机械设备的噪声测量及评定

机械设备的噪声测量及评定
机械设备的噪声测量及评定

环境噪音测量方法

环境噪音测量方法 一, 方法概要 本方法系使用符合我国国家标准(CNS 7129)1型噪音计(或称声度表)或国际标准或上述性能以上之噪音计,测量环境中噪音位准之方法. 二, 适用范围 本测量方法适用於一般环境及固定性噪音发生源或移动性扩音设施之噪音位准测量. 三, 干扰 (一) 气象条件,地形,地面情况:噪音之传播会受到气象条件,地形,地面情况等之影响,故测量噪音时需记录天气,测量点附近之风向,风速,温度,相对湿度等之气象条件及地形,地面情况. (二) 由风产生噪音的影响:噪音计之声音感应器直接受到强风时,因风切作用而产生杂音(称为风杂音),严重时无法测量正确值,故在室外测定时,可能会产生风杂音时需加装防风罩.但防风罩也有其可使用范围,如超过使用范围时,应停止测量. .四, 仪器及设备 1.测定器:符合我国国家标准(CNS 7129 C7143)1型之噪音计(以下简称噪音计)或国际电工协会标准Class 1噪音计或上述性能以上之噪音计;原则上以噪音计之听感修正回路A加权测定之. 2. 防风罩(W indscreen):为减少声音感应器测量时风造成之影响,因此必须加套防风罩,其材质一般是由多孔性聚乙烯制成,其可容许风速范围由材料,结构,大小而定. 五, 噪音计使用方法

听感修正回路或称频率加权(Frquency-weighting"A"):本测量方法原则上以听感修 正回路A加权测定之,惟测量时应注记现场测量时所使用之加权名称. 六, 结果处理 (一) 测量报告须列出下列各项: 1, 测量人员姓名,服务单位. 2, 测量日期,测量时间,动特性. 3, 气象状态(风向,风速,气温,大气压力,相对湿度及最近降雨日期). 4, 测量结果. 5, 适用之标准 6, 测量位置(测量点及其高度,声音感应器高度等)与音源相对位置及距离,附简图 及照片,周围之情况(周围之建筑物,地形,地貌,防音设施等,附简图). 7, 噪音发生源之种类与特徵. 8, 测量方法(噪音计(含声音校正器)厂牌,型号,序号,噪音计动特性,取样的时距与 次数及其校正纪录与检定,校正有效期限等). 9, 其他(特殊音源之特性及其随时间变化性,可能影响测量结果之因素等). 10, 测量 期间噪音原始数据应存档备查. 实验数据 XuHao Leq l5 L10 L50 L90 L95 SD LEA 84 69.6 74.7 71.5 69.5 68.4 68.1 1.6 94.4 85 66.8 78.9 69.7 64.2 63.6 63.5 3.8 91.6 Lmax Lmin E 测定时间日期 80.7 68.2 0 0h5m0s 14-07-02 87.7 63.3 0 0h5m0s 14-07-02

道路交通噪声测量与评价

实验三道路交通噪声测量与评价 一、实验意义和目的 …… 通过本实验,要求达到以下目的: (1)掌握声级计的使用方法; (2)加深对交通噪声特征的全面了解,并掌握等效连续声级、昼夜等效声级、累计百分数声级的概念以及监测方法; (3)结合《声环境质量标准》(GB3096-2008)对所测路段交通噪声达标情况进行评价。 二、实验原理 交通噪声的测量按照GB/T3222-94《声学-环境噪声测试方法》和GB3096-2008《声环境质量标准》中的有关规定进行。 测试评价量 本实验中采用等效连续声级及累计百分数声级对测试的交通噪声进行评价。等效连续A声级又称等能量A计权声级,它等效于在相同的时间T内与不稳定噪声能量相等的连续稳定噪声的A声级。在同样的采样时间间隔下测量时,测量时段内的等效连续A声级可通过以下表达式计算: 按此定义此量为: (6.1-1)式中:LA:t时刻的瞬时声级; T:规定的测量时间。 当测量是采样测量,且采样的时间间隔一定时,式(6.1-1)可表示为: (6.1-2)式中:LAi:第i次采样测得的A声级; n:采样总数。 累计百分数声级L n表示在测量时间内高于L n声级所占的时间为n%。对于统计特性符合正态分布的噪声,其累计百分数声级与等效连续A声级之间有近似关系: L Aeq≈L50+(L10-L90)2/60 (6.1-3)式中:L10:在测量时间内有10%时间的噪声超过此值,相当于峰值噪声级; L50:在测量时间内有50%时间的噪声超过此值,相当于中值噪声级; L90:在测量时间内有90%时间的噪声超过此值,相当于本底噪声级。 三、实验仪器 AW A6228型多功能声级计、HS5633声级计、AWA6221B型声校准器 四、实验方法和步骤 ……

