密码学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密码学综述姓名:陶佳杰
学号:10053430 专业名称:网络工程
2014年3月2日
密码学的发展
前言
密码学(在西欧语文中,源于希腊语kryptós“隐藏的”,和gráphein“书写”)是研究如何隐密地传递信息的学科。
在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。
著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。
密码学是信息安全等相关议题,如认证、访问控制的核心。
密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。
密码学也促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。
密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。
密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。
依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。
密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
文献研究
密码学的产生
密码学在公元前400多年就早已经产生了,正如《破译者》一书中所说“人类使用密码的历史几乎与使用文字的时间一样长”。
密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。
接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。
例如我国古代的烽火就是一种传递军情的方法,再如古代的兵符就是用来传达信息的密令。
就连闯荡江湖的侠士,都有秘密的黑道行话,更何况是那些不堪忍受压迫义士在秘密起义前进行地下联络的暗语,这都促进了密码学的发展。
事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。
例如在希特勒一上台时,德国就试验并使用了一种命名为“谜”的密码机,“谜”型机能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约4.2万年才能将所有的密钥可能组合试完,希特勒完全相信了这种密码机的安全性。
然而,英国获知了“谜”型机的密码原理,完成了一部针对“谜”型机的绰号叫“炸弹”的密码破译机,
每秒钟可处理2000个字符,它几乎可以破译截获德国的所有情报。
后来又研制出一种每秒钟可处理5000个字符的“巨人”型密码破译机并投入使用,至此同盟国几乎掌握了德国纳粹的绝大多数军事秘密和机密,而德国军方却对此一无所知;太平洋战争中,美军成功破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,击毙了山本五十六,导致了太平洋战争的决定性转折。
因此,我们可以说,密码学为战争的胜利立了大功。
在当今密码学不仅用于国家军事安全上,人们已经将重点更多的集中在实际应用,在你的生活就有很多密码,例如为了防止别人查阅你文件,你可以将你的文件加密;为了防止窃取你钱物,你在银行账户上设置密码,等等。
随着科技的发展和信息保密的需求,密码学的应用将融入了你的日常生活。
密码分类
1、摩斯密码
最早的摩尔斯电码是一些表示数字的点和划。
数字对应单词,需要查找一本代码表才能知道每个词对应的数。
用一个电键可以敲击出点、划以及中间的停顿。
虽然摩尔斯发明了电报,但他缺乏相关的专门技术。
他与艾尔菲德·维尔签定了一个协议,让他帮自己制造更加实用的设备。
艾尔菲德·维尔构思了一个方案,通过点、划和中间的停顿,可以让每个字
元和标点符号彼此独立地发送出去。
他们达成一致,同意把这种标识不同符号的方案放到摩尔斯的专利中。
这就是现在我们所熟知的美式摩尔斯电码,它被用来传送了世界上第一条电报。
2、四方密码
四方密码是一种对称式加密法,由法国人Felix Delastelle(1840年–1902年)发明。
这种方法将字母两个一组,然后采用多字母替换密码。
