函数的基本性质教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我的函数的基本性质教案
1. .函数的单调性
(1)设[]2121,,x x b a x x ≠∈⋅那么
[]1212()()()0x x f x f x -->⇔
[]b a x f x x x f x f ,)(0)
()(2
121在⇔>--上是增函数;
[]1212()()()0x x f x f x --<⇔
[]b a x f x x x f x f ,)(0)
()(2
121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.
注:如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.
2. 奇偶函数的图象特征
函数奇偶性的判定
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.
注:若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.
注:对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=
;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2
b
a x +=对称. 注:若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2
(a
对称;若
)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.
3. 多项式函数1
10()n n n n P x a x a x a --=++
+的奇偶性
多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性
(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-
(2)()f a x f x ⇔-=.
(2)函数()y f x =的图象关于直线2
a b
x +=
对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.
4. 两个函数图象的对称性
(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b
x m
+=
对称.
(3)函数)(x f y =和)(1
x f
y -=的图象关于直线y=x 对称.
25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图
象.
5. 互为反函数的两个函数的关系
a b f b a f =⇔=-)()(1.
27.若函数)(b kx f y +=存在反函数,则其反函数为])([11
b x f k
y -=
-,并不是)([1
b kx f
y +=-,而函数)([1
b kx f
y +=-是])([1
b x f k
y -=
的反函数. 6. 几个常见的函数方程
(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.
(2)指数函数()x
f x a =,()()(),(1)0f x y f x f y f a +==≠.
(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α
=,'
()()(),(1)f xy f x f y f α==.
(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,
()
(0)1,lim
1x g x f x
→==. 7. 几个函数方程的周期(约定a>0)
(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,
或)0)(()(1
)(≠=+x f x f a x f , 或1
()()
f x a f x +=-(()0)f x ≠,
或[]1(),(()0,1)2
f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()
(1
1)(≠+-
=x f a x f x f ,则)(x f 的周期T=3a ; (4))
()(1)
()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则
)(x f 的周期T=4a ;
(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++
()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.
8. 分数指数幂
(1)m n
a =
(0,,a m n N *
>∈,且1n >). (2)1
m n
m n
a
a
-
=
(0,,a m n N *
>∈,且1n >).
(2)当n
a =; 当n ,0
||,0a a a a a ≥⎧==⎨-<⎩
.
10. 有理指数幂的运算性质
(1)(0,,)r
s
r s
a a a
a r s Q +⋅=>∈.
(2)()(0,,)r s rs
a a a r s Q =>∈.
(3)()(0,0,)r r r
ab a b a b r Q =>>∈.
注:若a >0,p 是一个无理数,则a p
表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
log b a N b a N =⇔=(0,1,0)a a N >≠>.
34.对数的换底公式
log log log m a m N
N a
=
(0a >,且1a ≠,0m >,且1m ≠, 0N >).
推论 log log m n
a a n
b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).
11. 对数的四则运算法则
若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;
(2)log log log a
a a M
M N N =-; (3)log log ()n
a a M n M n R =∈.
注:设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42
-=∆.若)(x f 的定义域为
R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要
单独检验.
12. 对数换底不等式及其推论
若0a >,0b >,0x >,1
x a ≠
,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1
(,)a +∞上log ()ax y bx =为增函数.
(2)(2)当a b <时,在1(0,)a 和1
(,)a
+∞上log ()ax y bx =为减函数.
推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2
log log log 2
a a a
m n
m n +<.
四.典例解析
题型一:判断函数的奇偶性
例1.讨论下述函数的奇偶性:解:(1)函数定义域为R,
,∴f(x)为偶函数;
(另解)先化简:,显然
为偶函数;从这可以看出,化简后再解决要
容易得多。

(2)须要分两段讨论:
①设
②设
③当x=0时f(x)=0,也满足f(-x)=-f(x);
由①、②、③知,对x∈R有f(-x) =-f(x),∴f(x)为奇函数;
(3),∴函数的定义域为

∴f(x)=log21=0(x=±1) ,即f(x)的图象由两个点A(-1,0)与B(1,0)组成,这两点既关于y轴对称,又关于原点对称,∴f(x)既是奇函数,又是偶函数;
(4)∵x2≤a2, ∴要分a >0与a <0两类讨论,
①当a >0时,
,∴当a >0时,f(x)为奇函数;
既不是奇函数,也不是偶函数.
点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)。

例2.(2002天津文.16)设函数f(x)在(-∞,+∞)内有定义,下列函数:①y=-|f
(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x)。

必为奇函数的有_____(要求填写正确答案的序号)
答案:②④;解析:y=(-x)f[(-x)2]=-xf(x2)=-y;y=f(-x)-f(x)=-y。

点评:该题考察了判断抽象函数奇偶性的问题。

对学生逻辑思维能力有较高的要求。

题型二:奇偶性的应用
例3.(2002上海春,4)设f(x)是定义在R上的奇函数,若当x≥0时,f(x)=lo g
3
(1+x),则f(-2)=____ _。

答案:-1;解:因为x≥0时,f(x)=lo g3(1+x),又f(x)为奇函数,所以f(-x)=-f(x),设x<0,所以f(x)=-f(-x)=-f(1-x),所以f(-2)=-lo g33=-1。