环境噪声测量方法

声学环境噪声测量方法 Acoustics 一Measurement method of environmentai noise GB/T 3222-94 代替GB 3222-82 本标准参照采用国际标准ISO 1996/1《声学环境噪声的描述和测量第1部分:基本量与 测量方法》;ISO 1996/2《声学环境噪声的描述和测量第2部分:与土地使用有关的数据采集》。1主题内容与适用范围 本标准规定了环境噪声测量与评价方法。 本标准适用于城市区域(含县、建制镇)环境噪声、道路交通噪声的测量。 2引用标准 GB 3947声学名词术语 GB 3785声级计的电、声性能及测试方法 SJ/ Z 9151积分平均声级计 JJG 176声校准器检定规程 JJG 669积分声级计检定规程 JJG 778噪声统计分析仪检定规程 3术语 3.1 A [计权]声级 用A计权网络测得的声级,用LpA表示,单位dB。 注:通常简单地用LA表示。 3.2累积百分声级 在规定测量时间T内,有N %时间的声级超过某一LpA值,这个LpA值叫做累积百分声级,用LN,T 表示,单位dB。例如L95,1h表示1小时内,有95%的时间超过的A声级。累积百分声级用来表示 随时间起伏无规噪声的声级分布特性。 注:通常简单地用LN表示,如L95。 3.3等效「连续]A声级 等效[连续]A声级是在某规定时间内A声级的能量平均值,用LAeq,T表示,单位dB。 按此定义此量为: (1) 式中:LpA (t)棗某时刻t的瞬时A声级,dB ; T —规定的测量时间,s。 当规定的时间T内,要分时间段测量时,女口T = T1 + T2 + ........ + Tm,贝U T时间内的等 效A声级,计算式为: (2) 式中:LAeq,Ti棗第i段时间测得的等效A声级; Ti —第i段时间,s。 由于环境噪声标准中都用A声级,故如不加说明,则等效声级就是等效[连续]A声级、并常 简单地用符号Leq表示。 3.4昼夜等效声级

关于噪音实验报告模板.doc

关于噪音实验报告模板 篇一:建筑物理环境噪声测量实验报告 课程名称: 学生学号: 所属院部: (理工类) 专业班级: 学生姓名: 指导教师: 20xx——20xx学年第x学期 xx学院教务处制 实验项目名称:环境噪声测量实验实验学时: 4 同组学生姓名:实验地点: 实验日期:实验成绩:批改教师:批改时间: 一、实验目的和要求 (1)掌握噪声测量的方法,对噪声的大小有一个主观的认识 (2)学会使用声级计; (3)分析噪声的大小与来源,得知建筑是否符合规定。 二、实验仪器和设备 HS5633型声级计 三、实验过程

