错和面间位错;按照能量点的数量,位错可分为单位错、双位错、三位错等等。
二、位错的形成原因晶体中的位错是由于应力和温度的变化等原因,导致原子在晶体内部的位置和晶格结构发生变化而形成的。
晶体中的一些应力和原子偏移最终会形成位错,进而影响构造和性能。
常见的位错形成原因有以下几种:1.加工过程中导致的位错:金属加工可能会引起位错的发生,因为加工会施加一定的应力,从而导致晶格变形。
例如,扭曲或拉伸材料时,原子可能会脱离原来的顺序,最终形成位错。
2.晶体生长过程中导致的位错:晶体在生长过程中,由于固态、液相界面的移动推进,产生压力分布变化,从而造成位错的形成。
在原子或离子加入了其他元素或化合物的情况下,位错也会在晶体中发生。
3.晶体性能的变化导致的位错:晶体的性质随着应力和温度的变化而变化。
温度和离子浓度等的变化可能会改变晶体的构造,导致位错。
三、位错的作用位错是晶体中的缺陷,但它并不总是会对晶体的性质产生不良影响。
实际上,位错可以对晶体的某些性质产生正向、负向改变,主要包括以下几种:1.塑性变形:位错的存在使晶体产生了柔韧性,容易受到力的作用产生塑性变形。
2.材料的硬度:如果位错数量越大,晶体的硬度就会变差,同时晶体的脆性就会增加。
晶体缺陷理论-位错的基本性质
b.刃位错应力场
第四十七页,共83页。
第四十八页,共83页。
第四十九页,共83页。
第五十页,共83页。
第五十一页,共83页。
第五十二页,共83页。
第五十三页,共83页。
第五十四页,共83页。
★正应力分量与切应力分量同时存在,与 Z
无关,即与刃位错平行的直线各点应力状态相同
❖ §1.1 位错基本概念 ❖ §1.2 弹性力学基础知识 ❖ §1.2.1 位错的应力场 ❖ §1.2.2 位错的弹性能、自由能及线张力 ❖ §1.2.3 位错受力 ❖ §1.2.4 位错的攀移力
第一页,共83页。
1.1 位错基本概念
原子发生错排时,在某一方向是几百到上万 个原子间距,另外两个方向仅有 3-5 个间距 位错 对金属强度、相变影响显著
第八十三页,共83页。
第九页,共83页。
第十页,共83页。
演示
第十一页,共83页。
第十二页,共83页。
刃型位错和螺型位错的异同点
类型 多余的半排原子面 位错线与滑移矢量关系
位错线形状 滑移面(由位错线与滑 移矢量决定) 位错线运动方向与滑移 矢量关系(晶体滑移方 向)
应力、应变性质
刃型位错 正⊥、负┬ 有 垂直 直线、折线、曲线、环 位错线⊥滑移矢量构成、唯一
1.1.2 柏氏矢量
第十七页,共83页。
1.柏氏矢量的确定
第十八页,共83页。
第十九页,共83页。
第二十页,共83页。
第二十一页,共83页。
第二十二页,共83页。
第二十三页,共83页。
2.柏氏矢量的物理意义
第二十四页,共83页。
第二十五页,共83页。
晶体缺陷点缺陷和位错
《材料科学与工程基础》
本章主要内容
3.1 点缺陷 3.2 位错 3.3 表面及界面
第3章 晶体缺陷
❖引 言
1、晶体缺陷(Defects in crystals)
定义:实际晶体都是非完整晶体,晶体中原子排 列的不完整性称为晶体缺陷。
2、缺陷产生的原因
(1)晶体生长过程中受到外界环境中各种复杂因 素的不同程度的影响;
作业
Cu晶体的空位形成能1.44x10-19J/atom,A=1, 玻尔兹曼常数k=1.38x10-23J/k。已知Cu的摩尔
质量为MCu=63.54g/mol, 计算: 1)在500℃以下,每立方米Cu中的空位数? 2) 500℃下的平衡空位浓度?
18
❖ 解:首先确定1m3体积内Cu原子的总数(已 知Cu的摩尔质量为MCu=63.54g/mol, 500℃ 下Cu的密度ρCu=8.96 ×106 g/m3
Ag
3980
0.372 25000 9.3×10-5 1.5×10-5
Cu
6480
0.490 40700 7.6×10-5 1.2×10-5
α-Fe
11000
2.75
68950 2.5×10-4 1.5×10-5
Mg
2630
0.393 16400 1.5×10-4 2.4×10-5
问题:计算结果和实验值相差甚远
3)位错线可以是任何形状的曲线。 4)点阵发生畸变,产生压缩和膨胀,形成应力场,
随着远离中心而减弱。
7.2 位错的基本知识
考虑一下,还 可以采用什么 方式构造出一 个刃型位错?
