生物统计学-单因素方差分析.

合集下载

单因素方差分析(one-wayANOVA)

单因素方差分析(one-wayANOVA)

单因素方差分析(one-wayANOVA)单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⽅)单因素⽅差分析概念是⽅来研究⽅个控制变量的不同⽅平是否对观测变量产⽅了显著影响。

这⽅,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。

例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⽅的⽅育率,研究学历对⽅资收⽅的影响等。

这些问题都可以通过单因素⽅差分析得到答案。

(⽅)单因素⽅差分析步骤第⽅步是明确观测变量和控制变量。

例如,上述问题中的观测变量分别是农作物产量、妇⽅⽅育率、⽅资收⽅;控制变量分别为施肥量、地区、学历。

第⽅步是剖析观测变量的⽅差。

⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⽅的影响。

据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽅数学形式表述为:SST=SSA+SSE。

第三步是通过⽅较观测变量总离差平⽅和各部分所占的⽅例,推断控制变量是否给观测变量带来了显著影响。

(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽅例较⽅,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽅例⽅,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽅平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。

(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽅差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽅的检验统计量是F统计量,即F值检验。

3、计算检验统计量的观测值和概率P值:该步骤的⽅的就是计算检验统计量的观测值和相应的概率P值。

4、给定显著性⽅平,并作出决策(五)单因素⽅差分析的进⽅步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⽅个重要分析,主要包括⽅差齐性检验、多重⽅较检验。

生物统计上机操作第五讲 方差分析

生物统计上机操作第五讲 方差分析

研究生《生物统计学》课程第五讲方差分析主要内容:一、单因素方差分析二、两因素方差分析三、多因素方差分析一、单因素方差分析[Analyze]=>[Compare Means]=>[ One-Way ANOV A](1)建立数据文件,在Variable Vew中定义变量“饲料”、“增重”,“饲料”小数位数为0,用1、2、3、4分别代表甲、乙、丙、丁4种饲料。

输入数据。

(2)方差分析:[Analyze]=>[Compare Means]=>[ One-Way ANOVA],打开[One-Way ANOVA]主对话框。

选定“增重”使之进入[Dependent List](样本观测值)框,选定“饲料”使之进入[Factor](因素)框(3)单击[Options]进入“选项”对话框,选择[Descriptive]要求输出描述统计量,[Homogeneity of Variance tese](方差齐性检验),[Continue]返回;(4)单击[Post Hoc]打开[One-Way ANOV A: Post Hoc Multiple Comparisions](单因素方差分析:验后多重比较)对话框,可选择确定多重比较方法,如LSD法、Duncan 法,[Continue]返回;(5)单击[OK],运行单因素方差分析。

结果显示:方差分析表:(P=0.005<0.01 不同饲料对鱼增重的作用差异极显著)多重比较:LSD法(解释:甲与其他三种饲料都具有显著差异,乙、丙、丁间差异不显著)Duncan法(解释:用Duncan法划分的相似性子集,在显著性水平为0.05的情况下,第一组包括丙乙丁,组内相似的概率为0.123;第二组包括甲,说明甲的均值与其他三个具有显著性差异)2、练习:某灯泡厂用四种配料方案制成的灯丝生产了四批灯泡,在每批灯泡中作随机抽样,测量其使用寿命(单位:小时),数据如下:问不同灯丝制成的灯泡的使用寿命是否有显著差异,存在差异则做多重比较。

生物统计-方差分析

生物统计-方差分析
• F检验 FA=
FB=
s /s
A
2
2 e
s /s
B
2
2 e
无重复观测值的二因素方差分析—多重比较
• 多重比较 对达到显著差异的因素的平均数进行多重比较 以SSR检验为例,
设因素A、B的水平数分别a、b,
LSR0.05=SSR0.05* s x 当检验因素A各水平平均数之间的差异显著性时,
s
x
= s
(Excel 文件)
二因素方差分析
无重复观测值的二因素方差分析—方差
• 平方和与自由度的分解 SST=SSA+SSB+SSe dfT=dfA+dfB+dfe
• 各项的方差
s SS / df
2 A A
A
s SS / df
2 B B
BБайду номын сангаас
s SS / df
2 e e
e
无重复观测值的二因素方差分析—F检验
x
= s
an
具有重复观测值的二因素方差分析—多重比较
当检验AxB各水平平均数之间的差异显著性时,
s
x
=
s
2 e
n
例6.5
• 为了研究某种昆虫滞育期长短与环境的关系,在给定的温 度和光照条件下进行实验室培养,每一处理记录4只昆虫的 滞育天数(数据见Excel文件)。试作方差分析,并进行多 重比较。 本例是一个固定模型的方差分析 (Excel 文件)
• F检验 (2)随机模型:A和B均为随机因素
s /s F = s /s
FA=
B
2
2 AB
A
2
2 AB 2 e
B 2