(1)测点的选择:建筑物外1m处,高1.2m; (2)检查声级计的电池电力并采用校准器对其进行校准; (3)测量应在无风雪、无雷电天气,风速5m/s以下进行。大风时应停止测量; (4)记录声级计读数值,保持声级计在L档,每隔5秒读一个数值,共记录200个数。 四、实验结果与分析 原理:将记录的200个数从大到小的顺序排列,第20个数值就是L10,L10反映交通噪声的峰值;第100个数值就是L50,第180个数值就是L90,L90反映背景噪声值。等效声级反映了在测量的时间内声能的平均分布情况。计算公式:Leq=L50+d/60其中d=L10-L90 测量得出数据(单位:db): 依据测量的的数据得出: L10(在10%时最大噪音峰值)=58.9db L50(在200个数据中最大平均值)=52.4 db L90(背景噪声)=47.5 Leq(等效声级)=52.59 (Leq=L50+d/60d=L10-L90) 分析:对照《城市区域环境噪声标准》的校园1类的昼间等效声级 Leq<=55db,所以符合标准。 篇二:噪声测量实验报告 一、前言 随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通

噪声测定实验教案

噪声测定实验 一实验目的 1掌握AWA5610C声级计的工作原理及其使用方法 2掌握AWA6270A噪声频谱分析仪的工作原理及其使用方法 二实验内容 1使用AWA5610C声级计测量噪音 2使用AWA6270A噪声频谱分析仪测量噪音 三实验原理 1 AWA5610C声级计的工作原理 工作原理是被测的声压信号通过传声器转换成电压信号,然后经衰减器、放大器以及相应的计权网络、滤波器,或者输入记录仪器,或者经过均方根值检波器直接推动以分贝标定 的指示表头。 2 AWA6270A噪声频谱分析仪的工作原理 工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板。 四实验设备仪器 (一)AWA5610C声级计 AWA5610C型积分声级计是一种袖珍式智能化噪声测量仪 器,可广泛应用于环境噪声的测量与自动监测,也可用于劳动保 护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、 动态范围宽等优点。 主要技术性能: 驻极体测试电容传声器,灵敏度: 1.传声器:Φ1 2.7mm(1/2”) 约40mV/Pa,频率范围:20Hz~12.5kHz。 2.测量范围:35~130dBA(以2×10-5Pa为参考,下同) 3.频率范围:20Hz~12.5kHz 4.频率计权:A计权 5.时间计权:快(F),慢(S) 图1 AWA5610C声级计 6.检波器特性:真有效值、峰值因数 3 7.准确度:2型 8.测量时间:手控、10s、1min、5min、10min、20min、1h、4h、8h、24h。 9.显示:4位LCD,直接显示测量结果Lp、Leq、Lmax、Lmin、Linst、Tm及日历年、月、日、时、分、秒等。 10.储存:60组数据,包括年、月、日、时、分、设定时间、测量经历时间、最大声级, 最小声级、等效声级。 11.输出接口:RS—232C,可接至微型打印机或计算机。

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

噪声系数测量手册1:噪声系数定义及测试方法

噪声系数测量手册 Part 1. 噪声系数定义及测试方法 安捷伦科技:顾宏亮一.噪声系数定义 最常见的噪声系数定义是:输入信噪比/ 输出信噪比。它是衡量设备本身噪声品质的重要参数,它反映的是信号经过系统后信噪比恶化的程度。噪声系数是一个大于1的数,也就是说信号经过系统后信噪比是恶化了。噪声系数是射频电路的关键指标之一,它决定了接收机的灵敏度,影响着模拟通信系统的信噪比和数字通信系统的误码率。无线通信和卫星通信的快速发展对器件、子系统和系统的噪声性能要求越来越高。 输入信噪比SNR input=P i/N i 输出信噪比SNR output=P o/N o 噪声系数F =SNR input/SNR output通常用dB来表示NF= 10Log(F) 假设放大器是理想的线性网络,内部不产生任何噪声。那么对于该放大器来说,输出的功率Po以及输出的噪声No 分别等于Pi * Gain以及Ni*Gain。这样噪声系数=(Pi/Ni)/(Po/No)=1。但是现实中,任何放大器的噪声功率输出不仅仅有输入端噪声的放大输出,还有内部自身的噪声(Na)输出,下图为线性双端口网络的图示。 双端口网络噪声系数分析框图 Vs: 信号源电动势Rs: 信号源内阻

