蛋白质纯化

合集下载

蛋白质的分离纯化方法

蛋白质的分离纯化方法

蛋白质的分离纯化方法蛋白质是细胞中的重要生物大分子,具有多样的结构和功能。

为了研究蛋白质的性质和功能,需要将蛋白质从混合样品中分离纯化出来。

蛋白质的分离纯化方法有很多种,主要包括离心法、电泳法、层析法和亲和纯化法等。

下面将逐一介绍这些方法及其原理。

1. 离心法离心法是利用离心机将混合物中的蛋白质分离出来。

首先将细胞裂解,得到细胞裂解液,然后进行离心,以将细胞器、胞外物质和亲粒子(如蛋白质颗粒)分离。

离心可以根据不同物质的相对密度和大小进行分层分离,快速旋转离心机可以很好地分离出不同密度的颗粒。

2. 电泳法电泳法是将带电的蛋白质沿着电场移动,根据蛋白质的带电性质和大小分离的方法。

蛋白质可以根据电荷性质分为阴离子蛋白和阳离子蛋白,也可以根据亲水性质分为亲水性蛋白和疏水性蛋白。

电泳法常用的有SDS-PAGE、等电聚焦电泳等。

其中,SDS-PAGE可以根据蛋白质的分子量进行分离。

3. 层析法层析法是通过蛋白质与载体之间的亲和性或者分离介质之间的亲和性进行分离的方法。

层析法主要分为凝胶层析、离子交换层析、亲合层析和大小排阻层析等。

凝胶层析法是利用凝胶的网格结构来分离蛋白质,如凝胶过滤层析、凝胶过渡层析等。

离子交换层析法是利用蛋白质对离子交换树脂的吸附性质进行分离。

亲合层析法是通过亲和柱中的配体与蛋白质的亲和作用进行分离。

大小排阻层析法是根据蛋白质的分子量和形状进行分离。

4. 亲和纯化法亲和纯化法是利用特定的亲合剂与目标蛋白质之间的特异性亲和性进行分离纯化的方法。

亲和纯化主要包括亲和柱层析法、浸没纯化法、亲和剂电泳法等。

亲和柱层析法是将具有亲和填料的柱子与样品接触,通过洗脱再生的操作,将目标蛋白质从其他组分中分离纯化出来。

浸没纯化法是将特定亲合剂浸泡在蛋白质混合物中,使其与目标蛋白质发生亲和结合,然后以特定条件洗脱目标蛋白质。

亲和剂电泳法是负载亲和剂的凝胶片上进行电泳,使蛋白质与亲和剂结合,再通过电泳将其分离纯化出来。

蛋白质分离纯化原理

蛋白质分离纯化原理

蛋白质分离纯化原理
蛋白质分离纯化的原理主要基于其在溶液中的物理化学性质的差异。

以下是几种常见的蛋白质分离纯化方法及其原理:
1. 溶液pH调节:许多蛋白质在不同pH值下的带电性质不同,可以利用溶液pH的调节来使具有不同电荷的蛋白质发生电离,从而实现分离纯化。

