数学分析研究论文.

合集下载

数学分析的基本内容和方法

数学分析的基本内容和方法

渤海大学数理学院毕业论文论文题目:简述数学分析中的基本内容和方法系别:数学系专业年级:数学与应用数学专业07级姓名:王迪学号:********指导教师:***日期:2011年5月20日目录一、数学分析中的研究对象 (3)二、数学分析的基本内容 (3)三、数学分析中的基本概念和相互关系 (3)1.极限概念 (4)2.连续和一致连续的概念 (5)3.收敛和一致收敛概念 (6)4.导数概念 (6)5.微分概念 (7)6.原函数和不定积分 (7)7.定积分 (8)8.一元函数中极限、连续、导数、微分之间的关系 (8)9.多元函数中,极限、连续、偏导数、方向导数和全微分之间的关系 (9)10.连续与一致连续的关系 (9)11.收敛和一致收敛的关系 (9)12.连续、不定积分和定积分的关系 (10)13.微分和积分的关系 (10)四、数学分析的主要计算 (11)1.极限的求法 (12)2.微分学中的计算 (13)3.积分学中的计算 (14)4.无穷级数中的计算 (14)五、数学分析的主要理论 (15)1.实数的连续性和极限的存在性 (16)2.连续函数的基本性质 (17)3.微分学的基本定理和泰勒公式 (18)4.积分中的理论 (19)5.无穷级数和广义积分的敛散性 (20)6.函数级数和广义参变量积分的一致收敛性 (21)六、数学分析的基本方法 (21)七、数学分析教学内容的初步实践与思考 (22)简述数学分析中的基本内容和方法王迪(渤海大学数学系辽宁锦州121000中国)摘要:数学分析的基础是实数理论。

实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。

正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。

应全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。

学年论文-数学分析七大定理的相互证明

学年论文-数学分析七大定理的相互证明

云南大学课题名称:数学分析七大定理的相互证明学院:数学与统计专业:信息与计算科学指导教师:何清海学生姓名:段飞龙学生学号:20101910050目录摘要………………………………………………………………………………………关键词……………………………………………………………………………………前言………………………………………………………………………………………结论………………………………………………………………………………………参考文献…………………………………………………………………………………摘要:数学分析中的单调有界性定理、闭区间套定理、确界存在性定理、有限覆盖定理、Weierstrass聚点定理、致密性定理以及柯西收敛准则,虽然他们的数学形式不同,但他们都描述了实数集的连续性,在数学分析中有着举足轻重的作用。

关键词:单调有界性定理闭区间套定理确界存在性定理有限覆盖定理Weierstrass聚点定理致密性定理柯西收敛准则前言:一、七大定理定理 1 单调有界性定理(1)、上确界上确界的定义“上确界”的概念是数学分析中最基本的概念。

考虑一个实数集合M. 如果有一个实数S ,使得M 中任何数都不超过S,那么就称S 是M 的一个上界。

在所有那些上界中如果有一个最小的上界,就称为M 的上确界。

一个有界数集有无数个上界和下界,但是上确界却只有一个。

上确界的数学定义有界集合S ,如果β满足以下条件①对一切S x ∈,有β≤X ,即β是S 的上界;②对任意βα<,存在S x ∈,使得α>x ,即β又是S 的最小上界, 则称β为集合S 的上确界,记作S sup =β(同理可知下确界的定义)在实数理论中最基本的一条公理就是所谓的确界原理:“任何有上界(下界)的非空数集必存在上确界(下确界)”。

上确界的证明(1)每一个 X x ∈满足不等式m x ≤ ;(2) 对于任何的 0>ε, 存在有X x ∈', 使ε->M x ' 则数{}x M sup = 称为集合X 的上确界。

凸函数的性质研究毕业论文完整版

凸函数的性质研究毕业论文完整版

凸函数的性质研究毕业论文完整版凸函数是数学分析中一个重要的概念,具有广泛的应用。

在本篇毕业论文中,我将对凸函数的性质进行研究和探讨。

首先,我将介绍凸函数的定义和基本性质。

凸函数是指在定义域上的任意两点所连线的斜率都大于等于函数曲线上相应点的斜率。

简单来说,对于凸函数而言,函数曲线上的任意两点的切线均位于函数曲线上方。

这个定义可以很好地反映凸函数的凸起性质。

接下来,我将讨论凸函数的一阶导数和二阶导数的关系。

根据凸函数的定义,可以得出结论:对于函数的一阶导数,如果它是递增的,则该函数是凸函数;对于函数的二阶导数,如果它是非负的,则该函数是凸函数。

这一结论有助于我们通过导数的信息来判断函数的凸性质。

然后,我将探讨凸函数的性质在优化问题中的应用。

凸函数在优化问题中起到了重要的作用。

由于其凸起的性质,凸函数在求最优解的问题中往往能够确保找到全局最优解。

这一特性在实际问题中有着广泛的应用,比如投资组合优化、机器学习中的支持向量机等。

最后,我将研究凸函数的拓展性质。

除了一般的凸函数,还有一些特殊的凸函数形式,比如凸锥函数、凸二次规划等。

这些凸函数的研究将会进一步丰富我们对凸函数的认识,并提供更多的数学工具和方法。

通过对凸函数性质的研究,我们可以更好地理解凸函数的特性和应用。

凸函数不仅在数学领域有着广泛的研究价值,而且在实际问题中也有很多应用价值。

通过深入研究凸函数的性质,我们可以为解决优化问题和最优化问题提供更多的数学工具和方法。

总之,凸函数的性质研究是一个复杂且有意义的课题。

本篇毕业论文将通过介绍凸函数的定义和基本性质,探讨凸函数的一阶和二阶导数的关系,讨论凸函数在优化问题中的应用,以及研究凸函数的拓展性质等方面,对凸函数的性质进行深入的研究和探讨。

希望通过这篇毕业论文的研究,对凸函数的理解和应用有所帮助。

数学分析反证法的应用论文

数学分析反证法的应用论文

丽水学院2012届学生毕业论文数学分析中反证法的应用理学院数学082 董泽刚指导师:胡亚红摘要:本文研究了数学分析中不同问题的反证法。

对数学分析中的反证法进行总结研究,共分为数列极限的唯一性和收敛性,函数的连续、有界、极限和单调性,导数和积分,级数等四个部分,各部分之间并非完全独立。

本文对理解数学分析的基本概念,掌握数学分析的基本理论和技巧很有好处。

关键词:反证法;命题;应用在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。

具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。

它不仅是解决问题的有力手段,而且推动了数学的发展,开辟了数学领域的新天地.数学是在归纳、发现、推广中发展的。

反证法在数学的发展中功不可没。

反证法不但在数学的发展和证明中有同等重要的作用,而且,在学习、领会和深入钻研数学的时候,也离不开反证法.因为条件的强弱,使用范围的宽窄,都需要用反证法作对比,才能加深理解,如果命题有错误,证明有漏洞,也只有靠反证法去证实,并从反证法中得到修补的启示。

反证法是一种重要的反证手段,往往会成为数学殿堂的基石。

学会构造反证法是一种重要的数学技能。

反证法的重要性要想充分的发挥出来,关键还在于具体的作出所需的反证法。

至于反证法的作法,也如证明一样,因题而异,方式多变。

1 反证法的基本思想反证法是一种间接的证明方法,它的基本思想是“否定-推理-矛盾-肯定”,这种证明方法之所以令学生难以理解,是因为在证明过程中,每一步的结论到下一步完全符合逻辑,但每一步的结论却其实不能发生,从逻辑的观点来看,反证法实际上是通过证明与命题A→,显然这个等价命题的条件中含A→逻辑等价的命题为真,从而间接证明了命题BBA→的结论的否定B,反证法历史悠久,曾被用来解决数学中许多重要结论. 有命题B所谓反证法是指通过证明论题的否定论题不真实而肯定论题真实的方法.通常包括以下三个步骤:(l)反设—假定原命题的结论不成立;(2)归谬—根据反设进行严密推理,直到得出矛盾;(3)结论—肯定原命题正确。

极限求解方法及应用论文

极限求解方法及应用论文

极限求解方法及应用论文极限求解方法是数学分析中的重要概念,用于研究一个函数在某一点或无穷远处的行为。

它在物理学、工程学以及经济学等领域中有广泛的应用。

首先,我们来讨论一下极限定义及其求解方法。

极限可以分为左极限和右极限。

设函数f(x)在a点的定义域中不存在函数值,当x无限接近于a时,如果f(x)的取值无限接近于一个确定的实数L,则称L为函数f(x)在x=a处的左极限,记作lim(x→a-) f(x) = L。