Ri: 双端口网络输入阻抗R L: 负载阻抗 Ni: 输入噪声功率Pi: 输入信号功率 No: 输出噪声功率Po: 输出信号功率 Vn: 该信号源内阻Rs的等效噪声电压Ro: 双端口网络输出阻抗 输出噪声功率: N o = N i * Gain + N a ; P o=P i * Gain 噪声系数= (P i * N o)/(N i* P o) = (N i * Gain + N a) /(N i * Gain)= 1 + Na/(N i * Gain) > 1 根据IEEE的噪声系数定义:The noise factor, at a specified input frequency, is defined as the ratio of (1) the total noise power per unit bandwidth available at the output port when noise temperature of the input termination is standard (290 K) to (2) that portion of (1) engendered at the input frequency by the input termination.” a.输入噪声被定义成负载在温度为290K下产生的噪声。 b.输入噪声功率为资用功率,也就是该负载(termination)能产生的最大功率。 c.假定了被测件和负载阻抗互为共轭关系. 如果被测件是放大器,并且噪声源阻抗为50ohm,那么假定了 该放大器的输入阻抗为50ohm。 综合上述的结论,我们可以这样理解噪声系数的定义:当输入噪声功率为290K温度下的负载所产生的最大功率情况下,输入信噪比和输出信噪比的比值。 资用功率指的是信号源能输出的最大功率,也可以称为额定功率。 信号源输出框图 只有当源的内阻和负载相等(复数互为共轭),源输出最大功率. P available= [V S/(R S+ R L)]2 * R L当R S= R L时候P available= V S2/(4*R S) 由此可见,资用功率是源的本身参数,它只和内阻以及电动势有关,和负载没有关系。

环境噪声监测技术规范

环境噪声监测技术规范 环境噪声监测技术规范 1适用范围结构传播固定设备噪声本标准规定了结构传播固定设备噪声监测测量计划制定、现场调查方法、监测点位设置、室 内低频噪声测量方法、监测数据处理与评价、资料整编和监测质量保证等的技术要求。 本标准适用于结构传播固定设备噪声引起的室内低频噪声污染监测。 2规范性引用文件 本标准内容引用了下列文件的条款。凡不注明日期的引用文件,其有效版本适用于本标准。 GB3785声级计电、声性能及测量方法 GB12348 GB22337 GB/T3241 GB/T15173 GB/T17181工业企业厂界环境噪声排放标准社会生活环境噪声排放标准 倍频程和分数倍频程滤波器 声校准器 积分平均声级计 3术语和定义 下列术语和定义适用于本标准。

3 .1倍频带声压级soundpressurelevelinoctave采用符合GB/T3241规定的倍频程滤波器所测量的频带声压级。本标准规定的噪声频谱分析 时使用的倍频带中心频率为31. 5Hz、63Hz、125Hz、250Hz、500Hz,其频率覆盖范围为22Hz~ 707Hz。 3 .2低频噪声LowFrequencyNoise测量仪器性能应符合 (IECGB3785和GB/T17181对1型声级计的要求且符合国际电工协会 GB/T3241中对滤波器的要求,61260)Class1标准;噪声频谱分析滤波器性能应符合具备实 时频谱分析功能,测量范围应满足所测量噪声的需要。 4 .1.2声校准器 校准所用仪器应符合 率为GB/T15173对1级声校准器的要求。A 声级测量时,校准声源频20~250Hz区间1000Hz;低频频谱测量时,校准声源频率至少有一个点频率应设在内。 测量仪器和声校准器应定期检定合格,并在检定有效期内使用。声级计每次测量前、后应进 行校准,其前、后校准示值偏差不得大于0 .5dB,否则本次测量无效。使用延伸电缆时,应注意 长电缆对声波信号的衰减,因此在进行校准时,应使延伸电缆与声级计一起进行校准。 传声器应 加防风罩。