四方密码用4个5×5的矩阵来加密。
每个矩阵都有25个字母(通常会取消Q或将I,J视作同一样,或改进为6×6的矩阵,加入10个数字)。
首先选择两个英文字作密匙,例如example和keyword。
对于每一个密匙,将重复出现的字母去除,即example要转成exampl,然后将每个字母顺序放入矩阵,再将余下的字母顺序放入矩阵,便得出加密矩阵。
3、希尔密码
希尔密码是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。
每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果模26。
注意用作加密的矩阵(即密匙)在<math>\mathbb_^n</math>必须是可逆的,否则就不可能译码。
只有矩阵的行列式和26互质,才是可逆的。
4、波雷费密码
波雷费密码是一种对称式密码,是首种双字母取代的加密法。
关于波雷费密码最早的纪录出现在一份1854年3月26日由查尔斯·惠
斯登签署的文件。
惠斯登的朋友波雷费勋爵普及了这个加密法。
最初英国外交部拒绝使用这种密码,认为它太复杂。
当惠斯登证明邻近学校的四个男孩中,有三个可以在15分钟内学会这种方法,外交部副秘书长的回应是:「这是有可能的,可惜你不能教晓那些高层人员。
」在第二次布尔战争和第一次世界大战,英军用了它;在二战,澳大利亚人也用了。
波雷费密码所用的工具很少,而且很快便能加密讯息。
它主要用来加密重要而又不关键的讯息。
当时,敌军的密码分析员很快解出密码,可惜得的讯息都不重要。
现时,波雷费密码被视为十分不安全的。
1914年,Joseph O. Mauborgne刊出了19页解密法。
1选取一个英文字作密匙。
除去重复出现的字母。
将密匙的字母逐个逐个加入5×5的矩阵内,剩下的空间将未加入的英文字母依a-z 的顺序加入。
(将Q去除,或将I和J视作同一字。
)
2将要加密的讯息分成两个一组。
若组内的字母相同,将X(或Q)加到该组的第一个字母后,重新分组。
若剩下一个字,也加入X 字。
3在每组中,找出两个字母在矩阵中的地方。
若两个字母不同行也不同列,在矩阵中找出另外两个字母,使这四个字母成为一个长方形的四个角。
若两个字母同行,取这两个字母右方的字母(若字母在最右方则取最左方的字母)。
若两个字母同列,取这两个字母下方的字母(若字母在最下方则取最上方的字母)。
新找到的两个字母就是原本的两个字母加密的结果。
5、仿射密码
仿射密码是一种替换密码。
它是一个字母对一个字母的。
6、三分密码
三分密码由Felix Delastelle发明(他也发明了四方密码和二分密码)。
二分密码是二维的,用5×5(或6×6)的矩阵加密,但三分密码则用3×3×3的。
它是第一个应用的三字母替换密码。
首先随意制造一个3个3×3的Polybius方格替代密码,包括26个英文字母和一个符号。
然后写出要加密的讯息的三维坐标。
讯息和坐标四个一列排起,再顺序取横行的数字,三个一组分开,将这三个数字当成坐标,找出对应的字母,便得到密文。
密码学的前景
一般来讲,信息安全主要包括系统安全及数据安全两方面的内容。
系统安全一般采用防火墙、病毒查杀、防范等被动措施;而数据安全则主要是指采用现代密码技术对数据进行主动保护,如数据保密、数据完整性、数据不可否认与抵赖、双向身份认证等。
密码技术是保障信息安全的核心技术。
密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。
随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。
它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。
密码技术不仅能够保证机密性信息的加密,而且完成数字签名、身份验证、系统安全等功能。
所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。
1 密码学基础及新方向提出的前提
密码学(Cryptography)包括密码编码学和密码分析学。
密码体制设计是密码编码学的主要内容,密码体制的破译是密码分析学的主要内容,密码编码技术和密码分析技术是相互依相互支持、密不可分的两个方面。