同理,如果当x无限接近于a时f(x)的取值无限接近于一个确定的实数L,则称L为函数f(x)在x=a处的右极限,记作lim(x→a+) f(x) = L。

当且仅当左极限等于右极限并且都存在时,函数f(x)在x=a处的极限存在,即lim(x→a) f(x) = L。

极限求解方法主要包括极限的基本四则运算法则、极限的夹逼定理、函数的连续性等。

极限的四则运算法则指出,对于两个函数f(x)和g(x)以及常数a和b,当lim(x→a) f(x)存在,lim(x→a) g(x)存在,那么:1. lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)2. lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)3. lim(x→a) [af(x)] = a * lim(x→a) f(x)4. lim(x→a) [f(x)g(x)] = lim(x→a) f(x) * lim(x→a) g(x)5. lim(x→a) [f(x)/g(x)] = lim(x→a) f(x) / lim(x→a) g(x)(前提是lim(x→a) g(x) 不为零)极限的夹逼定理是极限求解中常用的方法之一。

它描述了当一个函数夹在两个函数之间时,这个函数的极限等于这两个函数的共同极限,即:如果对于任意的x都有g(x) ≤f(x) ≤h(x),同时lim(x→a) g(x) = lim(x→a) h(x) = L,则lim(x→a) f(x) = L。

反例在数学分析中的应用毕业论文

反例在数学分析中的应用毕业论文

反例在数学分析中的应用毕业论文标题:反例在数学分析中的应用摘要:本论文旨在探讨反例在数学分析中的应用。

数学分析作为一门重要的数学分支,研究数学中的极限、连续性、微积分等概念,而反例则在验证数学命题的真伪或者找到逆反的可能性方面起到至关重要的作用。

本文将以具体的例子和案例分析为基础,展示反例在数学分析中的应用,说明其在帮助我们更好地理解和研究数学问题方面所发挥的重要作用。

一、引言数学分析是探究数学问题的基础,深入研究了极限、连续性、微积分等概念。

我们常常需要证明数学命题的真伪、寻找一种特定性质的存在或者寻找相反的可能性。

而反例是通过构造实例来证明数学命题的逆命题,从而在研究和理解数学问题中起到至关重要的作用。

二、反例的基本概念和作用反例是指通过构造和确定其中一种情况的真假来证明命题的逆命题。

在数学分析中,反例的运用能够帮助我们更好地理解和验证数学命题。

通过找到反例,我们可以对特定问题进行深入的研究和分析,从而在解决问题过程中更好地发现和理解问题的性质和规律。

三、反例的具体应用1.极限的反例极限是数学分析中非常重要且常见的概念之一、通过找到极限的反例,我们可以验证一些命题的逆命题。

例如,在证明一些函数序列极限不存在时,可以通过找到一个反例(构造一个违背序列性质的实例),从而验证逆命题。

2.连续性的反例连续性是数学分析的核心概念之一、通过找到连续性的反例,我们可以帮助我们验证一些问题的逆命题,同时也能够帮助我们更好地理解和解释连续函数的性质。

3.微积分的反例微积分是数学分析的重要组成部分。

在微积分中,反例经常用于证明或者验证一些命题的逆命题,从而更好地理解和研究微积分中的关键问题。

四、应用案例分析通过具体的案例分析,我们可以更好地理解反例在数学分析中的应用。

例如,对于函数的导数存在性问题,我们可以通过反例来验证逆命题。

另外,对于极限存在的问题,通过构造反例可以验证逆命题。

五、结论反例在数学分析中扮演着重要的角色,通过构造和寻找反例,我们可以更好地验证和研究数学命题,从而发现和理解问题的本质和规律。

凸函数的性质及其应用研究论文

凸函数的性质及其应用研究论文

凸函数的性质及其应用研究论文凸函数是数学分析中的一个重要概念,它在许多领域中都有着广泛的应用。

本文将介绍凸函数的性质,并探讨其在实际应用中的研究。

首先,凸函数的定义是:如果函数 f(x)在区间上连续,且对于任意的 a 和 b(a<b),都有 f((1-t)a + tb)≤ (1-t)f(a)+tf(b),那么 f(x)就是在区间上的凸函数。

其中,(1-t)a + tb 是 a 和 b 的凸组合,t 是一个取值在 [0,1] 的实数。

凸函数具有以下几个基本性质:1.一阶导数和二阶导数的关系:凸函数的一阶导数是严格递增的,而二阶导数是非负的。

这个性质可以通过凸函数的定义来证明。

2.凸函数的局部和全局性质:凸函数在局部和全局上都具有单调性和凸性。

如果一个函数在区间上是凸函数,那么它在该区间上的任意子区间也是凸函数。

3.凸函数的支撑超平面:对于凸函数f(x),在任意一点x0处,存在一个超平面,使得这个超平面与函数图像的接触点就是x0。

这个超平面被称为凸函数在x0处的支撑超平面。

凸函数具有许多应用,下面将介绍几个常见的应用:1.最优化问题:在最优化问题中,凸函数经常被用来建立目标函数和约束条件。

利用凸函数的性质,我们可以推导出最优解的存在性、唯一性和求解方法。

2.经济学:在经济学中,凸函数被广泛应用于建模和分析。

例如,成本函数、效用函数和收益函数都可以用凸函数来描述。

3.控制理论:在控制理论中,凸函数被用来建立系统的性能指标和优化问题。

通过优化这些凸函数,我们可以设计出更好的控制方案。

4.图像处理:在图像处理中,凸函数经常被用来作为图像去模糊、图像分割和图像重建等问题的约束条件或目标函数。

5.金融学:在金融学中,凸函数被广泛应用于资产组合优化、风险管理和衰退模型等问题。

通过研究凸函数的性质,我们可以更好地理解和管理金融风险。

综上所述,凸函数具有一些重要的性质,并且在许多领域中都有着广泛的应用。

对凸函数的研究不仅可以推动数学理论的发展,还可以解决各种实际问题。

数值分析_学科期末论文(数值分析方法在实际问题中的应用)

数值分析_学科期末论文(数值分析方法在实际问题中的应用)

数值分析方法在实际问题中的应用摘要:数值分析方法是现代科学计算中常用的数值计算方法,其研究并解决数值问题的近似解,是数学理论与计算机同实际问题的有机结合;本文对拉格朗日插值法和数值积分法的基本原理做了简要阐述;从实际问题出发,分别探究了拉格朗日插值法在油罐储油量中的应用、数值积分法在预测森林伐量中的应用。

关键词:拉格朗日插值法、数值积分法、原理、应用1. 拉格朗日插值法原理介绍及应用拉格朗日插值法是一种多项式插值法,在很多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。

如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。

这样的多项式称为拉格朗日(插值)多项式。

1.1 拉格朗日插值多项式 (1)问题提出已知函数()y f x =在n+1个不同的点,,,01x x xn 上的函数值分别为01,,,n y y y , 求一个次数不超过n 的多项式()n P x , 使其满足()n i i P x y =,()0,1,,i n =即n+1个不同的点可以唯一决定一个n 次多项式。

(2)插值基函数过n+1个不同的点分别决定n+1个n 次插值基函数01(),(),,()n l x l x l x 。

每个插值基本多项式()i l x 满足:(i).()i l x 是n 次多项式;(ii).()1i i l x =,而在其它n 个()()0,i k l x k i =≠。

由于()()0,i k l x k i =≠,故()il x 有因子:011()()()()i i n x x x x x x x x -+----因其已经是n 次多项式,故而仅相差一个常数因子。

令:011()()()()()i i i n l x a x x x x x x x x -+=----由()1i i l x =,可以定出a ,进而得到:011011()()()()()()()()()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+----=----,,(3)n 次拉格朗日型插值多项式()n P x()n P x 是n+1个n 次插值基本多项式01(),(),,()n l x l x l x 的线性组合,相应的组合系数是01,,,ny y y 。

