数据式审计常用的数据分析方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据式审计常用的数据分析方法

审计数据的分析可分为三个层次:即以审计专家经验和常规审计分析技术为基础的审计,以审计分析模型和多维数据分析技术为基础的审计,以数据挖掘技术为基础的审计。第一个层次表现为用户对数据库中的记录进行访问和查询,可通过SQL等语言来交互式地描述查询要求,或根据查询需求采用开发工具定制查询软件,实现的是查询型分析;第二个层次是用户先提出自己的假设,然后利用各种工具通过反复的、递归的检索查询,以验证或否定自己的假设,从用户的观点来看,他们是在从数据中发现事实,因而实现的是验证型分析;第三个层次是指用户从大量数据中发现数据模式,预测趋势和行为的数据分析模式,它能挖掘数据间潜在的模式,发现用户可能忽略的信息,并为审计人员做出前瞻性的、基于知识的决策提供帮助,因而实现的是验证型分析。可见,前两个层次是基于现有的审计知识,这构成了智能审计的基础;第三个层次是通过主动挖掘潜在的审计知识,这是智能审计的核心。

一、基于现有审计知识的数据分析方法

(一)合规分析方法。合规分析法就是用审计软件的会计核

算部分,根据会计准则和被审计单位业务处理逻辑的数据处理要求,检查是否有账证不符、账账不符、账表不符、表表不符的情况;账户对应关系是否正常;是否存在非正常挂账、非正常调账现象;账户余额方向是否存在异常;是否有违背被审计单位业务处理逻辑的情况等。

(二)趋势分析方法。趋势分析法是指审计人员将被审计单位若干期相关数据进行比较和分析,从中找出规律或发现异常变动的方法。它是审计人员利用少量时间点上或期间的经济数据来进行比较分析的特殊时间序列法,此法有助于审计人员从宏观上把握实务的发展规律。审计人员可根据审计需要来确定时间序列的粒度,如年、季、月、旬、日等。

(三)结构分析方法。结构分析法也叫比重分析法,是通过计算各个组成部分占总体的比重来揭示总体的结构关系和各个构成项目的相对重要程度,从而确定重点构成项目,提示进一步分析的方向。结构分析法和趋势分析法还可结合应用,进行数据结构比例在若干期间的变动趋势分析。应用结构分析法和趋势分析法,对被审计单位的资产、负债、损益和现金流的结构分析、趋势分析以及结构比例的趋势分析,对被审计单位的总体财务状况、经营成果和现金流量形成总体的了解。

(四)比率分析方法。比率是两个相关联的经济数据的相对

比较,主要用除法,它体现各要素之间的内在联系。比率分析法计算简单,结果简单,便于审计人员判断。由于采用了相对数,它可以适用不同国家、地区、行业、规模的客户。

(五)经验分析方法。审计人员在长期的对某类问题的反复审计中,往往能摸索、总结出此类问题的表征。在审计实践中抓住这种表征,从现象分析至实质,就可以较为方便地核查问题。将审计人员的这种经验运用到计算机审计中,将问题的表征转化为特定的数据特征,通过编写结构化查询语句(SQL)或利用审计软件来检索,查询出可疑的数据,并深入核实、排查来判断、发现问题,便能实现根据审计经验构建个体分析模型的目的。

(六)多维数据分析。联机分析处理(on- line analysis processing,OLAP)工具为多维数据分析提供了十分有效的功能,它能够从多种角度对从原始数据中转化出来的、可真正为用户所理解的、并真实反映企业的多维特性的信息进行快速、一致、交互地存取,获得对数据的深入了解。

现代OLAP系统一般是以数据仓库为基础,即从数据仓库中抽取详细数据的一个子集,并经过必要的聚集存储到OLAP存储器中,供前端分析工具读取。建立数据仓库的目的,是为了支持数据分析和决策制定过程。数据仓库中存储的数据是面向分析目标的经提炼、加工后的数据集合。这种数据的存储结构为OLAP

实施提供了理想的环境。而OLAP作为一种多维查询和分析工具,是数据仓库功能的自然扩展,也是数据仓库中的大容量数据得以有效利用的重要保障。

二、应用数据挖掘技术发掘未知审计知识

常规数据分析方法利用的是审计人员已有的知识,这存在多处不足:一是审计人员的经验和知识是“有限的”,被审计对象行业跨度大,各单位情况千差万别,当审计经验无法运用时,面对海量数据真如“瞎子摸象”;二是数据是不断发展的,审计经验相对于数据往往是滞后的,这种不同步性给审计带来了巨大的潜在风险;三是对统一数据审计,不同的审计人员可能会得出完全不同的结论,知识的不对称性无法保障审计质量;四是传统的数据分析方法无法处理庞大的数据库系统;五是我国经济飞速发展,金融和各类市场的发育使审计范围和规模逐步扩大,信用危机以及各式各样的金融犯罪也对审计提出了更高的要求,电子化和网络化环境使得作弊手法越发隐蔽,数据难以追踪,审计无从下手。

为了解决日益严重的“数据丰富、知识贫乏”的问题,数据挖掘(Data Mining)技术在20世纪90年代应运而生,并得到了迅速发展。数据挖掘是针对日益庞大的电子数据应运而生的一种

新型信息处理技术。它一般排除人为因素而通过自动的方式,来发现数据中新的、隐藏的或不可预见的模式或活动。这些模式是指隐藏在大型数据库、数据仓库或其他大量信息存储的知识。利用数据仓库中包含的信息,数据挖掘可以发现审计人员原先根本没有想过的问题。它是在对数据集全面而深刻认识的基础上,对数据内在和本质的高度抽象和概括,也是对数据从理性认识到感性认识的升华。数据挖掘方法千差万别,不同的方法应用于不同的领域和对象。选取合适可行的挖掘算法对挖掘的效果起着重要的作用,它将直接影响到决策。在世纪运用过程中,很多挖掘方法不是单独使用的,它往往和其他方法结合起来,才能产生预期的效果。

(一)关联分析方法。关联(Association)分析技术是从操作数据库的所有细节或事务中抽取频繁出现的模式。这种方式促进了关联规则的发展,关联规则总结了一组事件或条目与其他事件或条目的相互联系。关联算法下的规则经常这样表述,如“包含A、B、C项的记录中有83%的记录也包含D、E项。”其中的百分比表示规则的可信程度,关联在规则两边可以有任意多个条目。货篮分析是关联分析中最常用的形式,用支持度(Support)和置信度(Confidence)两个属性来度量。组成“支持度-置信度”框架。经过分析购物者篮子中的产品,并使用关联规则算法对大量篮子进行比较,就可以发现特定产品之间的密切关系了。

相关文档
最新文档