2、螺型位错
(1)螺型位错的形成
螺型位错的 原子组态:
位错的基本类型和特征!
位错的基本类型和特征晶体在不同的应力状态下,其滑移方式不同。
根据原子的滑移方向和位错线取向的几何特征不同,位错分为刃位错、螺位错和混合位错。
1. 刃位错(1)形成及定义:晶体在大于屈服值的切应力τ作用下,以ABCD面为滑移面发生滑移。
AD是晶体已滑移部分和未滑移部分的交线,犹如砍入晶体的一把刀的刀刃,即刃位错(或棱位错)。
刃型位错形成的原因:晶体局部滑移造成的刃型位错(2)几何特征:位错线与原子滑移方向相垂直;滑移面上部位错线周围原子受压应力作用,原子间距小于正常晶格间距;滑移面下部位错线周围原子受拉应力作用,原子间距大于正常晶格间距。
刃型位错的分类:分类:正刃位错,“┴”;负刃位错,“┬”。
符号中水平线代表滑移面,垂直线代表半个原子面。
(3)刃型位错的结构特征①有一额外的半原子面,分正和负刃型位错;②位错线可理解为是已滑移区与未滑移区的边界线,可是直线也可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;③只能在同时包含有位错线和滑移矢量的滑移平面上滑移;④位错周围点阵发生弹性畸变,有切应变,也有正应变;点阵畸变相对于多余半原子面是左右对称的,其程度随距位错线距离增大而减小。
就正刃型位错而言,上方受压,下方受拉。
⑤位错畸变区只有几个原子间距,是狭长的管道,故是线缺陷。
2. 螺位错(1)形成及定义:晶体在外加切应力τ作用下,沿ABCD面滑移,图中AD线为已滑移区与未滑移区的分界处。
由于位错线周围的一组原子面形成了一个连续的螺旋形坡面,形成螺位错。
晶体局部滑移造成的螺型位错(2)几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
螺型位错的分类:有左、右旋之分。
它们之间符合左手、右手螺旋定则。
(3)结构特征①螺型位错的结构特征无额外的半原子面,原子错排是轴对称的,分右旋和左旋螺型位错;②螺型位错线与滑移矢量平行,故一定是直线,位错线移动方向与晶体滑移方向垂直;③滑移面不是唯一的,包含螺型位错线的平面都可以作为它的滑移面;④位错周围点阵也发生弹性畸变,但只有平行于位错线的切应变而无正应变,即不引起体积的膨胀和收缩;⑤位错畸变区也是几个原子间距宽度,同样是线位错。
晶体缺陷【材料科学基础】
5
6
3.点缺陷的形成
晶体点阵中的原子以其平衡结点为中心不停地进 行热振动。随温度升高,振幅增大,振动频率也 增大。 晶体内原子的热振动能量不相同,存在能量起伏。 某些原子振动的能量高到足以克服周围原子的束 缚时,它们将有可能脱离原来的平衡位置,迁移 到一个新的位置,在原来的平衡位置上留下空位。 温度越高,原子脱位的几率越大。
7
离位原子的去处: ¾ 离位原子迁移至表面或晶界时形成的空位— —肖脱基空位; ¾ 离位原子迁移至点阵间隙处所形成的空位— —弗兰克空位; ¾ 离位原子迁移其它空位中,使空位发生移 位,不增加空位数目。
8
4.点缺陷导致一定范围内弹性畸变和能量增加
9
5.空位和间隙原子的形成与温度密切相关: 随温度升高,点缺陷数目增加,称为热缺陷。 6.高温淬火、冷变形加工、高能粒子轰击也可 产生点缺陷 (点缺陷并非都通过原子的热 振动产生)。
第二章 晶体缺陷
1
引言: 完整晶体:原子规则地存在于应在的位置上。 晶体缺陷:实际晶体中偏离理想结构的区域。
2
晶体缺陷分类(按几何特征分):
点缺陷(零维缺陷),在三维空间的各个方向上尺 寸都很小的缺陷。如:空位、间隙原子、杂质、溶 质原子等。 线缺陷(一维缺陷),在一个方向上尺寸较大,另 两个方向上尺寸较小。如:位错。 面缺陷(二维缺陷),在两个方向上尺寸较大,在 另一个方向上尺寸较小。如:晶体表面、晶界、相 界、孪晶界、堆垛层错等。
位错的观察
18
早期对位错观察的例子:
位错的电子显微镜观察 的例子:
氟化锂表面浸蚀出的位错露头 的浸蚀坑
锗晶体中位错的电子显微镜图象
19