数学分析中的极限问题毕业论文终稿

数学分析中的极限问题毕业论文终稿

数学分析中的极限问题毕业论文目录摘要 (1)关键词 (1)Abstract (1)Key words. (1)引言 (1)1.综述 (2)1.1极限的产生与发展 (2)1.2极限问题的类型 (3)2.常见的极限求解方法 (3)2.1简单求极限的方法 (3)2.2利用两个重要极限公式求极限 (4)2.3利用洛必达法则求极限 (5)2.4利用极限的四则运算法则求极限 (6)2.5利用等价无穷小替换求极限 (6)2.6利用定积分求极限 (7)2.7利用泰勒公式求极限 (8)2.8两边夹法则求极限 (9)2.9利用单侧极限求极限 (10)2. 10利用中值定理求极限 (11)小结 (12)参考文献 (13)数学分析中的极限问题学生:** 学号:*********数学与计算机科学系数学与应用数学专业指导教师:** 职称:**摘要:极限是数学分析这门学科的基础,通过极限思想、借助极限工具使数学分析容更加严谨,贯穿整个数学分析的始末. 本文主要是对数学分析中的极限的产生与发展,以及常见极限的若干常规解法进行了讨论和研究. 本文的重点在第二章,具体介绍了运用四则运算法则、两个重要极限、两边夹法则、等价无穷小替换等方法求解极限.关键词:四则运算法则;洛比达法则;泰勒公式;两边夹法则.Abstract: Limit is the basis of mathematical analysis of the subject, through the of though with the tools of limit, make the content more rigorous mathematical analysis, through the mathematical analysis of events. This article is mainly to limit the emergence and development of mathematical analysis, as well as the common limit of conventional method are disscussed and studied. In the second chapther, the focus of this article, using the laws of arthmetic are analysised in detail, two important limits,between law and equivalent infinitesimal substitution method to solve the limit. Key words:four arithmetic operations; the derivation rule; Taylor formula; both sides grip rule.引言极限是描述数列和函数在无限过程中的变化趋势的重要概念,是从近似认识精确,从有限认识无限,从量变认识质变的一种数学方法,能够通过旧事物的量的变化规律,去计算新事物的量. 因此,极限具有由此达彼的重大创新作用. 同时,极限是研究微积分的理论基础和基本手段,它一直贯穿于该学科的始终. 极限的思想方法不仅在整个分析学的建立和发展中起着基本作用,而且还广泛应用于其他数学分支和自然科学. 同时,考研数学中也少不了有关于极限的题目.极限的思想方法作为人类发现数学问题并解决数学问题的一种重要手段,随着科学技术的不断发展,社会生产力的不断提高,在数学的发展史上将发挥越来越重要的作用. 因此,探讨如何求极限、怎样使求极限变得容易,是一个非常具有现实意义的重要问题. 求极限不仅要准确理解极限的概念、性质和极限存在的条件,而且还要清楚认识各种极限的类型,并熟练应用多种求极限的基本方法.众所周之,求极限的方法繁多且变化灵活,不易掌握. 本文在总结各种常用的求极限方法的同时,更重要的是,也会提出一些创新的极限求解方法,希望能够开拓思路,起到抛砖引玉的作用.1.综述1.1极限的产生与发展早在两千多年前,我国的惠施就在庄子的《天下篇》中有一句著名的话:“一尺之棰,日取其半,万世不竭”,惠施提出了无限变小的过程,这是我国古代极限思想的萌芽.我国三国时期的大数学家徽(约225年~295年)的割圆术,通过不断倍增圆接正多边形的边数来逼近圆周,徽计算了圆接正3072边形的面积和周长,从而推得3.1410243.142704π<<.在国外一千多年以后欧洲人安托尼兹才算到同样精确度的小数.π这扇窗口闪烁着我国古代数学家的数学水平和才能的光辉.徽的割圆术不仅仅是先导,而且是一面旗帜,为研究复杂的逼近数列打开了先河.16世纪前后,欧洲资本主义的萌芽和文艺复兴运动促进了生产力和自然科学的发展. 17世纪,牛顿和莱布尼兹在总结前人经验的基础上,创立了微积分. 随着微积分应用的更加广泛和深入,遇到的数量关系也日益复杂,例如研究天体运行的轨道等问题已超出直观围.在这种情况下,微积分的薄弱之处也越来越暴露出来,严格的极限定义就显得十分迫切需要. 经过近百年的争论,直到19世纪上半叶人们通过对无穷级数的研究和总结,明确的认识了极限的概念.德国著名数学家维尔斯特拉斯通过静态刻板的定义,描述了无限的过程,刻画了极限,对于数列{}n a 如果找到一个实数a ,无论预先指定多么小的正数ε,都能够在数列中找到一项n a ,使得这一项后面的所有项与a 的差的绝对值都小于ε,就把这个实数a 叫做数列{}n a 的极限. 1.2极限问题的类型数列极限定义 设{}n a 为实数数列,a 为定数,任意ε>0,总存在正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限.不等式n a a ε-<刻画了n a 与a 的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明n a 与a 可以接近到任何程度. 然而,尽管ε有其任意性,但一经给出正整数,N ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数,那么2ε, ε的平方等等同样也是任意小的正数,因此定义中不定式n a a ε-<中的ε可用2ε, ε的平方等来代替. 同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数.函数极限定义 设函数()f x 在点0x 的某一去心邻域有定义,如果存在常数A ,对于任意给定的正数ε,总存在正整数d ,当x 满足不等式00x x d <-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=.2.常见的极限求解方法数列极限的求法可谓是多种多样,通过归纳和总结,本章将介绍几种常见的极限求解方法,这些方法均有各自的特点,因为这些常见的方法是研究极限求解的基础,需要我们去深刻的理解并扎实的掌握.我们罗列出一些常用的求法. 2.1简单求极限的方法我们知道,在同一趋近过程中,无穷大量的倒数是无穷小量;有界量乘以无穷小量等于无穷小量;有限个(相同类型)无穷小量之和 、差、积仍为无穷小量,以及利用函数的连续性可以求出某些函数的极限.例1 求极限2147lim32x x x x →--+. 解 当1x →时,分母的极限为0,而分子的极限不为0,可以先求出所给函数的倒数的极限2132132lim04747x x x x →-+-+==--, 利用无穷小量的倒数是无穷大量,故 2147lim32x x x x →-=∞-+. 例2 求极限201sinlimsin x x x x→.解 运用极限运算的四则运算法则,有200001sin11limlim sin lim lim sin sin sin sin x x x x x x x x x x x x x x x→→→→=⋅⋅=⋅, 因为0lim1sin x xx→=,当0x →时,x 为无穷小量,1sinx为有界量,所以 01lim sin 0x x x→⋅=, 故201sin lim0sin x x x x→=.2.2利用两个重要极限公式求极限 我们所熟悉的两个重要极限是 (i)lim ()0x af x →=则sin ()lim1()x a f x f x →=,(ii)lim ()0x af x →=则1()lim(1())f x x af x e →+=,其中,第一个重要极限是“00”型;第二个重要极限是“1∞”型.利用重要极限求函数极限时,关键在于把要求的函数极限化成重要极限的标准型或者它们的变形,这就要抓住重要极限公式的特征,并且能够根据它们的特征,辨认它们的变形,有时会利用到归结原则.例3 求极限10lim(12).xx x →+解 1112220lim(12)lim[(12)(12)]x x xx x x x x e →→+=+⋅+=.例4 求极限211lim(1)nn n n →∞+-.解 2111(1)(1)(n )n n e n n n+-<+→→∞,当1n >时,有2221112221111(1)(1)(1)n n n n n n n n n n n n n-------+-=+≥+,而由归结原则(取2,(n 2,3,)1n n x n ==⋅⋅⋅-)有2221122111lim(1)lim(1)lim(1)n n n n n n n n n n e n n n---→∞→∞→∞--+=+=+=, 于是,由数列极限的迫敛性得211lim(1)nn e n n→∞+-=. 2.3利用洛必达法则求极限定理1 若函数()f x 与()g x 满足 (i) 0lim ()lim ()0();x x x x f x g x →→==∞(ii) 在点0x 的某空心邻域0()U x 两者都可导,且()0g x ≠; (iii) 0()lim()x x f x A g x →'='(A 可为实数,也可为+∞或-∞),则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例5 求极限1220(12)limln(1)xx e x x →-++. 解 利用22ln(1)~(0)x x x +→,得 11132222220000(12)(12)(12)(12)limlim limlimln(1)22xxxxx x x x e x e x e x e x x x x--→→→→-+-+-+++===+.