例如,利用离子交换层析法,可以根据蛋白质的带电性质来选择性地吸附和洗脱目标蛋白质。

2. 亲和层析法:某些蛋白质具有与特定小分子结合的能力,可以利用这种亲和性质来实现蛋白质的分离纯化。

常见的亲和层析包括亲和吸附、亲和洗脱和竞争洗脱等步骤。

例如,利用亲和层析柱上特异性结合靶蛋白质的配体,可以选择性地富集和纯化目标蛋白质。

3. 分子量筛选:利用蛋白质的分子量差异进行分离纯化。

常见的方法包括凝胶过滤层析(Gel filtration chromatography)和凝胶电泳(Gel electrophoresis)。

在凝胶过滤层析中,根据蛋白
质的分子量大小,通过孔径大小不同的凝胶来分离不同大小的蛋白质。

而在凝胶电泳中,蛋白质会受到电场的作用而迁移,根据蛋白质在凝胶中的迁移速率和电荷大小来分离不同的蛋白质。

4. 溶剂萃取:利用不同溶剂对蛋白质的亲水性和亲油性差异进行分离的方法。

例如,利用氯仿和甲醇的溶解性差异,可以将蛋白质从溶液中提取至有机相中。

5. 冷沉淀:利用低温和高盐浓度的方法使蛋白质从溶液中沉淀出来。

具有固定温度和浓度阈值的蛋白质会在特定条件下沉淀而分离纯化。

四种蛋白纯化方法

四种蛋白纯化方法

四种蛋白纯化方法1. 溶液沉淀法溶液沉淀法是一种常用的蛋白纯化方法,适用于从复杂的混合物中分离目标蛋白。

该方法基于蛋白质在不同条件下的溶解度差异,通过添加盐类或有机溶剂来诱导蛋白质的沉淀。

步骤:1.样品制备:将待纯化的样品经过初步处理,如细胞破碎、组织切割等,得到含有目标蛋白的混合物。

2.溶解度测试:在不同条件下(如pH、温度、盐浓度等)测试目标蛋白质的溶解度,并确定最适合其沉淀的条件。

3.沉淀:根据前一步骤确定的最佳条件,向样品中添加盐类或有机溶剂,使目标蛋白质发生沉淀。

可以通过离心将沉淀物与上清液分离。

4.溶解:将沉淀物重新溶解在适当的缓冲液中,得到纯化后的目标蛋白。

优点:•简单易行,不需要复杂的设备和操作。

•适用于从复杂混合物中纯化目标蛋白。

缺点:•可能会导致非特异性沉淀,使得纯化后的蛋白含有杂质。

•沉淀方法对蛋白质的溶解度要求较高,不适用于所有蛋白。

2. 凝胶过滤法凝胶过滤法是一种基于分子大小的蛋白纯化方法,适用于分离不同分子量范围的蛋白。

该方法利用孔径可调的凝胶柱或膜来分离目标蛋白和其他小分子。

步骤:1.样品制备:将待纯化的样品经过初步处理,如细胞破碎、组织切割等,得到含有目标蛋白的混合物。

2.凝胶柱选择:根据目标蛋白的分子量范围选择合适孔径的凝胶柱或膜。

3.样品加载:将样品加载到凝胶柱上,并使用缓冲液进行洗涤,以去除小分子。

4.蛋白洗脱:通过改变缓冲液的组成或pH值,使目标蛋白从凝胶柱上洗脱下来。

5.收集纯化蛋白:将洗脱得到的蛋白收集起来,即可得到纯化后的目标蛋白。

优点:•可以根据分子量范围选择合适的凝胶柱,实现高效分离。

•纯化后的蛋白质纯度较高。

缺点:•操作相对复杂,需要一定的专业知识和技术。

•只适用于分子量差异较大的目标蛋白。

3. 亲和层析法亲和层析法是一种基于生物分子间特异性相互作用的蛋白纯化方法,适用于富含目标蛋白的混合物。

该方法利用目标蛋白与特定配体之间的亲和力进行分离和纯化。

蛋白质纯化的方法

蛋白质纯化的方法

蛋白质纯化的方法
蛋白质纯化是从复杂的混合物中分离出目标蛋白质的过程。

常用的蛋白质纯化方法包括:
1. 色谱:色谱是最常用的蛋白质纯化方法之一。

其中,离子交换色谱、凝胶过滤色谱、亲和色谱和逆向相色谱等都被广泛应用于蛋白质纯化。

2. 均一化:均一化是通过一系列技术将蛋白质从混合物中直接分离出来,如超声波、高压均质和离心等。

3. 电泳:凝胶电泳包括聚丙烯酰胺凝胶电泳(PAGE)和聚丙烯酰胺凝胶电泳(SDS-PAGE)等,常用于蛋白质的初步分离和纯化。

4. 过滤和浓缩:通过蛋白质的大小和分子量差异,利用滤膜和纤维素中心质等材料进行蛋白质的过滤和浓缩。

5. 溶剂析:溶剂析是利用溶剂中溶解度的突然变化,将蛋白质从某一浓度下聚集到另一浓度下。

6. 透析:透析是将混合物中的蛋白质通过半透膜与透析液进行分离,透析液可以去除杂质,同时保留目标蛋白质。

这些方法可以单独应用,也可以进行组合使用,以达到最佳的蛋白质纯化效果。

蛋白纯化方法

蛋白纯化方法

蛋白纯化方法一、离心。

离心是一种常用的蛋白纯化方法,它利用蛋白质在不同离心速度下沉降速度的差异来分离蛋白。

通过逐步调整离心速度和时间,可以将混合物中的不同颗粒分离开来,从而得到目标蛋白的富集样品。

离心方法操作简单,适用于大多数蛋白质的初步富集。

二、凝胶过滤层析。

凝胶过滤层析是一种分子大小分离的方法,通过在凝胶柱中筛选不同大小的蛋白质分子,实现蛋白的分离和纯化。

这种方法操作简便,分离效果好,适用于大多数蛋白质的纯化。

三、离子交换层析。

离子交换层析是一种利用蛋白质表面电荷差异进行分离的方法。

在离子交换柱中,蛋白质会根据其表面电荷与离子交换树脂发生相互作用,从而实现蛋白质的分离和纯化。

这种方法操作简单,分离效果好,适用于具有不同电荷特性的蛋白质。

四、亲和层析。

亲和层析是一种利用蛋白质与亲和层析介质之间特异性结合进行分离的方法。

通过选择合适的亲和层析介质,可以实现对特定蛋白质的高效分离和纯化。

这种方法操作简单,适用于特定蛋白质的纯化。

五、逆流层析。

逆流层析是一种利用蛋白质与逆流层析介质之间的亲和性进行分离的方法。

通过逆流层析柱中的逆流洗脱,可以实现对蛋白质的高效分离和纯化。

这种方法操作简单,适用于特定蛋白质的纯化。

总结。

蛋白纯化是生物化学研究中不可或缺的重要步骤,选择合适的纯化方法对于获得高纯度的蛋白样品至关重要。

本文介绍了几种常用的蛋白纯化方法,包括离心、凝胶过滤层析、离子交换层析、亲和层析和逆流层析,希望能为您的实验提供一些参考。

在实际操作中,需要根据目标蛋白的特性和实验要求选择合适的纯化方法,并结合实际情况进行优化,以获得高质量的蛋白样品。

祝您的实验顺利,取得理想的结果!。

蛋白质的纯化

蛋白质的纯化
• 利用有一定孔径范围的多孔凝胶作为固定相, (在其分离范围内)按分子大小将样品中各 组份分离开来。大分子先被洗脱,小分子后 被洗脱。
• 应用
• 脱盐 Sephadex G10、25 • 缓冲溶液交换 • 中间纯化 Sephadex G200 • 精纯 Sephacryl 、Superdex
常用填料
异:作用强弱 用途
亲和色谱
• 是利用生物分子间专一的亲和力而进行 分离的一种层析技术 。例如,抗原-抗 体、酶-底物或抑制剂、激素-受体、 糖蛋白—凝聚素等等。
• 目的蛋白纯品 制备抗体 偶联到基质上 层析分离
常用分析与检测技术
• 含量测定:凯氏定氮法、UV、Lowry 法、BCA法、Bradford法等
+- -+ + -+



+- - +

+-
- 蛋白质表面电荷疏水区域分布示意图

“盐促吸附层析”
在适当高盐浓度下,蛋白质的疏水残基与固定相上 的疏水配基产生吸附作用。
• 特点:它分离效率高,上样量大,特别 适合分离盐析沉淀的样品。
• 填料:烷基琼脂糖凝胶、苯基琼脂糖凝 胶,丁基琼脂糖凝胶,辛基琼脂糖凝胶 等。
常见问题分析
• 不吸附:缓冲溶液PH不对;离子强度太高; • 峰形不稳或出现奇异峰:柱床中有气泡或缓冲
溶液不纯 • 分辨率低:梯度太大;流速太高 • 前沿峰:柱过载;填充效果差;柱需再生 • 峰拖尾:样品在柱滤膜上或凝胶床顶部沉淀 • 基线随梯度上移:盐浓度临近CMC
疏水层析

+- - -+

• 等电点沉淀:其局限是,须事先了解蛋白的PI;且沉淀过程中可 能发生变性和失活,部分蛋白等电点沉淀后不容易溶解,因此较 少用于目的蛋白的沉淀。用于氨基酸、蛋白质及其他两性物质的 沉淀,但此法单独应用较少,多与其他方法结合使用。