噪声系数测量

RF & Microwave e-Academy Program
Powerful tools that keep you on top of your game
RFMW 202: Noise Figure Basics
Technical data is subject to change. Copyright@2004 Agilent Technologies Printed on Jan, 2004 5988-8495ENA
1

RFMW 202: Noise Figure Basics
Welcome to RFMW 202, the module on the basics of noise figure. This module will take you about 60 minutes for you to complete. If you have not already done so, we recommend that you study the modules RFMW 101 and MEAS 102 before this one.
2

Fundamental Noise Concepts
Fundamental noise concepts
How do we make measurements?
What DUTs can we measure?
What influences the measurement uncertainty?
In this module we will first look at the concepts of noise (why is it important), then on to how to make measurements and we will conclude with some detailed information on measurement uncertainty and tools. Let’s now go straight into concepts of noise.
3

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

声学环境噪声测量方法

声学环境噪声测量方法 Acoustics一Measurement method of environmental noise GB/T 3222-94 代替GB 3222-82 本标准参照采用国际标准ISO 1996/1《声学环境噪声的描述和测量第1部分:基本量与测量方法》;ISO 1996/2《声学环境噪声的描述和测量第2部分:与土地使用有关的数据采集》。 1 主题内容与适用范围 本标准规定了环境噪声测量与评价方法。 本标准适用于城市区域(含县、建制镇)环境噪声、道路交通噪声的测量。 2 引用标准 GB 3947 声学名词术语 GB 3785 声级计的电、声性能及测试方法 SJ/Z 9151 积分平均声级计 JJG 176 声校准器检定规程 JJG 669 积分声级计检定规程 JJG 778 噪声统计分析仪检定规程 3 术语 3.1 A[计权]声级 用A计权网络测得的声级,用LpA表示,单位dB。 注:通常简单地用LA表示。 3.2 累积百分声级 在规定测量时间T内,有N%时间的声级超过某一LpA值,这个LpA值叫做累积百分声级,用LN,T表示,单位dB。例如L95,1h表示1小时内,有95%的时间超过的A声级。 累积百分声级用来表示随时间起伏无规噪声的声级分布特性。 注:通常简单地用LN表示,如L95。 3.3 等效「连续]A声级 等效[连续]A声级是在某规定时间内A声级的能量平均值,用LAeq,T表示,单位dB。按此定义此量为: (1) 式中:LpA(t)棗某时刻t的瞬时A声级,dB; T -规定的测量时间,s。 当规定的时间T内,要分时间段测量时,如T=T1+T2+…………+Tm,则T时间内的等效A声级,计算式为: (2) 式中:LAeq,Ti棗第i段时间测得的等效A声级; Ti-第i段时间,s。 由于环境噪声标准中都用A声级,故如不加说明,则等效声级就是等效[连续]A声级、并常简单地用符号Leq表示。 3.4 昼夜等效声级 在昼间和夜间的规定时间内测得的等效A声级分别称为昼间等效声级Ld或夜间等效声级Ln,。昼夜等效声级为昼间和夜间等效声级的能量平均值,用Ldn表示,单位dB。