密码体制有对称密钥密码体制和非对称密钥密码体制。
对称密钥密码体制要求加密解密双方拥有相同的密钥。
而非对称密钥密码体制是加密解密双方拥有不相同的密钥,在不知道陷门信息的情况下,加密密钥和解密密钥是不能相互算出的。
然而密码学不仅仅只包含编码与破译,而且包括安全管理、安全协议设计、散列函数等内容。
不仅如此,密码学的进一步发展,涌现了大量的新技术和新概念,如零知识证明技术、盲签名、量子密码技术、混沌密码等。
密码学还有许许多多这样的问题。
当前,密码学发展面临着挑战和机遇。
计算机网络通信技术的发展和信息时代的到来,给密码学提供了前所未有的发展机遇。
在密码理论、密码技术、密码保障、密码管理等方面进行创造性思维,去开辟密码学发展的新纪元才是我们的追求。
2 密码学的新方向
对称密钥密码体制中,加密运算与解密运算使用同样的密钥。
这种体制所使用的加密算法比较简单,而且高效快速、密钥简短、破译困难,但是存在着密钥传送和保管的问题。
例如:甲方与乙方通讯,用同一个密钥加密与解密。
首先,将密钥分发出去是一个难题,在不
安全的网络上分发密钥显然是不合适的;另外,如果甲方和乙方之间任何一人将密钥泄露,那么大家都要重新启用新的密钥。
通常,使用的加密算法比较简便高效,密钥简短,破译极其困难。
但是,在公开的计算机网络上安全地传送和保管密钥是一个严峻的问题。
1976年,Diffie和Hellman为解决密钥管理问题,在他们的奠基性的工作"密码学的新方向"一文中,提出一种密钥交换协议,允许在不安全的媒体上通讯双方交换信息,安全地达成一致的密钥,它是基于离散指数加密算法的新方案:交易双方仍然需要协商密钥,但离散指数算法的妙处在于:双方可以公开提交某些用于运算的数据,而密钥却在各自计算机上产生,并不在网上传递。
在此新思想的基础上,很快出现了"不对称密钥密码体制",即"公开密钥密码体制",其中加密密钥不同于解密密钥,加密密钥公之于众,谁都可以用,解密密钥只有解密人自己知道,分别称为"公开密钥"(public-key)和"秘密密钥"(priv ate-key), 由于公开密钥算法不需要联机密钥服务器,密钥分配协议简单,所以极大地简化了密钥管理。
除加密功能外,公钥系统还可以提供数字签名。
目前,公开密钥加密算法主要有RSA、Fertezza、EIGama等。
我们说区分古典密码和现代密码的标志,也就是从76年开始,迪非,赫尔曼发表了一篇叫做《密码学的新方向》的文章,这篇文章是划时代的;同时1977年美国的数据加密标准(DES)公布,这两件事情导致密码学空前研究。
以前都认为密码是政府、军事、外交、安全等部门专用,从这时候起,人们看到密码已由公用到民用研究,这
种转变也导致了密码学的空前发展。
迄今为止的所有公钥密码体系中,RSA系统是最著名、使用最广泛的一种。
RSA公开密钥密码系统是由R.Rivest、A.Shamir和L.Adleman三位教授于1977年提出的,RSA的取名就是来自于这三位发明者姓氏的第一个字母。
RSA算法研制的最初目标是解决利用公开信道传输分发 DES 算法的秘密密钥的难题。
而实际结果不但很好地解决了这个难题,还可利用 RSA 来完成对电文的数字签名,以防止对电文的否认与抵赖,同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,从而保护数据信息的完整性。
公用密钥的优点就在于:也许使用者并不认识某一实体,但只要其服务器认为该实体的CA(即认证中心Certification Authority的缩写)是可靠的,就可以进行安全通信,而这正是Web商务这样的业务所要求的。
例如使用信用卡购物,服务方对自己的资源可根据客户CA的发行机构的可靠程度来授权。
目前国内外尚没有可以被广泛信赖的CA,而由外国公司充当CA在我国是非常危险的。
公开密钥密码体制较秘密密钥密码体制处理速度慢,因此,通常把这两种技术结合起来能实现最佳性能。
即用公开密钥密码技术在通信双方之间传送秘密密钥,而用秘密密钥来对实际传输的数据加密解密。
3、密码学的最新进展
在实际应用中不仅需要算法本身在数学证明上是安全的,同时也需要算法在实际应用中也是安全的。
因此,在密码分析和攻击手段不
断进步,计算机运算速度不断提高以及密码应用需求不断增长的情况下,迫切需要发展密码理论和创新密码算法,在最近研究中,对密码学的发展提出了更多的新技术与新的研究方向.