常用的蛋白质纯化方法和原理

常用的蛋白质纯化方法和原理

常用的蛋白质纯化方法和原理蛋白质的纯化是生物化学研究中非常重要的一步,纯化蛋白质可以用于结构解析、功能研究、动态过程研究等各种生物学实验。

常用的蛋白质纯化方法有盐析法、凝胶过滤法、离子交换色谱法、亲和色谱法、逆渗透法和层析法等。

下面将对这些方法的原理和步骤进行详细阐述。

1. 盐析法盐析法是根据蛋白质在溶液中的溶解性随盐浓度的变化而变化的原理进行蛋白质的纯化。

该方法是利用蛋白质在高盐浓度下与水结合能力降低,使其从溶液中沉淀出来。

应用盐析法时,需要先调节溶液的盐浓度使蛋白质溶解,然后逐渐加入盐使其过饱和,蛋白质便会析出。

最后通过离心将蛋白质的沉淀物分离,得到纯化的蛋白质。

2. 凝胶过滤法凝胶过滤法是利用凝胶的pores 来分离蛋白质的一种方法。

凝胶通常是聚丙烯酰胺(也称作Polyacrylamide)或琼脂糖。

研究者将蛋白质样品加入到过滤膜上,较小的蛋白质能够通过pores,较大的分子则被排出。

通过选择不同大小的凝胶孔径,可以根据蛋白质的大小来选择合适数目的过滤膜。

凝胶过滤法需要进行缓冲液体积的连续换流,将蛋白质与其他杂质分离开来。

3. 离子交换色谱法离子交换色谱法是利用蛋白质与离子交换基质之间静电吸引力的不同而分离的方法。

离子交换基质通常是富含正离子或负离子的高分子材料。

在离子交换色谱法中,样品溶液在特定的pH 下流经离子交换基质,带有不同电荷的蛋白质能够与基质发生反应,吸附在基质上。

为了获得纯化蛋白质,需要通过梯度洗脱,逐渐改变缓冲液pH 或离子浓度,使吸附在离子交换基质上的蛋白质逐渐释放出来。

4. 亲和色谱法亲和色谱法是利用蛋白质与特定的配体相互作用特异性进行分离的方法。

配体可以是天然物质,如金属离子、辅酶或抗体,也可以是人工合成的结构。

在亲和色谱法中,样品溶液经过含有配体的固定相,与配体发生特异性相互作用,蛋白质与其它组分分离。

然后可以通过改变某些条件(如pH、温度或离子浓度)来洗脱纯化的蛋白质。

蛋白质纯化常用方法

蛋白质纯化常用方法

蛋白质纯化常用方法蛋白质纯化是一种分离高纯度蛋白质的过程,可用于研究物种的功能和结构。

蛋白质纯化可以是一个繁琐的过程,通常需要多步骤的分离和纯化。

以下是一些常见的蛋白质纯化方法。

一、离心分离离心分离是根据蛋白质的分子量和密度差异来分离不同的成分。

高速离心法可分离细胞质组分、胞器、膜蛋白和核酸等。

低速离心法可从混合物中净化纤维蛋白、酶、酰化酶等。

二、盐析盐析是将溶液中的蛋白质与一定饱和度的盐混合后,通过离子间作用而使蛋白质发生沉淀的过程。

盐的浓度、pH值、离子类型和温度等因素会影响到沉淀的生成和纯度。

盐析也可以通过凝胶过滤或离子交换等方法来提高效果和纯度。

三、凝胶柱层析凝胶柱层析是一种将混合物缓慢地通过一个由多种凝胶材料组成的列的过程。

该列可根据蛋白质大小、电荷、亲疏水性等特性进行选择。

通过这种方法,可以净化蛋白质并快速消除杂质、缓解蛋白结构等。

四、亲和层析亲和层析是一种利用配体与蛋白质间的特定的结合进行选择性分离的技术。

配体通常被共价结合在凝胶上, 一些常见的配体包括金属离子、抗体和亲和素等。

通过这种方法,可以高效且选择性地纯化蛋白质,并减少染料、盐和杂质的存在。

五、电泳电泳是根据蛋白质的电荷大小将充电的蛋白质分离开的过程。

根据电泳类型不同,可以区分不同细胞蛋白、酶、抗体等。

蛋白质电泳在生物化学实验室中广泛应用,是一种可视化分离的传统方法。

六、共沉淀共沉淀是基于化合物的亲和性,在溶液中同时存在的两种蛋白质之间发生非共价结合的过程。

通过共沉淀获得的纯化蛋白质收率较高但一般会伴随着蛋白质活性的损失。

总之,纯化蛋白质的过程需要结合样品的特性和分离纯化方式的优点和局限性,选择合适的技术来获得高纯度和活性的蛋白质。

蛋白分离纯化实验报告

蛋白分离纯化实验报告

一、实验目的1. 掌握蛋白质分离纯化的基本原理和操作方法。

2. 学习不同分离纯化技术的应用。

3. 提高实验操作技能和数据处理能力。

二、实验原理蛋白质是生物体内重要的生物大分子,具有复杂的结构和功能。

蛋白质分离纯化是研究蛋白质结构和功能的重要手段。

本实验采用多种分离纯化技术,包括:材料预处理、细胞破碎、离心分离、沉淀分离、膜过滤分离和色谱分离等,实现对蛋白质的分离纯化。

三、实验材料与仪器1. 实验材料:大肠杆菌细胞、质粒DNA、限制性内切酶、DNA连接酶、PCR产物、琼脂糖、电泳缓冲液、考马斯亮蓝R-250等。

2. 实验仪器:PCR仪、电泳仪、凝胶成像系统、离心机、移液器、玻璃棒、培养箱、无菌操作台等。

四、实验步骤1. 蛋白质提取(1)将大肠杆菌细胞培养至对数生长期。

(2)收集细胞,用玻璃棒搅拌,加入预冷的提取缓冲液,低温条件下进行细胞破碎。

(3)离心分离,取上清液即为蛋白质粗提液。

2. 蛋白质沉淀(1)向蛋白质粗提液中加入一定量的硫酸铵,搅拌溶解。

(2)离心分离,收集沉淀,即为蛋白质沉淀。

3. 蛋白质溶解(1)将蛋白质沉淀溶解于适量的缓冲液中。

(2)调整pH值,使蛋白质处于适宜的溶解状态。

4. 蛋白质分离纯化(1)离子交换色谱:将蛋白质溶液上样至离子交换柱,用不同浓度的盐溶液进行梯度洗脱,收集目标蛋白峰。

(2)凝胶过滤色谱:将蛋白质溶液上样至凝胶过滤柱,用缓冲液进行洗脱,收集目标蛋白峰。

5. 蛋白质鉴定(1)聚丙烯酰胺凝胶电泳:将分离纯化的蛋白质样品进行SDS-PAGE电泳,分析蛋白质分子量。

(2)考马斯亮蓝R-250染色:观察蛋白质条带,判断蛋白质纯度。

五、实验结果与分析1. 蛋白质提取:通过细胞破碎和离心分离,成功提取出大肠杆菌细胞中的蛋白质。