GaN晶体中刃位错的高分辨电子显微像
材料科学基础重点总结 2 空位与位错
第2章晶体缺陷晶体缺陷实际晶体中某些局部区域,原子排列是紊乱、不规则的,这些原子排列规则性受到严重破坏的区域统称为“晶体缺陷”。
晶体缺陷分类:1)点缺陷:如空位、间隙原子和置换原子等。
2)线缺陷:主要是位错。
3)面缺陷:如晶界、相界、层错和表面等。
2.1 点缺陷空位——晶体中某结点上的原子空缺了,则称为空位。
点缺陷的形成:肖特基空位:脱位原子迁移到晶体表面或者内表面的正常结点位置,从而使晶体内部留下空位,这样的空位称为肖特基(Schottky)空位。
(内部原子迁移到表面)肖特基(Schottky)空位弗仑克耳(Frenkel)空位弗仑克耳空位:脱位原子挤入点阵空隙,从而在晶体中形成数目相等的空位和间隙原子,称为弗仑克耳(Frenkel)空位。
(由正常位置迁移到间隙)外来原子:外来原子也可视为晶体的点缺陷,导致周围晶格的畸变。
外来原子挤入晶格间隙(间隙原子),或置换晶格中的某些结点(置换原子)。
空位的热力学分析:空位是由原子的热运动产生的,晶体中的原子以其平衡位置为中心不停地振动。
对于某单个原子而言,其振动能量也是瞬息万变的,在某瞬间原子的能量高到足以克服周围原子的束缚,离开其平衡位置从而形成空位。
空位是热力学稳定的缺陷点缺陷的平衡浓度系统自由能F=U- TS (U为内能,S为总熵值,T为绝对温度)平衡机理:实际上为两个矛盾因素的平衡a 点缺陷导致弹性畸变使晶体内能U增加,使自由能增加,降低热力学稳定性b 使晶体中原子排列混乱度增加,熵S增加,使自由能降低,增加降低热力学稳定性熵的变化包括两部分:①空位改变它周围原子的振动引起振动熵,Sf。
②空位在晶体点阵中的存在使体系的排列方式大大增加,出现许多不同的几何组态,使组态熵Sc增加。
空位浓度,是指晶体中空位总数和结点总数(原子总数)的比值。
随晶体中空位数目n的增多,自由能先逐渐降低,然后又逐渐增高,这样体系中在一定温度下存在一个平衡空位浓度,在平衡浓度下,体系的自由能最低。
第3章 晶体缺陷(4)-实际晶体中的位错
弗兰克-瑞德(Frank-Read)位错源
刃型位错的两端被位错网点钉住不能运动。若沿柏氏 矢量b方向施加一切应力,使位错沿滑移面向前滑移运动。 作用于位错线上的力,总是与位错线本身垂直,所以弯 曲后的位错每一小段继续沿它的法线方向向外扩展。 当两端弯出来的线段相互靠近时,由于该两线段平行于 柏氏矢量b,但位错线方向却相反,分别属于左螺和右螺位 错,因此会互相抵消,形成一闭合的位错环以及位错环内 的一小段弯曲位错线。
(1)位错少,材料强度极高,但不能直接应用。(晶 须) (2)位错增加,使位错线之间相互缠结难以移动,亦 可增加材料强度(材料强化途径:晶体经过冷变形或者 引入第二相,会使位错的晶体中为104~108cm-2数量级,经剧 烈冷加工的金属晶体中,为1012~1014cm-2
一、位错的密度
1、位错密度的概念
晶体中位错的数量用位错密度ρ表示,它的意 义是单位体积晶体中所包含的位错线总长度,或穿 越单位截面积的位错线数目。
2、位错密度的计算公式
S n V A
V为体积, S为晶体中位错线的总长度; A为截面积, n为穿过面积A的位错线数目。
3、位错与材料强度的关系
序堆层……ABCACBCAB……称插入型(或外禀)层错。
这种结构变化,并不改变层错处原子最近邻的关 系(包括配位数、键长、键角),只改变次邻近关系, 几乎不产生畸变,所引起的畸变能很小。因而,层错 是一种低能量的界面。
分位错非点阵矢量的滑移破坏了原子的正常排 列次序,在晶体内产生了堆垛层错;
层错使两个分位错成不可分割的位错对,称 其扩展位错。
若堆垛层错不是发生在晶体的整个原子面 上,而只是在部分局部区域存在,则在层错与 完整晶体的交界处就出现柏氏矢量b不等于点阵 矢量的不全位错。
位错的基本类型和特征
位错的基本类型和特征位错的基本类型和特征什么是位错?位错(dislocation)是晶体中的一种结构缺陷,它代表了晶体中原子排列的变形和重组。