应用洛必达法则计算待定型极限需要注意的问题(1)审查计算的极限是不是待定型,如果不是待定型就不能运用洛必达法则,因为它不满足洛必达法则的条件. (2)除计算“”或者“∞∞”两种待定型外,计算其它五种待定型00"0,1,0,,"∞⋅∞∞∞-∞都要用对数或代数运算将它们化为待定型“0”或者“∞∞”,然后再应用洛比达法则.(3)在求极限的过程中,有可约的因子或者极限不是零的因子,可以先约去或从极限符号取出.(4)要特别注意,一般来说,应用洛必达法则计算待定型极限都比较简单.但是对少数的待定型极限应用洛比达法则,并不简单.2.4利用极限的四则运算法则求极限定理2(极限的四则运算法则) 若0lim ()x x f x A →=, 0lim ()x x g x B →=,则(i) 0lim ()lim ()x x x x f x g x A B →→±=±,(ii)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→⋅=⋅=⋅,(iii)若0B ≠,则000lim ()()lim ()lim ()x xx x x x f x f x A g x g x B→→→==, 综上所述,函数的和、差、积、商的极限等于函数极限的和、差、积、商.例6 求极限2223lim 4x x x x →+++.解 2223lim 4x x x x →+++=222lim(23)lim(4)x x x x x →→++=+116. 2.5利用等价无穷小替换求极限以下是当0x →时常用的等价无穷小关系sin ~,tan ~,arcsin ~,arctan ~,11~,1~,log (1x)~,ln 11~ln 1~,2(1)1~,ln(1)~.x a x x x x x x x x x x e x n aa x a x x x x x -+-+-+αα等价无穷小代换法 设,,,ααββ'' 都是同一极限过程中的无穷小量,且有~,~,limαααβββ''''存在,则 βαlim 也存在,且有limlim ααββ'='. 例7求极限321(1cos )n n ⋅-.解 因为lim1n →∞=,故321(1cos)n n ⋅-221(1cos )n n ⋅-=2411n n ⋅⋅=1=.例8求极限0lim1x x e →-解 有等价无穷小关系 tan ~,1~ln (0).x x x a x a x -→lim1x x e →-0x →=0x →=21.2x →===2.6利用定积分求极限由于定积分是积分和的极限,因此,某些和式问题可以化为定积分的计算,使运算得以完成.例9 求极限2222221lim 12(n 1)n n nnn n n n →∞⎡⎤++++⎢⎥+++-⎣⎦.解 222222112(n 1)n nnn n n n +++++++-2221111112111()1()1()n n n n n ⎡⎤⎢⎥=+++⎢⎥---⎢⎥+++⎣⎦.可取函数21()1f x x =+,[0,1],x ∈上述和式恰好是21()1f x x =+,在[]0,1上n 等分的积分和,所以2222222221201lim 12(n 1)1111lim 112111()1()1()1.14n n n n n n n n n n n n n n dx x π→∞→∞⎡⎤++++⎢⎥+++-⎣⎦⎡⎤⎢⎥=+++⎢⎥---⎢⎥+++⎣⎦==+⎰2.7利用泰勒公式求极限常用泰勒公式展开235211224221211();2!!sin (1)();3!5!(21)!cos 1(1)();2!4!(2)!ln(1)(1)();2nxn n n n nn n nn n x x e x x n x x x x x x n x x x x x n x x x x x nοοοο--+-=+++⋅⋅⋅++=-++⋅⋅⋅+-+-=-++⋅⋅⋅+-++=-+⋅⋅⋅+-+22(1)(1)(1)(1)1();2!!11().1n n n n n x x x x x n x x x x x--⋅⋅⋅-++=+++⋅⋅⋅++=+++⋅⋅⋅++-αααααααοο例10求极限00)x a →>.解利用泰勒公式,当0x →时1()2xo x =++,于是 0limx x→x →= 01211()()1()22limx x x o x o x a a x→⎤++--⋅-⎥⎣⎦=0()2lim x x o x a x →+=0x →==. 例11 求极限2602cos 2lim x x x e e x x x -→+--.解 应用泰勒公式,将函数x e ,x e -,cos x 展开到6x 项,有2345661(),1!2!3!4!5!6!xx x x x x x e x ο=+++++++2345661(),1!2!3!4!5!6!xx x x x x x ex ο-=-+-+-++2466cos 1().2!4!6!x x x x x ο=-+-+将它们代入上式,整理,得66266004()2cos 246!lim lim 6!xxx x x x e e x x x x ο-→→++--==. 2.8两边夹法则求极限当极限不易求出时,可考虑将所求极限变量,做适当的放大或缩小,是放大或缩小的新变量,易于求极限,且二者的极限值相等,则原极限存在,切等于此公共值.例11 求极限01lim x x x →⎡⎤⎢⎥⎣⎦.解 因为1x ⎡⎤⎢⎥⎣⎦是对1x 取整,则1111(0)x x x x⎡⎤-<≤≠⎢⎥⎣⎦, 当0x >时,111x x x ⎡⎤-<≤⎢⎥⎣⎦,当0x <时,111x x x ⎡⎤->≥⎢⎥⎣⎦, 故1lim 1x x x →⎡⎤=⎢⎥⎣⎦. 例12 设1!2!!,!n n x n ++⋅⋅⋅+=求极限lim .n n x →∞解 当分子2n >时,有2!1!2!(2)!(1)!n n n n -<++⋅⋅⋅+-+-(2)(2)!(1)!!n n n n <--+-+2(1)!!n n <-+,因此,当2n >时,211n x n<<+, 所以lim 1n n x →∞=.2.9利用单侧极限求极限可以用单侧极限求解的问题类型如下(1) 求含xa 的函数x 趋向无穷的极限,或求含1xa 的函数x 趋于0的极限; (2) 求含取整函数的函数极限; (3) 分段函数在分段点处的极限;(4) 含偶次方根的函数以及arctan x 的函数,x 趋向无穷的极限.这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在.例13 设函数21sin ,0()1,0x x f x xx x ⎧>⎪=⎨⎪+≤⎩ ,求()f x 在0x =的极限. 解 由于1lim sin 1x x x+→=,20lim(1)1x x -→+=,故00lim ()lim ()1x x f x f x +-→→==, 从而lim ()1x f x →=.2. 10利用中值定理求极限拉格朗日(Lagrange )中值定理 若函数()f x 满足如下条件 (i) ()f x 在闭区间,a b 上连续 ; (ii) ()f x 在开区间(,)a b 可导, 则在(,)a b 至少存在一点ξ,使得()()()f b f a f b aξ-'=- .例14 求函数极限30sin(sin )sin lim x x xx →- .解 因为sin(sin )sin x x -[](sin )cos (sin )x x x x x θ=-⋅⋅-+ (01)θ<<,所以30sin(sin )sin limx x xx→- []3(sin )cos (sin )lim x x x x x x xθ→-⋅⋅-+=20cos 1lim3x x x →-=0sin lim 6x x x →-=16=-积分中值定理 若()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使得()()()b af x dx f b a ξ=-⎰.例15 求极限sin lim ,n p nn xdx x+→∞⎰p 为某实数. 解 由积分中值定理,得sin sin n p n nnx dx p x ξξ+=⋅⎰,因为n ξ为介于n 与n p +之间的某值,则111n n n p ξ≤≤+ 或 111n n n pξ≥≥+, 而sin 1n ξ≤,由无穷小量与有界量的乘积仍为无穷小量及迫敛性得sin lim 0n p nn xdx x+→∞=⎰. 定理(推广的积分第一中值定理) 若函数()f x 与()g x 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少有一点[],a b ξ∈,使得()()()()b baaf xg x dx f g x dx ξ=⎰⎰.例16 求函数极限40lim sin n n xdx π→∞⎰.解 由题 ()sin ,()1,n f x x g x ==均在[0,]4π上连续,且()g x 不变号,由推广的积分第一中值定理40limsin nn xdx π→∞⎰40lim sin nn dx πξ→∞=⎰ limsin (0)4n n πξ→∞=⋅-lim(sin )04n n πξ→∞==.小结以上所求极限的方法各有条件、各具特色,因此各种类型所采用的技巧方法都不尽相同,我们必须根据其条件来判断极限的类型,进而根据类型来找到解决问题的方法.当然,有些题目有可能可以用多种方法来解决,此时,我们不可以死搬硬套,要从繁琐中找复杂,在复杂中找简单,而关于如何做到这一点,就必须在做题中不断总结、摸索、领悟各种方法的精髓,才能熟练而有灵活的掌握与运用各种求极限的方法.参考文献[1] 林源渠,方企勤. 数学分析解题指南.[M].:大学,2003.[2] 郝涌,学志,陶有德. 数学分析选讲.[M].:国防工业,2010.[3] 同济大学应用数学系. 高等数学.[M].:高等教育,1996.[4] 玉琏,奎元,伟,吕风. 数学分析讲义学习辅导书.[M].:高等教育,2003.[5] 清华,昊.数学分析容、方法与技巧.[M].华中科技大学, 2003.[6] 华东师大学数学系. 数学分析上册第三版.[M].高等教育,2001.[7] 钱. 数学分析解题精粹.[M].:崇文书局,2003.[8] 梁昌洪. 话说极限.[M].:高等教育,2009.。

