SPSS多元回归分析实例教程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元回归分析
在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:
其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:
某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。
表2-1
x1 x2 x3 x4 y 年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别
1960 1022 4 112 1 4.3 1 2 1 10 1
1961 300 1 440 3 0.1 1 1 1 4 1
1962 699 3 67 1 7.5 1 1 1 9 1
1963 1876 4 675 4 17.1 4 7 4 55 4
1965 43 1 80 1 1.9 1 2 1 1 1
1966 422 2 20 1 0 1 0 1 3 1
1967 806 3 510 3 11.8 2 3 2 28 3
1976 115 1 240 2 0.6 1 2 1 7 1
1971 718 3 1460 4 18.4 4 4 2 45 4
1972 803 3 630 4 13.4 3 3 2 26 3
1973 572 2 280 2 13.2 2 4 2 16 2
1974 264 1 330 3 42.2 4 3 2 19 2
1975 198 1 165 2 71.8 4 5 3 23 3
1976 461 2 140 1 7.5 1 5 3 28 3
1977 769 3 640 4 44.7 4 3 2 44 4
1978 255 1 65 1 0 1 0 1 11 2
数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据
在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。编辑后的数据显示如图2-1。
图2-1
或者打开已存在的数据文件“DATA6-5.SAV”。
2)启动线性回归过程
单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。
图2-2 线性回归对话窗口
3) 设置分析变量
设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。
设置自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降水量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量显示栏里。
设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。
选择标签变量: 选择“年份”为标签变量。
选择加权变量: 本例子没有加权变量,因此不作任何设置。
4)回归方式
本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在“Method”框中选中“Enter”选项,建立全回归模型。
5)设置输出统计量
单击“Statistics”按钮,将打开如图2-3所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为:
图2-3 “Statistics”对话框
①“Regression Coefficients”回归系数选项:
“Estimates”输出回归系数和相关统计量。
“Confidence interval”回归系数的95%置信区间。
“Covariance matrix”回归系数的方差-协方差矩阵。
本例子选择“Estimates”输出回归系数和相关统计量。
②“Residuals”残差选项:
“Durbin-Watson”Durbin-Watson检验。
“Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:
“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;
“All cases”选择所有观测量。
本例子都不选。
③其它输入选项
“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA 表。
“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。
“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。
“Part and partial correlation”相关系数和偏相关系数。
“Collinearity diagnostics”显示单个变量和共线性分析的公差。
本例子选择“Model fit”项。
6)绘图选项
在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口。该对话框用于设置要绘制的图形的参数。图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。
图2-4“Plots”绘图对话框窗口
左上框中各项的意义分别为:
•“DEPENDNT”因变量。
•“ZPRED”标准化预测值。
•“ZRESID”标准化残差。
•“DRESID”删除残差。
•“ADJPRED”调节预测值。