2. 蛋白质沉淀:硫酸铵沉淀法成功地将蛋白质从粗提液中分离出来。

3. 蛋白质溶解:调整pH值后,蛋白质成功溶解于缓冲液中。

4. 蛋白质分离纯化:离子交换色谱和凝胶过滤色谱成功地将目标蛋白从粗提液中分离出来。

蛋白质的分离、纯化

蛋白质的分离、纯化

胰岛素的分离纯化
胰岛素是一种由胰腺分泌的激素, 具有降低血糖的作用。胰岛素的 分离纯化通常采用离子交换色谱
和结晶法。
胰岛素的分离纯化对于治疗糖尿 病具有重要意义。纯化的胰岛素 可以用于注射,帮助糖尿病患者
控制血糖水平。
在胰岛素的分离纯化过程中,需 要特别注意避免蛋白质的聚集和 变性,以确保产品的安全性和有
利用半透膜,根据不同物质之间的分 子大小和形状差异进行分离。
色谱分离
利用不同物质在固定相和流动相之间 的吸附、分配等作用力差异进行分离。
蛋白质的纯度鉴定
化学分析
电泳分析
利用蛋白质中的特定化学基团进行定量分 析,如测定氨基酸组成和序列、测定肽键 等。
利用不同蛋白质在电场中的迁移率差异进 行分离,再通过染色或放射自显影等技术 进行检测。
有机溶剂沉淀法
利用有机溶剂降低水的介电常数,使 蛋白质发生沉淀。常用的有机溶剂有 乙醇、丙酮等。
离心法
高速离心法
利用高速旋转产生的离心力使溶液中 的悬浮颗粒沉降,从而实现蛋白质的 分离。
超速离心法
在高速离心的基础上,利用密度梯度 离心技术,将不同密度的蛋白质进行 分离。
膜分离法
微滤
利用微孔滤膜,将溶液中的悬浮颗粒和微生物截留,从而实现蛋白质的分离。
蛋白质在水中的溶解度 受pH、离子强度、温度 等因素影响。不同蛋白 质具有不同的溶解度。
蛋白质的分离纯化方法
沉淀法
利用蛋白质的溶解度差异,通过改变 某些条件(如pH、离子强度、温度 等)使蛋白质沉淀析出。
离心分离
利用离心机的高速旋转产生的离心力, 根据不同物质之间的密度和沉降系数 差异进行分离。
膜分离
血红蛋白的分离纯化通常采用色谱技术,如凝胶过滤色谱和离子交换色谱。这些技术可以根据蛋白质 的大小、电荷和疏水性等性质进行分离。

蛋白质纯化策略并举例

蛋白质纯化策略并举例

蛋白质纯化策略并举例蛋白质纯化是研究蛋白质特性和功能的重要步骤之一、纯化蛋白质的目的是将目标蛋白从混合物中分离出来,并去除其他干扰物质,以便进一步研究和利用。

蛋白质纯化的策略可以根据蛋白质的性质和混合物的组成选择不同的方法。

下面将介绍几种常用的蛋白质纯化策略。

1.借助溶液性进行纯化一种常见的方法是根据蛋白质在不同溶液条件下的溶解性来纯化蛋白质。

例如,如果目标蛋白质在酸性条件下溶解,在中性或碱性条件下不溶解,可以通过调整溶液的pH值来实现纯化。

另一个例子是,一些蛋白质在高盐浓度条件下溶解,在低盐浓度条件下沉淀,可以通过逐渐降低盐浓度来实现纯化。

2.借助分子大小进行纯化一些蛋白质具有与其他成分相比较明显的不同分子大小。

利用这种特性,可以选择适当的分离方式进行纯化。

一种常用的方法是通过凝胶过滤层析(gel filtration chromatography)纯化蛋白质。

该方法利用分子大小的差异,使大分子物质通过凝胶较快,小分子物质则需要在凝胶中较长时间停留,从而实现纯化目标蛋白质。

3.借助电荷进行纯化一些蛋白质具有特定的电荷性质,可以根据其在不同条件下的电荷状态选择适当的分离方式。

例如,离子交换层析(ion exchange chromatography)可以通过调整缓冲液的 pH 值,利用蛋白质与离子交换树脂之间的相互作用,实现目标蛋白质的纯化。

还有一种常见的技术是等电聚焦(isoelectric focusing),该方法是利用蛋白质在不同 pH 值下的等电点移动来实现纯化。

4.借助亲和性进行纯化5.借助活性进行纯化一些蛋白质具有特定的酶活性、配体结合性等活性,可以通过专一酶活性或配体结合性来进行纯化。

例如,利用蛋白质的酶活性,可以通过亲和层析和酶反应来实现目标蛋白质的纯化。

还可以根据蛋白质与配体结合的特异性,利用亲和层析等方法实现纯化。

以上是常见的几种蛋白质纯化策略及其举例。

需要注意的是,每种策略都有其适用范围和局限性,因此在纯化蛋白质时需要根据具体情况选择合适的策略,并结合多种方法进行组合使用,以达到最佳的纯化效果。

蛋白纯化方法

蛋白纯化方法

蛋白纯化方法蛋白纯化是生物化学领域中非常重要的一环,它是指将混合的蛋白质溶液中的目标蛋白质与其他蛋白质、核酸、多糖等生物大分子分离出来的过程。

蛋白纯化的方法有很多种,每一种方法都有其特定的应用场景和适用对象。

在本文中,我们将介绍几种常见的蛋白纯化方法,希望能对您有所帮助。

一、离心法。

离心法是一种常用的蛋白纯化方法,其原理是利用不同蛋白质在离心过程中受到的离心力不同而实现分离。

通过逐步增加离心力,可以将混合蛋白质溶液中的不同蛋白质分离出来。

离心法适用于分子量差异较大的蛋白质,但其操作过程较为繁琐,需要较长的离心时间。

二、凝胶过滤法。

凝胶过滤法是利用凝胶孔隙大小的差异将不同大小的蛋白质分离的方法。

在凝胶柱中,大分子蛋白质无法进入凝胶孔隙,只能在凝胶表面流动,从而被分离出来。

凝胶过滤法操作简单,适用于分子量较大的蛋白质。

三、离子交换层析法。

离子交换层析法是利用蛋白质表面带电性质的差异将蛋白质分离的方法。

在离子交换柱中,蛋白质会根据其带电性质的不同而被吸附在柱子上,通过改变缓冲液的离子浓度和pH值,实现蛋白质的分离。

离子交换层析法适用于带电性质不同的蛋白质。

四、亲和层析法。

亲和层析法是利用亲和剂与目标蛋白质之间的特异性结合来实现分离的方法。

亲和剂可以是金属离子、抗体、配体等,它们与目标蛋白质具有特异的结合能力,通过在柱子中固定亲和剂,可以将目标蛋白质特异地吸附在柱子上,然后通过改变条件将其洗脱出来。