数学分析毕业论文

数学分析毕业论文

数学分析毕业论文数学分析毕业论文在数学领域中,数学分析是一门重要的学科,它研究的是数学中的极限、连续、微积分等概念与方法。

作为一个数学专业的学生,我选择了数学分析作为我的毕业论文的主题,旨在深入研究数学分析的理论与应用,探索其中的奥秘与美妙。

首先,我将从数学分析的基础概念入手。

数学分析的核心概念有极限、连续和微积分等。

极限是数学分析的基石,它描述了函数在某一点的趋近性质。

通过极限的概念,我们可以研究函数的连续性和可导性,进而探索函数的性质和行为。

连续是数学分析中一个重要的概念,它描述了函数在某一区间上的无间断性。

连续函数具有许多有趣的性质,如介值定理和最值定理等。

微积分是数学分析的重要分支,它研究的是函数的变化率和积分。

通过微积分,我们可以求解曲线的斜率、曲线下的面积以及函数的最值等问题。

接下来,我将探讨数学分析在实际问题中的应用。

数学分析在物理学、工程学和经济学等领域中有着广泛的应用。

在物理学中,数学分析可以用来描述物体的运动和变化。

通过微分方程和积分方程,我们可以建立物理模型并求解出相应的物理量。

在工程学中,数学分析可以用来优化工程设计和解决实际问题。

例如,通过最优化理论和约束条件,我们可以确定最佳的工程方案和决策。

在经济学中,数学分析可以用来研究市场供求关系和经济增长等问题。

通过微分方程和微分方程组,我们可以建立经济模型并预测经济走势。

此外,我还将讨论数学分析中的一些经典问题和定理。

例如,柯西收敛准则、泰勒级数展开和黎曼积分等。

这些经典问题和定理不仅有着重要的理论意义,也具有广泛的应用价值。

通过研究这些问题和定理,我们可以深入理解数学分析的内涵和深度。

最后,我将对数学分析的未来发展进行展望。

随着科技的进步和社会的发展,数学分析在理论和应用方面仍有许多挑战和机遇。

例如,随机分析、非线性分析和复分析等新兴领域的发展,将为数学分析提供更加丰富和广阔的研究空间。

同时,数学分析在人工智能、大数据和量子计算等领域的应用也将得到进一步的拓展和深化。

关于数学分析的论文

关于数学分析的论文

关于数学分析的论文一、教学中的常见问题1、学习兴趣不足在数学教学过程中,学习兴趣不足的问题尤为突出。

由于数学本身具有较强的逻辑性和抽象性,学生在学习过程中容易感到枯燥乏味,进而影响学习效果。

一方面,教材内容的编排和教学方法的选择可能导致学生对数学学习缺乏兴趣;另一方面,学生自身的学习动机、兴趣点和个性特点也会影响他们对数学学习的热情。

(1)教材内容方面:部分教材内容过于理论,缺乏实际应用背景,使得学生在学习过程中难以感受到数学的实用价值,从而降低学习兴趣。

(2)教学方法方面:传统的“灌输式”教学方式使得学生在课堂上被动接受知识,缺乏主动探究和实践的机会,导致学习兴趣不高。

(3)学生个体差异方面:不同学生的兴趣点和学习能力存在差异,而教师在教学过程中往往难以兼顾每个学生的需求,从而影响整体学习兴趣。

2、重结果记忆,轻思维发展在数学教学中,部分教师过于关注学生的考试成绩,强调对公式、定理的记忆,而忽视了对学生思维能力的培养。

这种现象导致学生在面对问题时,往往只会套用公式、定理,缺乏独立思考和解决问题的能力。

(1)课堂教学方面:教师在课堂上过于注重知识传授,缺乏引导学生进行思考、探究的过程,使得学生难以形成自己的思维方式。

(2)作业与评价方面:作业和考试内容多以计算和套用公式为主,忽视了对学生分析、综合、解决问题能力的考查,导致学生重结果记忆,轻思维发展。

3、对概念的理解不够深入概念是数学知识的基石,对概念的理解程度直接影响着学生的学习效果。

然而,在实际教学过程中,学生对概念的理解往往不够深入,表现在以下方面:(1)教师教学方面:部分教师在教学中对概念的引入和阐述不够清晰,导致学生对概念的理解停留在表面。

(2)学生学习方面:学生在学习过程中,往往只关注概念的字面意思,缺乏对内涵和外延的深入挖掘,使得对概念的理解不够全面。

(3)教材编排方面:部分教材对概念的讲解不够详细,缺乏实例和练习,使得学生难以在实际操作中加深对概念的理解。

数学分析论文(第一版)

数学分析论文(第一版)

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。

本论文将通过对函数的诞生与发展、函数在各个领域的应用及函数在未来的发展进行研究,从而让我们对函数有进一步的认识。

了解函数的诞生背景1.早期函数的概念——几何观念下的函数十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。

1673年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。

与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。

2.十八世纪函数概念——代数观念下的函数1718年约翰•贝努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。

”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。

1755,欧拉把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

”18世纪中叶欧拉给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。

”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。

不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。

3.十九世纪函数概念——对应关系下的函数1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。

数学分析的毕业论文

数学分析的毕业论文

数学分析的毕业论文数学分析的毕业论文数学分析是数学的一个重要分支,它研究的是数学对象的性质和变化规律。

作为数学专业的学生,我在大学期间学习了数学分析的相关知识,并对其产生了浓厚的兴趣。

在即将毕业之际,我决定以数学分析为主题撰写我的毕业论文,以探索更深入的数学领域。

一、引言在引言部分,我将简要介绍数学分析的背景和重要性。

数学分析作为数学学科的核心内容,具有广泛的应用价值。

它不仅为其他学科提供了重要的理论基础,也在实际问题的解决中发挥着重要作用。

在本文中,我将重点研究数学分析的一些基本概念和定理,并探讨它们在实际问题中的应用。

二、基本概念和定理的介绍在这一部分,我将详细介绍数学分析中的一些基本概念和定理。

首先,我将介绍实数和实数集的概念,以及实数的基本性质。

接着,我将介绍极限和连续的概念,并讨论它们的性质和应用。

此外,我还将介绍导数和微分的概念,并探讨它们在函数研究中的重要性。

最后,我将介绍积分的概念和性质,以及它在数学分析中的应用。

三、实际问题的数学建模和分析在这一部分,我将探讨数学分析在实际问题中的应用。

数学分析作为一门应用性很强的学科,可以通过建立数学模型来解决实际问题。

我将以一些具体的实际问题为例,介绍如何利用数学分析的方法进行建模和分析。

例如,我可以选择研究一个物体的运动问题,通过分析其位移、速度和加速度的关系,来推导出物体的运动规律。

此外,我还可以选择研究一个经济问题,通过建立数学模型来分析市场供求关系和价格变动的规律。

四、数学分析的发展和前景在这一部分,我将探讨数学分析的发展和前景。

数学分析作为数学学科的核心内容,一直在不断发展和完善。

随着科学技术的进步和应用领域的拓展,数学分析的研究和应用也将越来越广泛。

在未来,数学分析将继续发挥重要作用,并为其他学科的发展提供理论支持。

同时,数学分析的研究也将面临一些挑战和困难,需要不断探索和创新。

五、结论在结论部分,我将总结本文的主要内容,并对数学分析的研究进行回顾和展望。

积分中值定理在数学分析中的应用(优秀毕业论文)

积分中值定理在数学分析中的应用(优秀毕业论文)