3.1 在线/离线密码学
非对称密码的执行效率不能很好地满足速度的需要.针对效率问题,在线/离线的概念被提出。
其主要观点是将一个密码体制分成两个阶段:在线执行阶段和离线执行阶段。
在离线执行阶段,一些耗时较多的计算可以预先被执行。
在在线阶段,一些低计算量的工作被执行。
3.2.圆锥曲线密码学
圆锥曲线密码学是1998年由本文第一作者首次提出,C.Schnorr 认为,除椭圆曲线密码以外这是人们最感兴趣的密码算法。
在圆锥曲线群上的各项计算比椭圆曲线群上的更简单,一个令人激动的特征是在其上的编码和解码都很容易被执行。
同时,还可以建立模n的圆锥曲线群,构造等价于大整数分解的密码。
3.3.代理密码学
代理密码学包括代理签名和代理密码系统。
两者都提供代理功能,另外分别提供代理签名和代理解密功能。
3.4.密钥托管问题
在密钥托管系统中,法律强制访问域LEAF(Law Enforcement Access Field)是被通信加密和存储的额外信息块,用来保证合法政府实体或被授权第三方获得通信的明文消息。
对于一个典型的密钥托
管系统,LEAF可以通过获得通信的解密密钥来构造。
为了更合理,可以将密钥分成一些密钥碎片,用不同的密钥托管代理的公钥加密密钥碎片,再将加密的密钥碎片通过门限化的方法合成。
以此来解决“一次监控,永远监控”和“用户密钥完全地依赖于可信任托管机构”的问题。
3.5.基于身份的密码学
基于身份的密码学是由Shamir于1984年提出的。
主要观点是,系统中不需要证书,可以使用用户的标识如姓名、电子邮件地址等作为公钥。
用户的私钥通过一个被称作私钥生成器PKG(Private Key Generator)的可信任第三方进行计算得到。
目前,基于身份的方案包括基于身份的加密体制、可鉴别身份的加密和签密体制、签名体制、密钥协商体制、鉴别体制、门限密码体制、层次密码体制等。
3.6.多方密钥协商问题
当前已有的密钥协商协议包括双方密钥协商协议、双方非交互式的静态密钥协商协议、双方一轮密钥协商协议、双方可验证身份的密钥协商协议以及三方相对应类型的协议。
如何设计多方密钥协商协议?存在多元线性函数(双线性对的推广)吗?如果存在,我们能够构造基于多元线性函数的一轮多方密钥协商协议。
而且,这种函数如果存在的话,一定会有更多的密码学应用。
然而,直到现在,在密码学中,这个问题还远远没有得到解决。
3.7.可证安全性密码学
对于公钥加密和数字签名等方案,我们建立相应的安全模型。
在
相应的安全模型,定义各种所需的安全特性。
对于模型的安全性,目前可用的最好的证明方法是随机预言模型ROM(Random Oracle Model)。
这是由Bellare和Rogaway于1993年提出的,它是一种非标准化的计算模型。
在这个模型中,任何具体的对象例如哈希函数,都被当作随机对象。
它允许人们规约参数到相应的计算,哈希函数被作为一个预言返回值,对每一个新的查询,将得到一个随机的应答。
规约使用一个对手作为一个程序的子例程,但是,这个子例程又和数学假设相矛盾,例如RSA是单向算法的假设。
概率理论和技术在随机预言模型中被广泛使用。
总结
密码学只是信息安全的一项工具,不可独当一面。
信息安全是一个较为泛泛的提法,至少从目前出版的图书的目录来开,多为软件(加密软件、操作系统安全设臵、数据库用户权限分配)、硬件(路由、防火墙、防雷击、盗窃等等等)以及管理法律法规之类。
而密码学因为理论的复杂更被简化为一些密码学历史知识、文档翻译(比如Simple-DES FIPS 46)、使用说明。
密码学课程更分可以分为理科(理论基础研究)、工科(应用实现与标准标准)和文科(政治与经济)。
密码学的应用领域很广,外交、军事、商业、法律、金融,但凡出现计算机网络、敏感信息地方都有不同程度的安全需求。
在国家信息化时期深入了人类社会的方方面面。
或许会在正飞速发展的人类社会变
革的一个因素,生物技术(克隆、dna)、空间技术(宇航)、资源技术(新材料、能源)、环境技术(温室、污染)、信息技术(通信、大规模集成电路)都是促进人类社会的。