亲和层析法适用于具有特异结合亲和剂的蛋白质。

五、透析法。

透析法是一种利用半透膜将小分子溶质与大分子溶质分离的方法。

在透析过程中,溶液被置于半透膜袋中,通过半透膜的选择性通透性,可以将小分子溶质从大分子溶质中分离出来。

透析法操作简单,适用于蛋白质与小分子溶质的分离。

总结。

蛋白纯化是生物化学研究中非常重要的一环,不同的蛋白纯化方法适用于不同类型的蛋白质。

在进行蛋白纯化时,需要根据目标蛋白质的特性选择合适的纯化方法,以实现高效、纯度高的蛋白质分离。

蛋白质分离纯化常用哪些方法

蛋白质分离纯化常用哪些方法

蛋白质分离纯化常用哪些方法
蛋白质分离纯化方法有:
1、沉淀,
2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。

根据支撑物不同,有薄膜电泳、凝胶电泳等。

3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。

4、层析: a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。

如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。

b.分子筛,又称凝胶过滤。

小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。

5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。

不同蛋白质其密度与形态各不相同而分开。

标注:发布时请加上“文章来源:莱特莱德”,否则视为侵权。

谢谢!。

蛋白质的分离纯化实验报告

蛋白质的分离纯化实验报告

蛋白质的分离纯化实验报告一、实验目的1、掌握蛋白质分离纯化的基本原理和方法。

2、学会运用不同的技术手段对蛋白质进行提取、分离和纯化。

3、熟悉蛋白质纯度鉴定的常用方法。

二、实验原理蛋白质是生物体中重要的大分子化合物,其分离纯化是研究蛋白质结构和功能的重要前提。

蛋白质的分离纯化主要依据其物理化学性质的差异,如分子大小、电荷、溶解度、亲和力等。

常见的分离纯化方法包括:1、盐析法:通过向蛋白质溶液中加入中性盐,如硫酸铵,使蛋白质溶解度降低而沉淀析出。

2、凝胶过滤层析:利用凝胶颗粒的多孔网状结构,根据蛋白质分子大小进行分离。

3、离子交换层析:基于蛋白质所带电荷的不同,在离子交换树脂上进行吸附和解吸。

4、亲和层析:利用蛋白质与特定配体之间的特异性亲和力进行分离。

三、实验材料与设备1、材料新鲜的动物组织(如肝脏)各种试剂,包括硫酸铵、磷酸盐缓冲液、离子交换树脂、亲和配体等。

2、设备离心机层析柱紫外分光光度计电泳仪四、实验步骤1、蛋白质的提取将新鲜的动物组织剪碎,加入适量的磷酸盐缓冲液,在冰浴中匀浆。

低温离心(4℃,10000 rpm,20 min),收集上清液,即为粗提的蛋白质溶液。

2、盐析沉淀在上清液中缓慢加入硫酸铵粉末,边加边搅拌,使其饱和度逐渐增加到 50%。

搅拌 30 min 后,低温离心(4℃,10000 rpm,20 min),收集沉淀。

3、凝胶过滤层析装柱:将凝胶颗粒填充到层析柱中,用缓冲液平衡柱子。

上样:将盐析沉淀溶解后,缓慢上样到层析柱中。

洗脱:用缓冲液进行洗脱,收集不同洗脱峰的流出液。

4、离子交换层析装柱:将离子交换树脂填充到层析柱中,用起始缓冲液平衡柱子。

上样:将凝胶过滤层析收集的样品上样到离子交换层析柱中。

洗脱:采用梯度洗脱的方法,逐渐改变缓冲液的离子强度,收集洗脱峰。

5、亲和层析装柱:将亲和配体偶联到层析介质上,填充到层析柱中,用平衡缓冲液平衡柱子。

上样:将离子交换层析收集的样品上样到亲和层析柱中。

蛋白质分离纯化的方法及原理

蛋白质分离纯化的方法及原理

蛋白质分离纯化的方法及原理蛋白质啊,那可是生命活动中超级重要的大分子呢!就好像是我们身体这个大机器里的关键零件。

要把蛋白质从复杂的混合物中分离纯化出来,就像是从一堆宝贝里挑出最闪亮的那颗宝石。

先来说说沉淀法吧。

这就好比是在一场混乱的舞会中,让特定的人沉淀下来。

通过改变溶液的条件,比如酸碱度、盐浓度等,让蛋白质乖乖地聚集在一起,形成沉淀,然后就能把它们分离出来啦。

就好像有些时候,环境一变,有些人就会自然而然地聚集到一起一样。

还有层析法,这就像是让蛋白质们去参加一场特殊的赛跑,根据它们各自的特点和能力,在不同的赛道上跑,最后就能把它们区分开来啦。

比如凝胶过滤层析,小分子能轻松地在凝胶的缝隙中穿梭,而大分子就会被拦住,这不就分出来了嘛。

离心法也很厉害哦!就像是把一堆东西扔到一个高速旋转的圆盘上,重的就会被甩到外面,轻的就留在中间。

蛋白质也是这样,通过离心,不同重量的蛋白质就会去到不同的地方。

亲和层析呢,就像是给蛋白质设了一个专门的陷阱,只有特定的蛋白质才能掉进去。

利用蛋白质和某些物质的特殊亲和力,就能把目标蛋白精准地抓出来啦。

膜分离法呢,就像是给蛋白质过筛子,合适大小的就能通过,不合适的就被拦住了。

这些方法各有各的奇妙之处,各有各的用处。

就像我们生活中的各种工具,有的适合敲钉子,有的适合拧螺丝。

在实际操作中,可不是随便用一种方法就可以的哦!得根据蛋白质的性质、实验的目的等多方面来考虑。

这可不像在超市随便挑个东西那么简单呢!有时候可能需要几种方法结合起来用,才能得到我们想要的纯净的蛋白质。

想想看,如果没有这些巧妙的方法,我们怎么能深入地研究蛋白质的功能和结构呢?怎么能更好地理解生命的奥秘呢?所以说呀,这些蛋白质分离纯化的方法可真是太重要啦!它们就像是打开生命宝库的钥匙,让我们能一点点地揭开生命的神秘面纱。

总之,蛋白质分离纯化的方法丰富多彩,每一种都有着独特的魅力和作用。

我们要好好地利用它们,去探索那无尽的科学奥秘呀!。

蛋白质纯化的方法

蛋白质纯化的方法

蛋白质纯化的方法
蛋白质纯化的方法有多种,包括但不限于以下几种:
1. 层析法:包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。

2. 电泳法:包括区带电泳、等电点聚焦等。

3. 有机溶剂提取:与水互溶的有机溶剂(如甲醇、乙醇)能使一些蛋白质在水中的溶解度显著降低,因此,控制有机溶剂的浓度可以分离纯化蛋白质。

4. 盐析:将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。

5. 免疫沉淀法:利用特异抗体识别相应的抗原蛋白,并形成抗原抗体复合物的性质,可从蛋白质混合溶液中分离获得抗原蛋白。

6. 透析和超滤法:透析利用透析袋把大分子蛋白质与小分子化合物分开;超滤法应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的。