毕业论文题目积分中值定理在数学分析中的应用学生姓名李正邦学号0609014168 所在院(系) 数学系专业班级数学与应用数学专业2006级5班指导教师李金龙完成地点陕西理工学院2010年 5月 30日积分中值定理在数学分析中的应用优秀论文范慕斯(云南师范大学数学学院数学与应用数学专业20111级2班)指导老师:成龙[摘 要] 本文主要介绍了积分中值定理在数学分析中应用时的注意事项及几点主要应用,这些应用主要是:一.求函数在一个区间上的平均值;二.估计定积分的值;三.求含有定积分的极限;四.确定积分的符号;五.证明中值ξ的存在性命题;六.证明积分不等式;七.证明函数的单调性.[关键词] 积分;中值;定理;应用1 引言积分中值定理是数学分析中的主要定理之一,同时也是定积分的一个主要性质,它建立了积分和被积函数之间的关系,从而我们可以通过被积函数的性质来研究部分的性质,有较高的理论价值和广泛应用.本文就其在解题中的应用进行讨论.2 预备知识定理 2.1[1](积分第一中值定理) 若()x f 在区间[a,b]上连续,则在[a,b]上至少存在一点ξ使得()()()b a a b f dx x f b≤≤-=⎰ξξ,a.证明 由于()x f 在区间[a,b]上连续,因此存在最大值M 和最小值m .由()],[,b a x M x f m ∈≤≤,使用积分不等式性质得到()()()a b M dx x f a b m ba-≤≤-⎰,或()()M dx x f a b m b a≤-≤⎰1.再由连续函数的介值性,至少存在一点[]b a ,∈ξ,使得()().1dx x f ab f ba ⎰-=ξ 定理 2.2[1](推广的积分第一中值定理) 若()()x g x f ,在闭区间[]b a ,上连续,且()x g 在[]b a ,上不变号,则在[]b a ,至少存在一点ξ,使得()()()().,b a dx x g f dx x g x f baba≤≤=⎰⎰ξξ证明 推广的第一中值积分定理不妨设在[]b a ,上()0≥x g 则在[]b a ,上有()()()(),x Mg x g x f x mg ≤≤其中m ,M 分别为()x f 在[]b a ,上的最小值和最大值,则有()()()(),dx x g M dx x g x f dx x g m bab ab a⎰⎰⎰≤≤若()0=⎰dx x g ba ,则由上式知()()0=⎰dx x g x f ba,从而对[]b a ,上任何一点,定理都成立.若()0≠⎰dx x g ba则由上式得()()(),M dxx g dx x g x f m b aba≤≤⎰⎰则在[]b a ,上至少存在一点ξ,使得()()()(),⎰⎰=b abadxx g dx x g x f f ξ 即()()()().,b a dx x g f dx x g x f baba≤≤=⎰⎰ξξ显然,当()1≡x g 时,推广的积分第一中值定理就是积分中值定理3 积分中值定理的应用由于积分中值定理可以使积分号去掉,从而使问题简化,对于证明包含函数积分和某个函数值之间关系的等式和不等式,也可以考虑使用积分中值定理.在使用积分中值定理时要注意以下几点:(1)在应用中要注意被积函数在区间[]b a ,上连续这一条件,否则,结论不一定成立.例如显然()x f 在0=x 处间断. 由于()()()()⎰⎰⎰⎰⎰=+-=+=--40440444,0cos cos ππππππxdx dx x dx x f dx x f dx x f但⎥⎦⎤⎢⎣⎡-4,4ππ在上,()0≠x f ,所以,对任何⎥⎦⎤⎢⎣⎡-4,4ππ都不能使 ()()ξππf dx x f 244=⎰-.(2) 定理中的在区间上不变号这个条件也不能去掉. 例如 令()(),2,2,sin ,sin ⎥⎦⎤⎢⎣⎡-∈==ππx x x g x x f由于()()()0|cos sin 21sin 2222222=-==---⎰⎰ππππππx x x xdx dx x g x f ,但()⎰⎰--==2222,0sin ππππxdx dx x g所以,不存在⎥⎦⎤⎢⎣⎡-∈2,2ππξ, 使()()()().2222dx x g f dx x g x f ⎰⎰--=ππππξ(3) 定理中所指出的ξ并不一定是唯一的,也不一定必须是[]b a ,的内点.例如令()[]b a x x f ,,1∈=,则对[],,b a ∈∀ξ都有()()()a b f dx x f ba-=⎰ξ,这也说明了ξ未必在区间[]b a ,的内点. 下面就就其应用进行讨论.3.1 求函数在一个区间上的平均值例1 试()x f sin x =求在[]π,0上的平均值. 解 平均值().2|cos 1sin 100πππξππ=-==⎰x xdx f例2 试求心形线()πθθ20,cos 1≤≤+=a r 上各点极经的平均值.解 平均值()()().|sin 2cos 1212020a a d a r =+=+=⎰ππθθπθθπϕ注 在解某区间上一个函数的平均值时,我们只需要在这个区间上对这个函数进行积分,然后积分结果除以区间的差值.在这里主要是应用了积分第一中值定理,所以求解其类问题时,一定要理解积分中值定理的定义. 3.2 估计定积分的值例3 估计dx xx ⎰+1036191的值.解 由推广的积分第一中值定理,得,112011113611936103619ξξ+=+=+⎰⎰dx x x x 其中[]1,0∈ξ 因为,10≤≤ξ所以,11121363≤+≤ξ即,201112012201363≤+≤ξ 故.201122011036193≤+≤⎰dx x x例 4 估计dx x ⎰+π20cos 5.011的值.解 因为()xx f cos 5.011+=在[]π2,0上连续,且[]2)(max 2,0=x f π,[]32)(min 2,0=x f π, 所以由积分第一中值定理有πππππ422cos 5.0112324320=⋅≤+≤⋅=⎰dx x.在估计其类积分的值时,首先我们要确定被积函数在积分区间上连续的基础上确定被积函数在积分区间上的最大值和最小值,然后再利用积分中值定理就迎刃而解了.例 5 估计dx x x ⎰+191的值.解 因为()xx x f +=19在[]1,0上连续,在()1,0内可导,且()()()238121718x x x x f ++='在()1,0内无解,即()[]1,0,0∈≥'x x f ,等号仅在0=x 时成立.故()x f 在[]1,0内严格单调增, 即()()()21100=<<=f x f f ,所以由积分第一中值定理有211019<+<⎰dx xx .在估计其类积分的值时,首先要确定要积分的函数在积分闭区间上连续,在开区间上可导,然后判断函数在积分区间上的单调性,最后利用积分中值定理就可以估计积分的值了.综上,在利用积分中值定理估计积分的值时,我们要根据不同的题型给出不同的解决方法,这也是我们在学习过程中逐渐要培养的,积累的好习惯. 3.3 求含有定积分的极限例6 求极限n p dx xxpn n n ,,sin lim⎰+∞→为自然数.解 利用中值定理,得因为()xxx f sin =在[]p n n +,上连续,由积分中值定理得[]p n n p dx x x pn n+∈⋅=⎰+,,sin sin ξξξ当∞→n 时,∞→ξ,而|ξsin |1≤. 故dx xxpn nn ⎰+∞→sin lim =p .sin limξξξ∞→=0. 例7 求xdx n n ⎰+∞→2sin limπ.解 若直接用中值定理xdx n n ⎰+∞→20sin limπ=ξπn sin 2,因为20πξ≤≤而不能严格断定x nsin 0→,其症结在于没有排除,故采取下列措施xdx nn ⎰+∞→2sin limπ=xdx n⎰-ξπ20sin +xdx n ⎰-22sin πξπ.其中ξ为任意小的正数.对第一积分中值定理使用推广的积分第一中值定理,有xdx n n ⎰-+∞→ξπ2sin lim.=0sin 2lim =⎪⎭⎫ ⎝⎛-+∞→ξξπn n ,⎪⎭⎫ ⎝⎛<-≤≤220πξπξ. 而第二个积分⎰-22sin πξπxdx n≤dx x n⎰-22sin πξπ≤⎰-22πξπdx =ε,由于ε得任意性知其课任意小. 所以xdx nn ⎰+∞→2sin limπ=xdx n⎰-ξπ20sin +xdx n ⎰-22sin πξπ=0.注 求解其类问题的关键是使用积分中值定理去掉积分符号.在应用该定理时,要注中值ξ不仅依赖于积分区间,而且还依赖于根式中自变量n 的趋近方式. 3.4 确定积分的符号例8 确定积分dx e x x ⎰-333的符号.解dx e x x⎰-333=dx e x x⎰-033+dxx e x x⎰33=()()t d e t t ----⎰330+dx e x x ⎰303=dt e t t -⎰033+dx e x x ⎰33=-dt e t t -⎰33+dx e x x ⎰33=()dx e e x x x --⎰303利用积分中值定理,得dx e x x ⎰-333=()ςςς--e e 33≥0.(其中30≤≤ς)又xe x 3在[]3,3-上不恒等于0,故0333>⎰-dx e x x .注 在解决其类题时,我们常常会以0作为上下限的中介点,然后把原积分写成以0为中介点的两个积分的和,积分化就成两个以0为中介点且上下限一样的积分相加,最后利用积分中值定理确定积分的符号.这里主要使用了积分中值定理和函数的单调性. 3.5 证明中值ξ的存在性命题例9 设函数()x f 在[]1,0上连续,在()1,0内可导,且()()⎰=13203f dx x f ,证明()1,0∈∃ξ,使()0='ξf ,证明 由积分中值定理得()()()()ηηf f dx x f f =⎪⎭⎫⎝⎛-==⎰321330132,(其中132≤≤η)又因为()x f 在[]1,0上连续,在()1,0内可导.故()x f 在[]η,0上满足罗尔定理条件,可存在一点()()100,,⊂∈ηξ,使()0='ξf . 注 在证明有关题设中含有抽象函数的定积分等式时,一般应用积分中值定理求解,掌握积分中值定理在解此类问题时至关重要,是我们必须要好好掌握的. 3.6 证明不等式例10 求证.201122011036193<+<⎰dx x x证明.11201111336119361619ξξ+=+=+⎰⎰dx x dx x x其中[]1,0∈ξ,于是由11121363≤+≤ξ即可获证.例 11 证明21232102<-+<⎰x x dx . 证明 估计连续函数的积分值()dx x f ba⎰的一般的方法是求()x f 在[]b a ,的最大值M 和最小值m ,则()()()a b M dx x f a b m b a-<<-⎰.因为2321492222≤⎪⎭⎫ ⎝⎛--=-+≤x x x []()1,0∈x , 所以21232102<-+<⎰x x dx . 例 12 证明.1011210119<+<⎰dx xx 证明 估计积分()()dx x g x f b a⎰的一般的方法是:求()x f 在[]b a ,的最大值M 和最小值m ,又若()0≥x g ,则()()()()dx x g M dx x g x f dx x g m bab ab a⎰⎰⎰≤≤.本题中令()()0,119≥=+=x x g xx f ()10≤≤x .因为11121≤+≤x[]()1,0∈x所以1011212101191919=<+<=⎰⎰⎰dx x dx xx dx x . 例13 证明2241222e dx e exx≤≤⎰--.证明 在区间[]20,上求函数()xx e x f -=2的最大值M 和最小值m .()()xxe x xf --='212,令()0='x f ,得驻点21=x . 比较⎪⎭⎫⎝⎛21f ,()0f ,()2f 知4121-=⎪⎭⎫⎝⎛e f 为()x f 在[]20,上的最小值,而()22e f =为()x f 在[]20,上的最大值.由积分中值定理得()()0202220412-≤≤-⎰--e dx e ex x ,即2241222e dx e exx≤≤⎰--.注 由于积分具有许多特殊的运算性质,故积分不等式的证明往往富有很强的技巧性.在证明含有定积分的不等式时,也常考虑用积分中值定理,以便去掉积分符号,若被积函数是两个函数之积时,可考虑用广义积分中值定理.如果在证明如11和12例题时,可以根据估计定积分的值在证明比较简单方便.3.7 证明函数的单调性例 14 设函数()x f 在()∞+,0上连续,()()()dt t f t x x F k⎰-=02,试证:在()∞+,0内,若()x f 为非减函数,则()x F 为非增函数.证明 ()()()()()dt t tf dt t f x dt t f t x x F kk k ⎰⎰⎰-=-=00022,对上式求导,得()()()()()(),20x xf dt t f x xf x xf dt t f x F kk -=-+='⎰⎰利用积分中值定理,得()()()()()[]()x x f f x x xf xf x F ≤≤-=-='ξξξ0,,若()x f 为非减函数,则()()0≤-x f f ξ, 所以()0≤'x F ,故()x F '为非减函数.综上所述,积分中值定理在应用中所起到的重要作用是可以使积分号去掉,从而使问题简单化.因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理,去掉积分号.在使用该定理时,常与微分中值定理或定积分的其他一些性质结合使用,是所求问题迎刃而解.参考文献[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001.217-219. [2]张筑生.数学分析新讲[M].北京:北京大学出版社,1990.92-95.[3] 刘玉莲,傅沛仁.数学分析讲义[M].第二版.北京:高等教育出版社,1996.43-47. [4]刘鸿基.数学分析习题讲义[M].江苏:中国矿业大学出版社,1999.85-92.[5]石建成,李佩芝,徐文雄.高等数学例题与习题集[M].西安:西安交通大学出版社,2002.168-170. [6]李惜雯.数学分析例题解析及难点注释[M].西安:西安交通大学出版社,2004.311-313. [7]白永丽,张建中.略谈积分中值定理及应用[J].平顶山工业职业技术学院.(2003) 01-03. [8]刘开生,王贵军.积分中值定理的推广[J].天水师范学院. Vol.26,No.2,(2006) 02-0023-02. [9]周建莹,李正元.高等数学解题指南[M].北京:北京大学出版社,2002.212-214. [10]刘剑秋,徐绥,高立仁.高等数学习题集(上)[M].天津:天津大学出版社,1987.254-255 [11]吴炯圻.数学专业英语[M].第二版.北京:高等教育出版社,2009.285-309.[12]AI Jing-hua.Characters Equal Definitions and application of Convex Function[J].Journal of Kaifeng University, V ol.17,No.2,Jun.2003.122-164.[13] W. Rmdin, Principle of Mathematical Analysis (Second edition ), Mc Graw-Hill , New York, 1964.96-102.Mean Value Theorem in Mathematical AnalysisLi Zhengbang(Grade06,Class5, Major in Mathematics and Applied Mathematics, Department of Mathematics,Shaanxi University of Technology, Hanzhong 723000, Shaanxi)Tutor:Li JinlongAbstract: This paper describes the mean value theorem in mathematical analysis application note and a fewof the major applications.These applications are mainly:1. Demand function in an interval on the average;2. The estimated value of definite integral;3. Order to contain the limits of definite integrals;4.Define integral ofsymbol;5. Proof of the existence of the value proposition ;6. To prove integral inequality,7. To provemonotonicity of a function.Key words:intergral;average-value;theory;applied.。