位错的存在对晶体的物理性质和机械性能具有重要影响。
位错的基本类型位错可以分为以下几个基本类型:1.直线位错:也称为边界位错(edge dislocation),可看作两个晶体之间的边界。
它是晶体中某个层面与其上方、下方的层面之间原子排列不一致所形成的。
2.螺旋位错:也称为线性位错(screw dislocation),是晶体中绕某一点形成螺旋状结构的位错。
它是由某一平面与其上方或下方的层面之间原子排列不一致所形成的。
3.混合位错:是直线位错和螺旋位错相互结合形成的位错。
位错的特征位错在晶体中具有以下特征:•位错存在与位错线(dislocation line)上,其形状可以是直线、螺旋状或弯曲的。
•位错的长度可以从纳米级到微米级,取决于材料的结晶度和应变状态。
•位错引入了局部应变场,使得晶体中原子间的距离发生变化。
•位错会导致局部应力场的形成,其中位错线附近有压应力和拉应力。
•位错可以移动和增殖,对物质的可塑性和断裂行为起重要作用。
位错的影响位错的存在对材料的性质和行为具有重要影响:•位错可以增加材料的塑性,使其具有更好的变形能力和可塑性。
•位错可以使材料的强度和硬度发生变化,影响其力学性能。
•位错还可以影响材料的电学、热学和光学性能,改变其导电性、热导率和光学吸收等特性。
•位错在材料的断裂行为中起重要作用,影响材料的断裂强度和断裂方式。
结论位错作为一种晶体中的结构缺陷,具有不可忽视的重要性。
通过研究位错的基本类型和特征,我们可以更好地理解材料的结构和性质,为材料的设计和应用提供更好的基础。
参考文献:1.Hirth, J. P., & Lothe, J. (1992). Theory of dislocations.Wiley.2.Hull, D., & Bacon, D. J. (2001). Introduction todislocations (Vol. 952). Butterworth-Heinemann.补充位错的性质和应用位错的形成原因位错的形成主要是由于晶体生长和形变过程中的原子排列不完美引起的。
材料科学基础第3-4章小结及习题课讲解
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。
晶体缺陷的基本类型和特征
晶体缺陷的基本类型和特征
晶体缺陷是晶体中原子或离子位置的错误或不规则排列。
基本类型和特征包括以下几种:
1. 点缺陷:点缺陷是晶体中原子或离子缺失、替代或插入所引起的缺陷。
常见的点缺陷包括:空位缺陷(晶体中存在未被占据的空位)、插入缺陷(晶格中多余的原子或离子)、置换缺陷(晶体中某种原子或离子被其他种类的原子或离子替代)。
2. 线缺陷:线缺陷是沿晶体中某一方向的错误排列或不规则缺陷。
常见的线缺陷包括:位错(晶体中原子排列错误引起的错位线)、螺旋位错(沿着晶格某个方向成螺旋形排列的错位线)。
3. 面缺陷:面缺陷是晶体中平面上原子排列错误或不规则的缺陷。
常见的面缺陷包括:晶界(不同晶体颗粒的交界面)、层错(晶体中平行于某一层的错位面)。
4. 体缺陷:体缺陷是三维空间中晶体结构的错误或不规则排列。
常见的体缺陷包括:空间格点缺陷(晶体晶格中存在未被占据的空间)、体间隙(晶体中原子或离子占据不规则的空间位置)。
每种缺陷类型都有其特定的物理和化学性质,对晶体的电学、光学、磁学等性质都有影响。
因此,研究晶体缺陷对于理解晶体的结构和性质至关重要。
材料科学基础 第 三 章 晶 体 缺 陷 (二)资料讲解
综合而言刃型位错具有以下几个重要特征:
(1) 刃形位错有一个额外半原子面;
(2) 刃形位错线是一个具有一定宽度的细长 晶格畸变管道,其中既有正应变,又有切应变;
(3) 位错线与晶体滑移的方向垂直,即位错 线运动的方向垂直于位错线。
➢ Burgers vector b is perpendicular to line dislocation vector ξ. ➢ The slip plane is unique.