点评:该题考察函数奇偶性的应用。

解题思路是利用函数的奇偶性得到函数在对称区域上函数的取值。

例4.已知定义在R上的函数y= f(x)满足f(2+x)= f(2-x),且f(x)是偶函数,当x∈[0,2]时,f(x)=2x-1,求x∈[-4,0]时f(x)的表达式。

解:由条件可以看出,应将区间[-4,0]分成两段考虑:
①若x∈[-2,0],-x∈[0,2],
∵f(x)为偶函数,
∴当x∈[-2,0]时,f(x)= f(-x)=-2x-1,
②若x∈[-4,-2,
∴4+ x∈[0,2,
∵f(2+x)+ f(2-x),
∴f(x)= f(4-x),
∴f(x)= f(-x)= f[4-(-x)]= f(4+x)=2(x+4)-1=2x+7;
综上,
点评:结合函数的数字特征,借助函数的奇偶性,处理函数的解析式。

题型三:判断证明函数的单调性
例5.(2001天津,19)设,

上的偶函数。

(1)求的值;(2)证明

上为增函数。

解:(1)依题意,对一切,有
,即。


对一切
成立,则
,∴,
∵,∴。

(2)(定义法)设,则

由,得


∴,
即,∴

上为增函数。

(导数法)∵,∴
∴在
上为增函数
点评:本题用了两种方法:定义法和导数法,相比之下导数法比定义法更为简洁。

例6.已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=
f(x)+,讨论F (x)的单调性,并证明你的结论。

解:这是抽角函数的单调性问题,应该用单调性定义解决。

在R上任取x1、x2,设x1<x2,∴f(x2)= f(x1),
∵f(x)是R上的增函数,且f(10)=1,
∴当x<10时0< f(x)<1, 而当x>10时f(x)>1;
①若x1<x2<5,则0<f(x1)<f(x2)<1,
②∴0< f(x1)f(x2)<1,
∴<0,
∴F (x2)< F(x1);
②若x2>x1>5,则f(x2)>f(x1)>1 ,
∴f(x1)f(x2)>1,
∴>0,
∴F(x2)> F (x1);
综上,F (x)在(-∞,5)为减函数,在(5,+∞)为增函数。

点评:该题属于判断抽象函数的单调性。

抽象函数问题是函数学习中一类比较特殊的问题,其基本能力是变量代换、换元等,应熟练掌握它们的这些特点。

题型四:函数的单调区间
例7.(2001春季北京、安徽,12)设函数f(x)=
(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的单调性。

.解:在定义域内任取x1<x2,
∴f(x1)-f(x2)=

∵a>b>0,∴b-a<0,x1-x2<0,
只有当x1<x2<-b或-b<x1<x2时函数才单调.
当x1<x2<-b或-b<x1<x2时f(x1)-f(x2)>0.
∴f(x)在(-b,+∞)上是单调减函数,在(-∞,-b)上是单调减函数.
点评:本小题主要考查了函数单调性的基本知识。

对于含参数的函数应用函数单调性的定义求函数的单调区间。

例8.(1)求函数的单调区间;
(2)已知若
试确定
的单调区间和单调性。

解:(1)函数的定义域为,
分解基本函数为、
显然在
上是单调递减的,而

上分别是单调递减和单调递增的。

根据复合函数的单调性的规则:
所以函数在
上分别单调递增、单调递减。

(2)解法一:函数的定义域为R,
分解基本函数为和。

显然在
上是单调递减的,
上单调递增;
而在
上分别是单调递增和单调递减的。



根据复合函数的单调性的规则:
所以函数的单调增区间为;单调减区间为。

解法二:


令,得


令,

∴单调增区间为;单调减区间为。

点评:该题考察了复合函数的单调性。

要记住“同向增、异向减”的规则。

题型五:单调性的应用
例9.已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log
(x2+5x+4)]
2
≥0。

解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2)。

又∵f(x)为偶函数,且f(x)在(0,+∞)上为增函数,
∴f(x)在(-∞,0)上为减函数且f(-2)=f(2)=0。

∴不等式可化为log2(x2+5x+4)≥2①
或log2(x2+5x+4)≤-2 ②
由①得x2+5x+4≥4,∴x≤-5或x≥0③
由②得0<x2+5x+4≤得
≤x<-4或-1<x≤④
由③④得原不等式的解集为
{x|x≤-5或≤x≤-4或-1<x≤或x≥0。

例10.已知奇函数f(x)的定义域为R,且f(x)在[0,+∞]上是增函数,是否存在实数m,使f(c os2θ-3)+f(4m-2mc osθ)>f(0)对所有θ∈
[0,]都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由。

解:∵f(x)是R上的奇函数,且在[0,+∞]上是增函数,
∴f(x)是R上的增函数,于是不等式可等价地转化为f(c os2θ-3)>f(2mc osθ-4m),
即c os2θ-3>2mc osθ-4m,即c os2θ-mc osθ+2m-2>0。

设t=c osθ,则问题等价地转化为函数
g(t)=t2-mt+2m-2=(t-)2-
+2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正。

∴当<0,即m<0时,g(0)=2m-2>0m>1与m<0不符;
当0≤≤1时,即0≤m≤2时,g(m)=-
+2m-2>04-
2<m<4+2

∴4-2<m≤2。

相关文档
最新文档