生物统计学第九章单因素方差分析

生物统计学第九章单因素方差分析

E(MSA )
=
σ2 +
n a1
a i=1
a
2 i
=
σ2 +
n a1
a i=1
(μi -μ)2
即 MSA 除了代表随机误了σ2 外, 还,还有效应,
也就是说MS
是代表了各处理间的差异.
A
4. 统计量
当零假设 H0 : α1 = α2 = = αa成=立0 时,处理效
应的方差为零,亦即各处理观察值总体均数i (i=1, 2,…,a) 相等时,处理间均方MSA与处理内均方 一样,也是误差方差2的估计值。
❖ 在计算处理间平方和时,各处理均数要受
a
(xi -x)2 0 这一条件的约束,故处理间自由度
i 1
为处理数减1,即a-1。 处理间自由度记为dft ,则dft= a-1。
在计算处理内平方和时,要受a个条件的约束, n
即 (xij -x,i )i=01,2,...a。故处理内自由度为资料中观 j 1
… Xi …
χi1
χa1
χi2
χa2
χi3
χa3

j
ห้องสมุดไป่ตู้xχ11j xχ22j xχ33j
n
xχ11n x 2χ2n x3χ3n
合计 μ1 μ2 μ3
平均数 a1 a2 a3
xχi ij
xχaaj x
x iχin
x aχan x
μi
μa μ
ai
aa
符号
a n
xij n
xi. xij
j 1
xi.
1 n
方差分析实质上是关于观测值变异原因的数量分析。
二 固定模型fixed model

生物统计(4)-单因素方差分析

生物统计(4)-单因素方差分析

生物统计(4)-单因素方差分析方差分析的基本思想在进行科学研究时,有时要按实验设计将所研究的对象分为多个处理组进行不同的处理,其中处理因素(treatment)至少有两个水平(level)。

这类科研资料的统计分析,是通过所获得的样本信息来推断各处理组均数间的差别是否有统计学意义,即处理是否有影响。

常用采用的分析方法就是方差分析(ANOVA,analysis of variance),这是由英国统计学家R.A.Fisher首创,以F命名,故方差分析又称为F 检验。

设处理因素有g(g>= 2)个不同水平,实验对象随机分为g组,分别接受不同水平的干预,第i(i=1,2,...,g)组的样本含量为n_{i},第i处理组的第j(j=1,2,…ni个观测值用Xij来表示,其计算结果可能可以整理成以下面的形式,如下所示:方差分析的目的就是在成立的条件下,通过分析各处理组均数之间的差别大小,推断g 个总体均数之间有无差别,从面说明处理因素的效应是否存在。

记总均数为各处理组均数为总例数为其中,g为处理组数。

实验数据有三个不同的变异:1. 总变异。

全部观测值大小不同,这种变异称为总变异。

总变异的大小可能用离均差平方和(sum of squares of deviations from eman,SS)来表示,即各观测值与总均数X差值的平方和,记为。

公式略。

2. 组间变异。

各处理组由于接受处理的水平不同,各组的样本均数也大小不等,这种变异称为组间变异,其大小用各组均数与总均数的离均差平方和表示,记为SS组间,计算公式略。

各组均数之间相关越悬殊,它们与总均数的差值越在在,就越大,反之就越小。

反应了各组均数的变异,存在这种变异的原因有:①随机误差;②处理的不同水平可能对实验结果的影响。

3. 组内变异。

在同一处理组中,虽然每个实验对象接受的处理相同,但观测值仍各不相同,这种变异称为组内变异(误差)。

组内变异用组内各观测值与其所在组的均数的差值的平方和表示,记为,表示随机误差的影响。

生物统计第三节单因素试验资料的方差分析

生物统计第三节单因素试验资料的方差分析

C T / N 460.5 / 25 8482.41
2
2
上一张 下一张 主 页
退 出
SST x C
2
ij
(21.5 2 19.5 2 17.0 2 16.0 2 ) 8482 . 41
8567 . 75 8482 . 41
Байду номын сангаас85.34
MSE
P
⑥ 列出方差分析表
df
3、确定P值、下结论
•从上表得F=14.32,查附表5(方差分析界值表,
单侧),自由度相同时,F界值越大,P值越小。
因F0.01,2,27= 5.49;故P<0.01,按α=0.05水准
拒绝H0,接受HA,可认为三个不同时期切痂对
ATP含量的影响有统计显著性差异。
方差分析的结果只能总的来说多组间是否
S,即
x
得各最小显著极差,所得结果列于表6-15。
上一张 下一张 主 页
退 出
表6-15 SSR值及LSR值
dfe
上一张 下一张 主 页
退 出
将表6-14中的差数与表6-15中相应的最小显
著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数
极显著高于2号品种母猪,显著高于4号和1号品
③ 计算总的变异及总的自由度
SST x C
2
ij
dfT kn 1 N 1
④ 计算组间变异及相应的自由度
SSB Ti 2 / ni C
df b k 1
⑤ 计算组内变异及相应的自由度
SSE SST SSB
df e dfT df b
N k