噪声测量实验

实验1 噪声测量实验 目 的 1.掌握声压级的测量方法。 2.掌握噪声的测量方法。 原 理 声音是大气压上的压强波动,这个压强波动的大小简称为声压,以p 表示,其单位是Pa (帕)。从刚刚可以听到的声音到人们不堪忍受的声音,声压相差数百万倍。显然用声压表达各种不同大小的声音实属不太方便,同时考虑了人耳对声音强弱反应的对数特性,用对数方法将声压分为百十个等级,称为声压级。 声压级的定义是:声压与参考声压之比的常用对数乘以20,单位是dB (分贝)。其表达式为: L p =20lg 0 p p 式中,p 为声压,p 0是参考声压,它是人耳刚刚可以听到的声音。值得注意的是两个声压级或多个声压级相加不是dB 的简单算术相加,是按照对数的运算规律相加。 声压级只反映声音的强度对人耳的响度感觉的影响,而不能反映声音频率对响度感觉的影响。利用具有一个频率计权网络的声学测量仪器,对声音进行声压级测量,所得到的读数称为计权声压级,简称声级,单位为dB 。声学测量仪器中,模拟人耳的响度感觉特性,一般设置A 、B 和C 三种计权网络。声压级经A 计权网络后就得到A 声级,用L A 表示,其单位计作dB(A)。经大量实验证明,用A 声级来评价噪声对语言的干扰,对人们的吵闹程度以及听力损伤等方面都有很好的相关性。另外,A 声级测量简单、快速,还可以与其它评价方法进行换算,所以是使用最广泛的评价尺度之一。如金属切削机床通用技术条件规定:高精度机床噪声容许小于75dB(A);精密机床和普通机床噪声容许小于85dB(A)。 实际测量中,除了被测声源产生噪声外,还有其它噪声存在,这种噪声叫做背景噪声。背景噪声会影响到测量的准确性,需要对结果进行修正。初略的修正方法是:先不开启被测声源测量背景噪声,然后再开启声源测量,若两者之差为3dB ,应在测量值中减去3dB ,才是被测声源的声压级;若两者之差为4~5dB ,减去数应为2dB ;若两者之差为6~9dB ,减去数应为1dB ;当两者之差大于10dB 时,背景噪声可以忽略。但如果两者之差小于3dB ,那么最好是采取措施降低背景噪声后再测量,否则测量结果无效。 测量环境中风、气流、磁场、振动、温度、湿度等因素都会给测量结果带来影响。特别是风和气流的影响。当存在这些影响时,应使用防风罩或鼻锥等测量附件来减少影响。 声级计一般都是由传声器单元、放大分析单元、显示仪表单元三大部分组成。其工作原理方框图见图00-1。 图1-1 声级计原理方框图 1.传声器单元。传声器单元由传声器和前置放大器组成。传声器是将声信号转换成电信号的换能器,要求频率范围宽、频率响应平直、失真小、动态范围大、尤其是稳定性要好。前置放大器起阻抗变换作用,要求具有输入阻抗高,输出阻抗低,以便与长延伸电缆连接。

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

环境噪声测量实验报告.docx

环境噪声测量实验报告 一、实验目的: 掌握环境噪声的排放情况,定义和测量、评价方法,并对所处环境的声环境质量做出一定的分析。 二、实验仪器:便携式声级计 三、实验方案 1、测点描述:选取校园内5个不同的典型位置处,每个测点每2分钟读数一次,共计读数15组。(临街→操场→图书馆区→宿舍区→教学区), 2、实验方法描述:定点移动测量法 3、实验内容描述:测量校园区域环境噪声分布,整理分析测量结果 四,数据处理及分析 1数据记录 城规一班第一组测点位置:临街测量时间:2012—1—5 时间(声压级)时间(声压级) 10:20 65.9 10:36 75.6 10:22 75.1 10:38 70.6 10:24 68.7 10:40 64.3 10:26 83.9 10:42 75.6 10:28 50.9 10:44 67.3 10:30 68.6 10:46 72.3 10:32 84.1 10:48 61.2 10:34 61.3 2计算连续等效A声级 公式: 计算: = 76.4696dB(A) 3计算累计分布升级 公式: 计算: 标号数据标号数据 7 84.1 6 68.6

谢谢欣赏 谢谢欣赏 L 10 =83.9 L 50 =68.7 L 90 =61.2 Leq =77.4402dB(A) 3、分析校园声环境 (1)操场 (2)宿舍楼 按照《城市区域噪声环境标准》要求 校园宿舍楼昼间低于55分贝,夜间低于45分贝 临街昼间低于70分贝,夜间低于55分贝 结论 由上述数据对比可知,学校的宿舍区和临街的噪声值均高于国家标准,其中宿舍噪声值超过国家标准较多。由此可知,学校的声环境较差。 城规一班 袁洋子 4 83.9 13 67.3 9 75.6 1 65.9 12 75.6 11 64.3 2 75.1 8 61.3 14 72.3 1 5 61.2 10 70. 6 5 50.9 3 68.7