以上方法可以根据实际需要进行选择,必要时可以组合使用。

请注意,不同方法的效果和适用范围可能存在差异。

蛋白质纯化方法

蛋白质纯化方法

蛋白质纯化方法蛋白质作为生物体内重要的功能分子之一,其纯化方法的选择对于生物学研究和工业生产中的蛋白质制备具有至关重要的意义。

纯化蛋白质能够去除与目标蛋白质无关的其他生物分子,从而提高蛋白质的纯度和活性。

在本文中,将介绍几种常用的蛋白质纯化方法。

一、溶液层析溶液层析是一种常用的蛋白质纯化方法。

该方法利用分子大小、电荷和亲水性等差异,将混合物中的蛋白质分离开来。

常见的溶液层析方法包括凝胶层析、离子交换层析和亲和层析等。

1. 凝胶层析凝胶层析是一种基于分子大小的分离方法。

常见的凝胶材料有聚丙烯酰胺凝胶、聚丙烯酰胺薄膜和聚糖凝胶等。

这些凝胶材料具有不同的孔隙结构,通过选择合适孔径的凝胶材料,可以将目标蛋白质与其他分子分离开来。

2. 离子交换层析离子交换层析是一种基于分子电荷的分离方法。

该方法利用纯化材料表面的离子交换基团与蛋白质间的电荷交互作用,将蛋白质分离开来。

阳离子交换材料选择带有阴电荷的材料,而阴离子交换材料选择带有阳电荷的材料。

3. 亲和层析亲和层析是一种基于分子亲和性的分离方法。

该方法利用纯化材料表面的特定化合物与目标蛋白质之间的特异性相互作用,将目标蛋白质与其他分子分离开来。

常见的亲和层析材料有亲和树脂和亲和薄膜等。

二、电泳分离电泳分离是一种基于蛋白质电荷和大小的分离方法。

常见的电泳分离方法包括SDS-PAGE和等电聚焦。

1. SDS-PAGESDS-PAGE是一种基于蛋白质分子大小的分离方法。

该方法利用十二烷基硫酸钠(SDS)将蛋白质分子包裹成带负电的复合物,使其在凝胶电泳时按照分子大小分离开来。

通过引入分子量标记物,可以根据标记物的迁移距离来确定目标蛋白质的分子量。

2. 等电聚焦等电聚焦是一种基于蛋白质电荷的分离方法。

该方法利用胶体颗粒的电动流动使蛋白质在电泳过程中在不同的pH值时停止运动,从而达到分离的目的。

等电聚焦在凝胶上形成pH梯度,蛋白质在梯度中由于电荷变化发生位置变化。

三、高效液相色谱高效液相色谱(HPLC)是一种高效的蛋白质纯化方法。

四种蛋白纯化的有效方法

四种蛋白纯化的有效方法

四种蛋白纯化的有效方法四种蛋白纯化的有效方法在进行蛋白质研究和酶工程等领域的实验过程中,常常需要将目标蛋白从复杂的混合物中纯化出来。

蛋白纯化的目的是获取高纯度的目标蛋白样品,以便进一步进行结构和功能研究。

然而,由于蛋白质的复杂性以及其在混合物中的低浓度,蛋白纯化常常面临一系列的挑战。

为了克服这些挑战,科学家们开发了多种蛋白纯化的方法。

在本文中,我们将介绍四种常见而高效的蛋白纯化方法,并探讨其原理和适用性。

1. 亲和层析法:亲和层析法是一种利用目标蛋白与配体之间的特异性结合进行纯化的方法。

这种方法基于目标蛋白与配体之间的亲和力,通过设计具有高亲和性的配体来选择性地结合目标蛋白。

在实验中,我们可以将配体固定于固相材料上,例如琼脂糖或石蜡烃树脂,并将载有目标蛋白的混合物与这些固定化的亲和基质进行接触。

随后,非特异性蛋白质被洗脱,而目标蛋白则被保留下来。

目标蛋白可以通过改变条件(例如改变pH值或添加竞争性配体)来洗脱。

亲和层析法的优点在于具有高选择性和高纯度的优势。

然而,由于亲和剂的设计和合成需要具有相关专业知识,并且选择适当的配体是关键。

亲和层析法在不同的纯化过程中的适用性会有所不同。

2. 凝胶过滤层析法(Gel Filtration Chromatography):凝胶过滤层析法是通过分子量的差异将混合物中的蛋白质分离的一种方法。

凝胶过滤层析法是利用凝胶材料,例如琼脂糖或琼脂糖-聚丙烯酰胺凝胶,通过分子在凝胶孔隙中的渗透性而将蛋白分离开来。

较大的蛋白分子无法进入凝胶孔隙,因此会在凝胶的表面留下。

较小的蛋白分子则能够渗透进入凝胶孔隙中,因此会相对于较大的蛋白分子更早地溢出。

凝胶过滤层析法的优点在于操作简单、速度快,且可以对蛋白进行某种程度的分离。

然而,该方法的分离效果受到蛋白质在凝胶中的体积效应的限制,因此对于体积较大的蛋白分子,凝胶过滤层析可能无法实现理想的分离效果。

3. 离子交换层析法:离子交换层析法是一种基于蛋白与离子交换材料之间的电荷相互作用进行纯化的方法。

蛋白质分离纯化主要方法

蛋白质分离纯化主要方法

离子互换树脂 、纤维素、
葡聚糖
带配基旳sepharose
或sephadex
多缓冲互换剂(与带有多种电
荷基团旳配体相偶联旳
sepharose 6B)
15
吸附层析(absorption chromatography)
原理: 以吸附剂作为固定相,选择合适旳溶剂作流
动相。因为多种物质旳极性不同,被吸附剂吸附 旳程度和在流动相中旳溶解度不同。层析时,当 流动相从固定相上流过时,各组分也就不同程度 地被溶解(解吸),然后又再被吸附、再溶解再 吸附,从而以不同速度随流动相向前移动。
液),这些基质能与待分离旳化合物进行可逆
旳吸附,溶解,互换等作用。它对层析旳效果
起着关键旳作用。
12/1/2023
10
2.流动相: 在层析过程中,推动固定相上待分离旳
物质朝着一种方向移动旳液体、气体或超 临界体等,都称为流动相。柱层析中一般 称为洗脱剂,薄层层析时称为展层剂。它 也是层析分离中旳主要影响原因之一。
12/1/2023
2
沉淀法
盐析法、有机溶剂沉淀法、重金属盐
沉淀法、生物碱或酸类沉淀法、加热 变性沉淀法