数学分析极限论文

数学分析极限论文

数学分析中求极限的方法总结熊伟 1303090119 数学0901摘要:数学分析是以极限为工具来研究函数的学科,掌握求极限的方法对学习数学分析有很大帮助,然而求极限的题型多变,技巧性强,本文总结了几种一般的求极限方法,并对专用于求数列极限和函数极限以及两者通用的方法进行归类总结,同时为每种方法相应的举例对方法加以说明.关键词:极限 、数列极限 、函数极限 、方法 、总结在我们所学过的数学分析中有数列极限和函数极限两种,我将用于专门求数列极限或函数极限,两者通用的方法进行了如下归纳.1 求数列极限的方法定义法 这是求数列极限最基本的方法.设{n x }是数列,A 为常数,0>∀ε,∃正整数N ,当N n >有ε<-A x n 成立,称{n x }以A 为极限或{n x }收敛于A ,记作A x n n =∞→lim .[1]例1 证明0)1(lim=-∞→nnn 证明:0>∀ε,取1]1[+=εN ,则当N n >时,有ε<--0)1(nn0)1(lim=-∴∞→n n n 2 求函数极限的方法2.1 定义法 设)(x f y =在)(00x O 内有定义,A 为常数,0>∀ε,0>∃δ,当δ<-<00x x 时,有ε<-A x f )(,称)(x f 在0x 点收敛于A ,记作A x f x x =→)(lim 0.[1]例2 求证211lim=--→x x x x证明:0>∃δ,取εδ=,则当δ<-<10x 时,有ε<-<+-=-=---1111211x x x x x x2.2 两个重要极限的应用.1sin lim0=→x x x e xx x =+∞→)11(lim例3 求)0,(sin sin lim 0≠→n m nx mx x 解:原式n mnx nx nx mx mx mx x ==→sin **sin lim 0例4 求n n n )111(lim ++∞→ 解:原式=11])111[(lim ++∞→++n nn x n =1lim1])111[(lim ++∞→∞→++n nn x n n e = 3 以下方法求数列极限和函数极限均适用,方法均以数列为例举出,将n x 和n y 相应的替换为)(x f 和)(x g 可得求函数极限的方法. 3.1 利用极限的夹逼准则求极限. 例5 求)12111(lim 222n n n n n ++++++∞→解:设原式的=A , 那么122+≤≤+n n A n n n 又 1lim2=+∞→nn n n ,11lim2=+∞→n n n1)12111(lim 222=++++++∴∞→nn n n n3.2利用极限的四则运算,此法一般参杂在其他方法中使用. 例6 求)(lim 2n n n n -+∞→解:∞→n lim (n n +2-n)=∞→n limnnn n ++2=)111(lim ++∞→n n =2. 3.3利用泰勒公式求极限,在含有xe ,正余弦的极限中注意此方法. 例7 求)1(11sin lim 2x x e x x ----=→解: )(!2122x o x x e x+++= )(sin 2x o x x += )(21)1(222x o x x +-=- ∴2!21sin 22x x x e x==-- )(2)1(1222x o x x +=-- 1021021lim )(21)(21lim)(2)(2lim )1(11sin lim 0222202222020=++=++=++=----∴→→→→x x x xx xx o x x o x o x x o x x x e 3.4利用洛必达法则求解,首先介绍使用洛必达法则的前提. 必须是00或∞∞型才能用洛必达法则,若是∞-∞,∞*0,00,∞1,0∞等待定型,则用通分,取倒数或取对数的方法将其转化为00或∞∞型. 例8 求xx xx x x sin cos lim0--→解:原式3)sin cos 2(lim sin cos sin sin lim cos 1sin cos 1lim 000=+=++=-+-=→→→xxx x x x x x x x x x x x x此外,还有一个简便的方法,在我们了解函数图像大体趋势时,可根据函数图像上升或下降的速度来判断极限是0还是∞.应注意的是,当函数x 无限趋近于某一数时,这两个函数图像同增或同减.以上是我总结的几种求极限的方法。

数学分析的毕业论文

数学分析的毕业论文

数学分析的毕业论文数学分析是数学中的一门基础性学科,它主要研究数列、函数、极限等概念及其相关的理论方法。

数学分析在科学研究和工程技术中都有着重要的应用,因此,它一直是数学学科的重要分支之一。

本篇毕业论文将基于数学分析的基础知识,探讨一下函数极限在数学中的应用及其相关的定理。

一、函数极限的应用函数极限是数学分析中的一个重要概念,它是指当自变量x接近一定的值时,函数f(x)的值会趋向于一个常数L。

具体来说,若存在常数L,对于任意给定的正数ε,都存在正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立,则称函数f(x)在x=a 处收敛于L。

函数极限的应用非常广泛,它可以用来描述函数在某一点的行为方式,例如函数的连续性、导数、积分等。

另外,在物理学、经济学、工程学等领域中,函数极限的应用也非常重要。

例如在物理学中,当进行一些物理量的测量时,通过获得一系列渐进趋向的数值,可以使用函数极限的概念来精确地计算物理量的值。

二、函数极限的基本定理在数学分析中,函数极限的基本定理包括了极限的四个基本法则:算术、夹逼、单调性和介值原理。

1.算术法则对于两个函数f(x)和g(x),如果它们在x=a处收敛于L和M,则有:①f(x)+g(x)在x=a处收敛于L+M。

②kf(x)在x=a处收敛于kL,其中k为实数。

③f(x)×g(x)在x=a处收敛于LM。

④f(x)/g(x)在x=a处收敛于L/M(其中,g(x)≠0)。

这表示了求和、差、积、商等四则运算在极限运算中也是可行的。

2.夹逼法则夹逼法则也称为挤压定理,它是证明函数极限的有力工具之一。

它的基本思想是,如果一个函数f(x)始终位于两个收敛函数g(x)和h(x)之间,且两个函数的极限相等,则f(x)也收敛于相同的极限值。

它的数学表达式如下:假设f(x)、g(x)和h(x)是三个函数,并满足以下条件:①g(x)≤f(x)≤h(x),其中x在某个区间(a,∞)中。

数学分析习作论文1

数学分析习作论文1

云南大学数学分析习作课(2)论文题目:几类定积分不等式的证明学院:数学与统计学院专业:数学与应用数学姓名、学号:齐梦婷(20091910054)任课教师:黄辉老师时间: 2010-6-17摘要介绍定积分不等式的几种典型证法。