GB1496—79机动车辆噪声测量方法

中华人民共和国国家标准 GB 1496—79 机动车辆噪声测量方法 本标准适用于各类型汽车、摩托车、轮式拖拉机等机动车辆的车外、车 内噪声的测量。 一、测量仪器 1.使用精密声级计或普通声级计和发动机转速表。 2.声级计误差应不超过±2dB(A)。 3.在测量前后,仪器应按规定进行校准。 二、车外噪声测量 (一)测量条件 4.测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。 5.测试场地跑道应有20m以上的平直、干燥的沥青路面或混凝土路面。路面坡度不超过0.5%。 6.本底噪声(包括风噪声)应比所测车辆噪声至少低10 dB(A)。并保 证测量不被偶然的其他声源所干扰。 注:本底噪声系指测量对象噪声不存在时,周围环境的噪声。 7.为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。 8.声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。 9.被测车辆不载重。测量时发动机应处于正常使用温度,车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。

(二)测量场地及测点位置 10.测量场地示意图见图1。 11.测试话筒位于20m跑道中心点0两侧,各距中线7.5m,距地面高度1.2m,用三角架固定,话筒平行于路面,其轴线垂直于车辆行驶方向。 (三)加速行驶车外噪声测量方法 12.车辆须按下列规定条件稳定地到达始端线: 行驶档位:前进档位为4档以上的车辆用第3档,前进档位为4档或4档以下的用第2档。 发动机转速为发动机标定转速的四分之三。如果此时车速超过了50km/h,那 么车辆应以50km/h的车速稳定地到达始端线。 拖拉机以最高档位、最高车速的四分之三稳定地到达始端线。 对于自动换档车辆,使用在试验区间加速最快的档位; 辅助变速装置不应使用。 在无转速表时,可以控制车速进入测量区:以所定档位相当于四分之三标定 转速的车速稳定地到达始端线。 13.从车辆前端到达始端线开始,立即将油门踏板踏到底或节流阀全开,直 线加速行驶,当车辆后端到达终端线时,立即停止加速。车辆后端不包括拖车以

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数:

* HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA 在低增益模式下),一些则具有非常高的增益和宽围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率围测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

环境噪声监测技术规范

环境噪声监测技术 规范

环境噪声监测技术规范 环境噪声监测技术规范结构传播固定设备噪声 1适用范围 本标准规定了结构传播固定设备噪声监测测量计划制定、现场调查方法、监测点位设置、室 内低频噪声测量方法、监测数据处理与评价、资料整编和监测质量保证等的技术要求。 本标准适用于结构传播固定设备噪声引起的室内低频噪声污染监测。 2规范性引用文件 本标准内容引用了下列文件的条款。凡不注明日期的引用文件,其有效版本适用于本标准。 GB3785声级计电、声性能及测量方法 GB12348工业企业厂界环境噪声排放标准 GB22337社会生活环境噪声排放标准 GB/T3241倍频程和分数倍频程滤波器 GB/T15173声校准器 GB/T17181积分平均声级计 3术语和定义 下列术语和定义适用于本标准。 3.1倍频带声压级soundpressurelevelinoctave