离子互换层析 吸附层析

层析法
凝胶过滤(分子筛)

亲和层析

等电汇集层析

电学法
电泳法

等电聚焦
离心法
透析
膜分离技术 超滤
12/1/2023
3
纯度鉴定 分子量测定
层析法:凝胶过滤; 高效液相色谱法(HPLC) 电泳法:PAGE、梯度凝胶电泳、等电聚焦电泳等 免疫化学法:专一旳沉淀线
12/1/2023
42

简述蛋白质分离纯化的方法

简述蛋白质分离纯化的方法

简述蛋白质分离纯化的方法
蛋白质可是生命活动中超级重要的物质呀!那要怎么把它分离纯化出来呢?这可有不少方法呢!
首先说说盐析法吧。

就是向蛋白质溶液中加入中性盐,随着盐浓度的增加,蛋白质的溶解度会降低而沉淀出来。

操作起来也不难,先把蛋白质溶液准备好,然后慢慢加入盐,边加边搅拌,注意盐的浓度可不能一下子加太高哦,不然蛋白质可能会变性。

还要注意搅拌要均匀,这样才能保证效果好。

接下来谈谈层析法。

这就像是给蛋白质们设置了一场赛跑,根据它们的不同特性在层析柱中跑不同的速度,从而实现分离。

过程中要注意选择合适的层析柱和洗脱液,这可直接关系到分离的效果呢。

而且操作要精细,不能马虎。

在这个过程中,安全性可是很重要的呀,要避免使用有毒有害的试剂,保证实验人员的安全。

同时,稳定性也得保证,柱子不能漏呀,洗脱液的流速要稳定呀,不然怎么能得到好结果呢。

那这些方法有啥用呢?哎呀,用处可大啦!在生物制药领域,能分离纯化出高纯度的蛋白质药物,这可是能救命的呀!在科研中,能帮助我们更好地研究蛋白质的结构和功能。

优势也很明显呀,比如盐析法简单易行,层析法分离效果好。

就说在新冠疫苗的研发中吧,不就用到了蛋白质分离纯化的技术嘛。

通过这些方法,把新冠病毒的相关蛋白质分离出来,然后进行深入研究和开发疫苗,这多厉害呀!这可实实在在地看到了这些方法的效果呀!
所以呀,蛋白质分离纯化的方法真的超级重要,是我们探索生命奥秘和推动医学发展的有力工具呀!它们就像是一把把钥匙,能打开蛋白质世界的大门,让我们更好地了解和利用蛋白质的神奇力量!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质纯化一.可溶性蛋白的纯化1. 盐析硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。

用此方法可以将主要的免疫球从样品中分离,是免疫球蛋白分离的常用方法。

高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。

各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。

这种方法称之为盐析。

盐浓度通常用饱和度来表示。

硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。

硫酸铵分级沉淀的方法其实很简单,一般就是用浓度从低到高的硫酸铵去沉淀蛋白,可以直接在液体里加固体的硫酸铵就可以,到一定的浓度离心沉淀,上清继续加硫酸铵,再离心,上清再加硫酸铵,然后用电泳检测或者活性检测沉淀的效果。

2. 亲和纯化2.1. Ni柱纯化2.1.1.Ni柱纯化操作流程1. 蛋白质上清与Ni柱填料在4℃下进行充分旋转混合(≥60 min);也可以让上清液缓慢流经Ni柱(≥6 sec/drop)。

2. 上清与填料混合后,低速离心(≤ 500 x g),吸去大部分上清,然后将填料悬起,加入柱子中。

也可以直接上柱。

3. 上样后先用5-10 柱体积(CV)的lysis buffer冲洗不结合的杂蛋白,然后再用低浓度的咪唑洗去弱结合的杂蛋白。

在不知道清洗条件时可以进行咪唑浓度梯度洗脱(如10,20,30,40,50 mM),然后在纯度和得率之间选择最合适的咪唑浓度来进行清洗。

4. 清洗结束后,用高浓度咪唑(如200 mM)洗脱目的蛋白质。

5. 洗脱下来的目的蛋白质除电泳留样外,透析除去咪唑,并换成下一步所需的buffer。

6. 一般情况下his tag不需要切除。

当需要切除时:的蛋白质最少1)TEV:咪唑对其没有影响,可以在洗脱后直接酶切。

100 OD280的TEV切过夜,温度20或4℃(20℃的效率是4℃的三倍)。

可用1 OD2802) Thrombin:必须先除去咪唑才能进行酶切。

在1 x PBS中,10 U/mg蛋白质,4或20℃酶切过夜。

可适当加大酶量或延长酶切时间。

2.1.2.Ni柱纯化注意事项1.新的Ni柱填料存放于20%乙醇中(体积约为1:1)。

在取用前,请先估算目的蛋白质的量,再决定取用的填料体积(Qiagen的Ni-NTA Superflow最大结合能力为30 mg protein/ml beads)。

填料用量不要大大超过所需量,不然会结合较多的杂蛋白,难以清洗干净。

O冲洗,除去乙醇。

再2.新填料使用前,要先进行处理和平衡。

填料先用ddH2用至少5 CV的buffer进行平衡。

3. 在使用前后,要注意不能让填料放干,不然会影响纯化的效果。

O清洗,3. 每次使用结束后,填料用高浓度咪唑(如500 mM)清洗,再用ddH2最后保存在20%乙醇中。

4. 不推荐Ni柱在柱酶切,这样效率很低。

5. 多次使用后填料需再生。

再生步骤为:5 CV HO→ 3 CV 2% SDS→ 1 CV225% EtOH→ 1CV50% EtOH→ 1 CV75% EtOH→ 5 CV100% EtOH→1 CVO→ 5 CV 100 75% EtOH→ 1CV 50% EtOH→ 1 CV 25% EtOH→ 1 CV H2mM EDTA,pH8.0 →H2O→ 2 CV100 mM NiSO4→ 2 CV H2O→20% EtOH。