定积分的不等式证明可以根据命题的基本条件大致分以下几种情形: 1. 已知被积函数f仅具有连续性的情形;2.已知被积函数f一阶可导且给出端点的函数值或符号的情形;3.函数f一阶导数可积 ; 4.已知被积函数f二阶可导或二阶以上可导且知最高阶导数符号情形;等等.关键词定积分不等式分类证明辅助函数拉格朗日公式莱布尼兹公式泰勒公式积分中值公式定积分理论是微积分学的一个重要内容,定积分等式与不等式证明是常见问题,对于这样的证明题,我们常常感到无从下手,那是因为找不到从条件向结论过渡的解题方向.下面介绍几种根据命题的条件分类归纳出的证明方法和基本思路.1.已知被积函数f仅具有连续性证明思路:一般使用构造辅助函数法○1将积分上限(或下限) 换成x, 式中相应字母亦换为x,移项使一端为0,另一端作为辅助函数F(x);○2由F(x) 的单调性得证.例设f在[ a, b ]上连续且严格增,证明:( a + b) ⎰a b f ( x) dx < 2 ⎰a b xf ( x) dx.证 令F ( x) = ( a + x) ⎰a x f ( t) dt - 2 ⎰a xtf ( t) dt 因F ′( x) = ⎰ax f ( t) dt + ( a + x) f ( x) - 2xf ( x) = ⎰a x f ( t) dt - ( x - a) f ( x) = ⎰ax [ f ( t) - f ( x) ]dt < 0, x ∈ ( a, b ] 又F 在x = a 连续,故F 在[ a, b ]上严格减. 而F ( a) = 0,故F ( b) < F ( a) = 0, 即 ( a + b) ⎰a b f ( x) dx < 2 ⎰a bxf ( x) dx.2.已知被积函数f 一阶可导且给出端点的函数值或符号证明思路: 一般使用拉格朗日公式法○1用f ( x) = f ( x) - f ( a) = ( x - a) f ′(ξ) 或f ( x) = f ( x) - f ( b) = ( x - b) f ′(ξ);○2 由定积分性质作不等式的适当放缩.例 设f 在[ a, b ]上有一阶连续导数, f ( a) = f ( b) = 0, 证明:⎰ab ︱ f ( x) ︱dx ≤(a-b )2 /4 max ︱f ′( x) ︱ , x ∈[ a, b ] 证 由f(x) =(x-a)f ′(ξ1) , f ( x) = ( x - b) f ′(ξ 2 ) 有⎰ab ︱f ( x) ︱dx =⎰+a b a 2/)(︱f ( x) ︱dx + ⎰+2/)(b a b | f ( x) | dx= ⎰+ab a 2/)(︱f ′(ξ1 )︱( x - a) dx + ⎰+2/)(b a b ︱f ′(ξ2 )| ( b - x) dx ≤ max x[ a, b ]︱f ′( x ) ︱[⎰+a b a 2/)(( x - a) dx + ⎰+2/)(b a b ( b - x) dx = (a-b )2 /4 max ︱f ′( x) ︱ , x ∈[ a, b ].3.函数f 一阶导数可积证明思路: 一般使用莱布尼兹公式法○1 f ( x) - f ( c) =⎰c x f ′( t) dt;○2由定积分性质作不等式的适当放缩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国某某大学(本科) 数学分析研究论文数信小组题目:函数的极值和最值的研究学院:数学与计算科学学院年级:2011级指导老师:X X(教授)完成时间:2014年6月8日函数极值与最值研究摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。

求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。

求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。

求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。

求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。

对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等,关键词:函数,极值,最值,极值点,方法技巧.Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of variables,so that the more complicated the problem, find the function extreme value method mainly has: conditional extremum of multivariate Lagrange method, directional derivative, for multivariate function most value the most value problem with the function of one variable can be used to find the function extreme value is similar. The main methods are: vector method, the mean value inequality method, substitution, elimination method, the method of Cauchy inequality, the combination method,Keywords: function, extreme value, the value, extreme points, methods and techniques引言作为函数性质的一个重要分支和基本工具,函数极值和最值在数学与其他科学领域,如数学建模优化问题、概率统计等学科都有广泛应用。

不仅如此,函数极值理论在航海、保险价格策划、航空航天等众领域中也是最富变现性和灵和性,并起着不可替代的数学工具作用,许多实际问题最终都归结为函数极值和最值问题,生活中遇到的实际问题,可以通过数学建模的方式,表示为函数形式,而在求解具体问题时往往需要应用到极值和最值的求解,来为生产生活做保证!由此可见,研究函数极值和最值,是学习数学与其他学科的理论基础,是生活生产中的必备工具。

它为我们对于数学的进一步研究起到很大帮助;同时,它对于其它相关学科的理解、学习与应用也起着十分重要的作用,更对其他学科领域的展开有很大的促进作用。

函数的极值和最值不仅是函重要的基础性质,在实际经济活动中也有着重要的应用,对于不同类型的问题,我们应有一个系统而简便的方法,巧妙地运用进而达到熟练地掌握这些方法。

而恰恰这些方法的终极解决,都归结于对函数极值和最值的求解。

下面,就让我们做一些简单的归纳,研究函数的极值和最值,诠释一些方法和技巧,并附上具体的例子加以说明,让我们明白函数极值和最值的相关问题及在生活实际中的各种应用!目录摘要 (1)引言 (2)1 函数极值 (4)1.1 极值概述 (4)1.2 极值判断条件 (5)1.3 极值应用实例 (6)1.4 求极值思想方法总结 (10)2 函数最值 (11)2.1 函数最值概述 (11)2.2 函数最值求法................................. . (14)2.3 求函数最值思想方法总结.....................................(16)学习心得.. (17)致谢辞 (18)附录 (19)附录一组员名单 (19)附录二开题报告 (20)参考文献 (21)1 函数极值费尔马定理简单的描述就是:若函数)(x f y =在0x 点的某领域)(0x U 内有定义,且在0x 点可导,则0x 点为极值点0)(0'=⇒x f .他的实质就是可导与极值点的必要条件是稳定点,但非充分。

1.1.2 一元函数的极值定义:若函数)(x f y =在0x 点可导,则有费尔马定理,0x 点为极值点0)(0'=⇒x f ,而此时)(0x f 就是所谓的极值。

而)(0x f 是极大值还是极小值呢?现在从图2可以得到如下结论.(1)在),(00x x δ-内,0)('≤x f ;在),(00δ+x x 内0)('≥x f 时,此时)(0x f 为极1.2 极值判别条件1.2.1 一元极值判别条件(1)必要条件:费尔马定理 (2)充分条件 ①.第一充分条件设函数)(x f y =在0x 点连续,在邻域),(00x x δ-和),(00δ+x x 内可导,则 (i)在邻域),(00x x δ-上,0)('>x f ,在邻域),(00δ+x x 上,0)('<x f ,为极大点0x ⇒,处取得极大值。

在0)(x x f (ii)在邻域),(00x x δ-上,0)('<x f ,在邻域),(00δ+x x 上,0)('>x f ,为极小点0x ⇒,处取得极小值。

在0)(x x f 由导数的符号可知函数的单调性,故结论成立。

一般地,用极值的充分条件判别极值点时,常用列表法。

②.第二充分条件设函数)(x f y =在0x 点的某邻域),(0δx U 内一阶可导,在0x x =点二阶可导,且0)(0'=x f ,0)(''≠x f ,则为极小值点,00''0)(x x f ⇒>为极大值点。

00''0)(x x f ⇒<证明:由二阶泰勒公式得1.3.2 极值的第二充分条件 例1.3.2 求函数的极值点和极值。

xx x f 432)(2+= 解:函数x x x f 432)(2+=定义域为,0≠x 时,当0≠x 2'4322)(x x x f -=令得0)('=x f x=6,.108)6(6,06)6(8642)(''2''==>=+=f x f xx f 为极小点,极小值所以得又如果点不能取到极值,在时,函数则00'''0'')(0)(,0)(x x f x f x f ≠=当同第二判别法。

号来判别极值点,方法时,可以四阶导数的符0)(,0)(0)4(0'''≠=x f x f1.3.3 极值的第一充分条件和极值的第二充分条件 例1.3.3 求函数的极值点和极值。

34)1()(-=x x x f解:74,1,00)(),47()1)(('23'==--=x x f x x x x f 得令,)287)(1(6)(22''+--=x x x x x f ,得0)0(,0)74(,0)1('''''=>=f f f ,8235436912)74(74-==f x 为极小点,极小值为所以又),4306035(6)(23'''-+-=x x x x x f 有非极值点所以1,0)1(,0)0(''''''=>=x f f ;再.0)0(0,0)0()4(==<f x f 为极大点,极大值为所以1.3.4 极值的第一充分条件例1.3.4 由一宽为cm 24的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,问怎样折法才能使断面的面积最大?解: 设折起来的边长为xcm ,倾斜角为α,那么梯形断面的下底长为x 224-,上底长为αcos 2224x x +-,高为αsin x ,则断面面积 ααsin )224cos 2224(21x x x x A ⋅-++-= 即 ααααcos sin sin 2sin 2422x x x A +-=,D :120<<x ,02πα<≤,下面是求二元函数),(αx A 在区域3-3yxO图(1)D :120<<x ,02πα<≤上取得最大值的点),(αx 。

相关文档
最新文档