采用符合GB/T3241规定的倍频程滤波器所测量的频带声压级。本标准规定的噪声频谱分析 时使用的倍频带中心频率为31.5Hz、63Hz、125Hz、250Hz、500Hz,其频率覆盖范围为22Hz~ 707Hz。 3.2低频噪声LowFrequencyNoise 不同的国家或地区对于低频噪声的频率范围的认定不尽相同,中国《工业企业厂界环境噪声 排放标准》(GB12348)和《社会生活噪声排放标准》 (GB22337)规定固定设备结构传播的低 频噪声范围规定为31.5~500Hz。 3.3噪声评价数noiseratingnumber(NR) 是一种噪声评价方法,它经过一系列频谱曲线(NR噪声评价曲线)来反映不同声级和频率的 噪声对人造成的听力损失、语言干扰或烦恼的程度。曲线的NR值等于中心频率为1000赫的倍频 程声压级的分贝整数。为了弥补A声级在评价室内低频噪声污染方面的不足,本标准引入噪声评 2 价数NR。 4现场监测测量条件 4.1测量仪器

噪声测量方法

监测方法 按GB 12349执行。 工业企业厂界噪声标准测量方法 GB 12349-90 Method of measuring noise at boundary of industrial enterprises 本标准为执行GB 12348《工业企业厂界噪声标准》而制订。 本标准适用于工厂及有可能造成噪声污染的企事业单位的边界噪声的测量。 1 名词术语 1.1 A声级用A计权网络测得的声级,用LA表示,单位dB(A)。 1.2 等效声级 在某规定时间内A声级的能量平均值,又称等效连续A声级,用Leq表示,单位为dB(A)。 按此定义此量为: Leq=10Lg() 式中:LA-t时刻的瞬时A声级。 T-规定的测量时间。 当测量是采样测量,且采样的时间间隔一定时,式(1)可表示为: Leq=10Lg() 式中:Li-第i次采样测得的A声级; n-采样总数。 1.3 稳态噪声,非稳态噪声在测量时间内,声级起伏不大于3dB(A)的噪声视为稳态噪声,否则称为非稳态噪声。 1.4 周期性噪声 在测量时间内,声级变化具有明显的周期性的噪声。 1.5 背景噪声 厂界外噪声源产生的噪声。 2 测量条件 2.1 测量仪器 测量仪器精度为Ⅱ级以上的声级计或环境噪声自动监测仪,其性能符合GB 3875《声级计电声性能及测量方法》之规定,应定期校验。并在测量前后进行校准,灵敏度相差不得大于0.5dBA,否则测量无效。测量时传声器加风罩。 2.2 气象条件测量应在无雨、无雪的气候中进行,风力为5.5m/s以上时停止测量。

2.3 测量时间 测量应在被测企事业单位的正常工作时间内进行。分为昼、夜间两部分,时段的划分可由当地人民政府按当地习惯和季节划定。 2.4 采样方式 2.4.1 用声级计采样时,仪器动态特性为“慢”响应,采样时间间隔为5s。 2.4.2 用环境噪声自动监测仪采样时,仪器动态特性为“快”响应,采样时间间隔不大于1s。2.5 测量值2.5.1 稳态噪声测量1min的等效声级。 2.5.2 周期性噪声测量一个周期的等效声级。 2.5.3 非周期性非稳态噪声测量整个正常工作时间的等效声级。 2.6 测点位置的选择 2.6.1 测点(即传声器位置。下同)应选在法定厂界外1m,高度1.2m以上的噪声敏感处。如厂界有围墙,测点应高于围墙。 2.6.2 若厂界与居民住宅相连,厂界噪声无法测量时,测点应选在居室中央,室内限值应比相应标准值低10dB(A)。 3 测量记录及数据处理 3.1 测量记录围绕厂界布点。布点数目及间距视实际情况而定。在每一测点测量,计算正常工作时间内的等效声级,填入工业企业厂界噪声测量记录表(见附表)。 3.2 背景值修正 背景噪声的声级值应比待测噪声的声级值低10dB(A)以上,若测量值与背景值差值小于10dB(A),按下表进行修正。 附录A工业企业厂界噪声测量记录表(补充件)

噪声系数的计算及测量方法

噪声系数的计算及测量方法(一) 时间:2012-10-25 14:32:49 来源:作者: 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为 设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno 分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。

相关文档
最新文档