2.1.3. Q & A1. 目的蛋白质挂柱能力差?可能是由于所用buffer中含有过多的detergent或还原剂如 -ME等。

Ni柱填料和试剂兼容性请查阅手册。

还可能是由于蛋白质折叠不正常,或折叠时将his tag 包裹在内所致。

可以采用的方法是:1)控制破菌条件,不可以过于剧烈;2)改变buffer条件,可能有利于蛋白质折叠稳定;3)将his tag构建到蛋白质另一端。

2. 杂蛋白很多,无法清洗干净?解决方案有:采用更高浓度的咪唑进行清洗;在破菌或结合时加入少量咪唑(如10 mM);减少填料使用量。

3. 蛋白质洗脱不下来?解决方案有:采用更高浓度的咪唑进行洗脱;更换buffer。

4. 蛋白质发生降解?更换蛋白质抑制剂,或多种抑制剂混合使用;截取其它truncates。

2.2. GST柱纯化2.2.1.GST柱纯化操作流程1. 蛋白质上清与GST填料在4℃下进行充分旋转混合,或可以让上清液缓慢流经GST柱(≥6 sec/drop);2. 在充分混合后,将混有填料的上清load上柱子;3. 用大量的lysis buffer(1 x PBS)清洗GST柱,至没有杂蛋白流出(用bradford 检测);4. 新鲜配制洗脱液:50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0。

将5-10CV的洗脱液加到柱子上,静置一段时间(如10 min),再缓慢流出(≥6 sec/drop)。

5. 洗脱后酶切:洗脱后的GST融合蛋白质溶液先透析除去reduced glutathione,然后加入PreScission或Thrombin进行酶切。

6. 在柱酶切:在洗脱之前,吸取beads,500 x g离心5 min,弃上清。

然后加入酶液,进行酶切。

PreScission:酶切buffer:50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5。

10 U/mg protein,5℃酶切4 hr。

可适当加大酶量或延长酶切时间。

Thrombin:在1 x PBS中,10 U/mg protein,4或20 ℃酶切过夜。

酶切结束后,用3-5 CV的1 x PBS冲洗柱子,收集目的蛋白质。

最后用洗脱液清洗beads上残余的GST和GST融合蛋白。

2.2.2.GST柱纯化注意事项1.GE的Glutathion Sepharose 4B Fast Flow最大结合能力为10 mg protein/ml beads。

2. GST填料使用前用至少5 CV的buffer平衡,buffer的pH范围为:6.5—8.0。

3. GST填料机械强度较差,所以在混合时要注意控制力度和时间。

O 4. 洗脱后,GST填料可用6 M盐酸胍或8 M尿素清洗,再生。

然后用ddH2清洗后浸泡在20%乙醇中。

2.2.3.Q & A1. 目的蛋白质挂柱能力差?解决方案有:1)保证充分混匀;2)检测蛋白质溶液的pH值是否在合适范围内;3)检查蛋白质溶液是否加入过多的DTT(> 1 mM)。

2. 目的蛋白质无法洗脱?提高reduced glutathione浓度,但注意不要改变pH值;延长洗脱时间,并不定期吹打;在洗脱液中加入一些非离子型detergents如0.1% Triton X-100。

3. GST切不下来?一般情况下,洗脱后酶切比在柱酶切效率高,所以选择洗脱后酶切;可以提高酶的用量,升高酶切温度,延长酶切时间;更换相应载体,用另一种酶进行酶切。

2.3. IgG纯化纯化操作流程如下:2.3.1.制备单克隆抗体1. 购来F1代小鼠,或Bib/c小鼠,饲养一周;2. 腹腔注射Plaston 200 ul/只,饲养10天;3. 将特定细胞注入腹腔;4. 一周起观察小鼠腹水的产生的情况,随时采集腹水。

2.3.2.硫酸铵沉淀1. 取来的腹水用生理盐水以1:1比例稀释;2. 稀释后腹水用滤纸过滤,去除脂蛋白及杂质,得到澄清的上清溶液;3. 在上清中缓慢地边搅拌边加入等体积硫酸铵饱和溶液(4 ℃下操作);4. 随硫酸铵加入量的增加,溶液逐渐变混浊,加完后再搅拌10 min左右,4 ℃过夜;5. 将放置过夜的悬浊液4 ℃,7000 rpm离心20 min,弃上清,得到乳白色沉淀;6. 用适量50%硫酸铵重悬沉淀,重复以上操作一次,沉淀-30 ℃保存备用。

2.3.3.亲和层析1. 将经20mM PBS,pH7.4透析过夜的腹水与ProteinA 混合过夜;2. 将混合过夜的样品上柱,收集流出液;3. 用20mM PBS,pH7.4 buffer洗柱子,约10个柱体积;4. 用0.1M甘氨酸pH3.0洗脱,洗脱前预先在每个EP管中加入50 ul中和溶液(2M Tris)。

5. OD280读数;6. 亲和力好的,将流出液与ProteinA重新混合,4 ℃过夜,准备第二次、第三次纯化;亲和力不理想的,将流出液再与ProteinG 混合,4 ℃过夜;7.电泳鉴定。

2.3.4.IgG的Fab片段的获得2.3.4.1.木瓜蛋白酶酶切方法1. 酶切体系如下:0.5 M EDTA 1 ul1 M cystine 100 ul10 mg/ml papain 6 ul酶切缓冲液1767 ul(0.1 M NaAc,1 mM EDTA,用醋酸调pH值至5.5)37 ℃激活10 min;2. 在上述酶切反应体系中加入16 mg/ml的mAb共126 ul,反应总体积为2 ml,将反应液于37 ℃酶切5 hrs;3. 封闭:避光加入92 mg/ml Iodoacetamide (IIA) (碘乙酰酶)326 ul ,避光反应40 min ;4. 透析:对20 mM Tris-HCl ,pH 8.9,更换2次。

2.3.4.2.阴离子交换柱(5 ml Q FF 柱)纯化Fab 片段 阴离子交接缓冲液:Buffer A :20 mM Tris-HCl ,pH 8.9;Buffer B :20 mM Tris-HCl ,pH 8.9,1 M Nacl (含0.02% NaN 3)。

以50 min 时间梯度达至100% buffer B ;约4分钟后开始出现蛋白峰,其中峰1为Fab ,如下图所示。

PEAK I PEAK II PEAK IIPEAK I3. 凝胶过滤3.1. 操作流程(配合AKTA操作)1. 在使用分子筛之前,请先确定目的蛋白质在过分子筛的buffer中是稳定的。

如果目的蛋白质所处的buffer和过分子筛的buffer有所不同时,请确定在溶液改变过程中目的蛋白质不会发生沉淀。

否则,不可以进行凝胶过滤操作。

2. 根据蛋白质的分子量大小、总量、总体积和实验目的,选择合适的分子筛进行实验。

24 ml分子筛价格较高且使用寿命较短,所以它仅用于定性分析或蛋白质提取困难且总量较少时的纯化,不可以用于大规模纯化。

3. 使用者用自己的账户登录,将分子筛分子筛连接到AKTA上,先后用新鲜配O和buffer平衡柱子(至少1.5 CV),至基线走平。

置并除气的ddH24. 蛋白质样品上样前必须高速离心13000 rpm x 10 min,取上清上样。

5. 在出峰时进行样品的收集。

相关文档
最新文档