➢ Burgers vector b is parallel to the line vector ξ of the dislocation. ➢ The slip plane cannot be defined uniquely. ➢ Slip direction is parallel to b. ➢ Dislocation line moves perpendicular to b.
完整晶体滑移的理 论剪切强度要远高于实 际晶体滑移的对应强度, 从而促进了位错理论的 产生和发展。
刃位错的原子模型
(2) 刃型位错定义
晶体中已滑移区与未滑移区的边界线(即位错线)若垂 直于滑移方向,则会存在一多余半排原子面,它象一把刀刃 插入晶体中,使此处上下两部分晶体产生原子错排,这种晶 体缺陷称为刃型位错(edge dislocation)。多余半排原子面在 滑移面上方的称正刃型位错,记为“┻”;相反,半排原子 面在滑移面下方的称负刃型位错,记为“┳”。
滑移矢量
*滑移矢量之 伯氏矢量表示法
➢用来描述位错区域原子的畸变特征(包括畸 变发生在什么晶向以及畸变有多大)的物理 参量,称为伯氏矢量(Burgers Vector);
➢它是一个矢量,1939年由伯格斯(J. M. Burgers)率先提出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a)变形前
(b)变形后
图 单晶试棒在拉伸应力作用下 的变化(宏观)
晶体缺陷位错的基本类型与特征
2、理想晶体的滑移模型
τ τ
图 外力作用下晶体滑移示意图(微观)
晶体缺陷位错的基本类型与特征
(1)理论抗剪屈服强度
滑移面上各个原子在切应力作用下,同时克服相邻滑 移面上原子的作用力前进一个原子间距,完成这一过程所 需的切应力就相当于晶体的理论抗剪屈服强度τm。
螺型位错的情况与刃型位错一样具有易 动性。
位错的运动
混合位错 的运动
晶体缺陷位错的基本类型与特征
三、位错的柏氏矢量
1、柏氏矢量的概念与性质
柏氏矢量:晶体中有位错存在时,滑移面一侧质点相 对于另一侧质点的相对位移或畸变。
性质:大小表征了位错的单位滑移距离,方向与滑移 方向一致(滑移矢量)。 柏氏(Burgers)矢量是一个矢量,具有方向和 大小;这个物理参量能把位错区原子的畸变特征 表示出来,包括畸变发生在什么晶向以及畸变有 多大(畸变矢量) 。
晶体缺陷位错的基本类型与特征
位错的特征归纳:
(1)可以把位错定义为晶体中以滑移区与未滑移 区的边界。
(2)刃型位错不仅仅指刀刃处的一条原子,而是 刀刃处这列原子及其周围区域。
(3)刃型位错中,晶体发生局部滑移的方向(或 滑移矢量)是与位错线垂直的。
(4)螺型位错中,晶体发生局部滑移的方向(或 滑移矢量)是与位错线平行的。
(2)理论抗剪屈服强度与晶体的切变模量的关系
原子的结合键能与弹性模量有很好的对应关系,因此 理论抗剪屈服强度τm应与晶体的切变模量G的大小有一定 的关系,根据推算两者之间大致的为:
m
G 30
晶体缺陷位错的基本类型与特征
3、位错概念的引出
(1)实际抗剪屈服强度与理论抗剪屈服强度之间存在 巨大差异。
(2)实际强度与理论强度的巨大差异,使人们对理想 晶体的整体滑移方式产生怀疑,认识到晶体中原子排列绝 非完全规则,滑移也不是两个原子面之间集体的相对移动。
晶体缺陷位错的基本类型与特征
3、混合位错
在外力作用下,两部分之间发生相对滑移,
在晶体内部已滑移和未滑移部分的交线既不垂直 也不平行滑移方向,这样的位错称为混合位错。
位错线上任意一点,经矢量分解后,可分解 为刃位错和螺位错分量。晶体中位错线的形状可 以是任意的,但位错线上各点的伯氏矢量相同, 只是各点的刃型、螺型分量不同而已。
几何特征:位错线与原子滑移方向相垂直; 正刃位错:滑移面上部位错线周围原子受
压应力作用,原子间距小于正常晶格间距;滑移面下部位错 线周围原子受张应力作用,原子间距大于正常晶格间距。
晶体缺陷位错的基本类型与特征
刃型位错的特点: 1).刃型位错有一个额外的半原子面。其实正、负之分只
具相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边
晶体缺陷位错的基本类型与特征
图 螺型位错原子模型及其形成示意
晶体缺陷位错的基本类型与特征
形成及定义:晶体在外加切应力作用下,沿ABCD面滑移,
图中EF线为已滑移区与未滑移区的分界处。由于位错线 周围的一组原子面形成了一个连续的螺旋形坡面,故称 为螺位错。 几何特征:位错线与原子滑移方向相平行;位错线周围原 子的配置是螺旋状的。 分类:有左、右旋之分,分别以符号“”和“”表示。其中 小圆点代表与该点垂直的位错,旋转箭头表示螺旋的旋 转方向。它们之间符合左手、右手螺旋定则。
完整理论强度比实测强度高出几个数量级
晶体缺陷的设想─ 线缺陷(位错)的模型
以位错滑移模型计算出的晶体强度,与实测值基本相符。
τ τ
晶体缺陷位错的基本类型与特征
二、晶体中的位错模型
晶体中位错的基本类型分为刃型位错和螺 型位错。
实际上位错往往是两种类型的复合,称为 混合位错。
晶体缺陷位错的基本类型与特征
晶体缺陷位错的基本类型与特征
一、位错与塑性变形
人们是从研究晶体的塑性变形中才认识到 晶体中存在着位错。
1、塑性变形
塑性变形是晶体在外力作用下产生的永久变形。 滑移是塑性变形的基本方式,它是在切应力作用 下进行的。 滑移:各部分晶体相对滑动的结果使晶体的尺寸 沿着受力方向拉长,直径变细,这样的过程称为滑移。
第三章 晶体缺陷
引 言 晶体缺陷概述及类型 第一节 点缺陷 第二节 位错-线缺陷 第三节 表面及界面
晶体缺陷位错的基本类型与特征
第二节 位 错
2.1、位错的基本类型和特征 2.2、位错的运动与弹性性质 2.3、实际晶体中的位错
晶体缺陷位错的基本类型与特征
2.1、位错的基本类型和特征
一、位错与塑性变形 二、晶体中的位错模型 三、柏氏矢量
1、刃位错
图 刃位错示意图
晶体缺陷位错的基本类型与特征
形成及定义:晶体在大于屈服值的切应力作用下,以
ABCD面为滑移面发生滑移。EF是晶体已滑移部分和未滑 移部分的交线,犹如砍入晶体的一把刀的刀刃,即刃位错。
分类:正刃位错, “” ;负刃位错, “T” 。符号中水 平线代表滑移面,垂直线代表半个原子面。
晶体缺陷位错的基本类型与特征
(a)混合位错的形成
(b)混合位错分解为刃位 错和螺位错示意图
(c)混合位错线附近 原子滑移透视图
晶体缺陷位错的基本类型与特征
4、位错的易动性
根据位错模型,晶体中有了位错,滑 移就十分容易进行。
位错按滑移的方式发生塑变要比两个相 邻原子面整体相对移动容易得多,因此晶 体的实际强度比理论强度低得多。
界线。它不一定是直线,也可以是折线或曲线,但它必与滑 移方向相垂直,也垂直于滑移矢量。
3).滑移面必定同时包含位错线和滑移矢量,其它面上不 能滑移。
图 不同形状的刃型位错
晶体缺陷位错的基本类型与特征
2、螺位错
图 螺位错形成示意图
晶体缺陷位错的基本类型与特征
(a)立体图; (b)顶视图
图 螺型位错的原子组态
(3)晶体内部一定存在着很多缺陷,既薄弱环节,使 塑性变形过程在很低的应力下就开始进行,这种内部缺陷 就是位错。
(4)位错的概念及模型很早就已经提出,但直到20世 纪50年代中期透射电子显微技术的发展证实了晶体中位错 的存在。
晶体缺陷位错的基本类型与特征
完整晶体塑性变形-滑移的模型
金属晶体的理论强度