统计学中的方差分析理论研究进展

统计学中的方差分析理论研究进展

统计学中的方差分析理论研究进展引言方差分析(ANOVA)是统计学中一种常用的分析方法,用于比较多个样本之间的差异。

它可以帮助我们确定不同因素对总体均值的影响,并通过计算方差来评估这些差异是否显著。

在统计学中,方差分析一直是一个重要的研究领域,研究者们对其理论进行深入探究,以便更好地理解和应用方差分析方法。

本文将介绍统计学中方差分析理论的研究进展,包括不同类型的方差分析方法、其基本原理和应用场景等。

一、单因素方差分析单因素方差分析是最常见的一类方差分析,用于比较不同组之间的差异是否显著。

在单因素方差分析中,我们将样本分成多个组别,然后检验这些组别的均值是否相等。

1.1 单因素方差分析的基本原理单因素方差分析的基本原理是比较组内方差和组间方差的大小。

组内方差反映了组内个体之间的差异,而组间方差反映了各组之间的差异。

方差分析统计量F值通过比较组间方差和组内方差的比值,判断差异是否显著。

1.2 单因素方差分析的假设检验在单因素方差分析中,我们需要进行假设检验来判断组别之间的均值是否有显著差异。

常见的假设检验方法包括F检验和t检验。

F检验适用于多个组别的情况,而t检验适用于两个组别的情况。

假设检验的结果通常包括显著性水平和P值。

1.3 单因素方差分析的应用场景单因素方差分析广泛应用于实验设计、生物统计学、社会科学、医学研究等领域。

例如,我们可以利用单因素方差分析来研究不同教育水平对工资的影响,或者研究不同药物对病人治疗效果的影响。

二、多因素方差分析多因素方差分析是一种比较多个因素和组别之间的差异的方法。

与单因素方差分析相比,多因素方差分析考虑了多个因素对差异的影响,更加复杂和全面。

两因素方差分析是最常见的多因素方差分析方法之一,用于比较两个因素以及它们的交互作用对总体均值的影响。

通过两因素方差分析,我们可以确定不同因素对总体均值的独立和交互影响。

2.2 三因素方差分析三因素方差分析是在两因素方差分析的基础上进一步扩展的方法。

生物统计-8第八章单因素方差分析

生物统计-8第八章单因素方差分析

01
确定因子和水平
确定要分析的因子(独立变量) 和因子水平(因子的不同类别或 条件)。
建立模型
02
03
模型假设
根据因子和水平,建立方差分析 模型。模型通常包括组间差异和 组内误差两部分。
确保满足方差分析的假设条件, 包括独立性、正态性和同方差性。
方差分析的统计检验
01
F检验
进行F检验,以评估组间差异是否 显著。F检验的结果将决定是否拒
生物统计-8第八章单因素方差分析
目录
• 引言 • 方差分析的原理 • 单因素方差分析的步骤 • 单因素方差分析的应用 • 单因素方差分析的局限性 • 单因素方差分析的软件实现
01
引言
目的和背景
目的
单因素方差分析是用来比较一个分类变量与一个连续变量的关系的统计分析方法。通过此分析,我们可以确定分 类变量对连续变量的影响是否显著。
VS
多元性
单因素方差分析适用于单一因素引起的变 异,如果存在多个因素引起的变异,单因 素方差分析可能无法准确反映实际情况。 此时需要考虑使用其他统计方法,如多元 方差分析或协方差分析等。
06
单因素方差分析的软件 实现
使用Excel进行单因素方差分析
打开Excel,输入数据。
点击“确定”,即可得到单因素方差分析 的结果。
输出结果,并进行解释和 解读。
谢谢观看
背景
在生物学、医学、农业等领域,经常需要研究一个分类变量对一个或多个连续变量的影响。例如,研究不同品种 的玉米对产量的影响,或者不同治疗方式对疾病治愈率的影响。
方差分析的定义
定义
方差分析(ANOVA)是一种统计技术,用于比较两个或更多组数据的平均值 是否存在显著差异。在单因素方差分析中,我们只有一个分类变量。

生物统计学杜荣骞第8章答案

生物统计学杜荣骞第8章答案

第八章单因素方差分析8.1 黄花蒿中所含的青蒿素是当前抗疟首选药物,研究不同播期对黄花蒿种子产量的影响,试验采用完全随机化设计,得到以下结果(kg/小区)[47]:重复播种期2月19日3月9日3月28日4月13日1 0.26 0.14 0.12 0.032 0.49 0.24 0.11 0.023 0.36 0.21 0.15 0.04对上述结果做方差分析。

答:对于方差分析表中各项内容的含义,在“SAS程序及释义”部分已经做了详细解释,这里不再重复。

如果有不明白的地方,请复习“SAS程序及释义”的相关内容。

SAS分析结果指出,不同播种期其产量差异极显著。

多重比较表明,2和3间差异不显著,3和4间差异不显著,1和其他各组间差异都显著。

以上结果可以归纳成下表。

变差来源平方和自由度均方 F P播期间0.185 158 33 3 0.061 719 44 14.99 0.001 2重复间0.032 933 33 8 0.004 116 67总和0.218 091 67 11多重比较:1 2 3 48.2 下表是6种溶液及对照组的雌激素活度鉴定,指标是小鼠子宫重。

对表中的数据做方差分析,若差异是显著的,则需做多重比较。

鼠号溶液种类Ⅰ(ck) ⅡⅢⅣⅤⅥⅦ1 89.9 84.4 64.4 75.2 88.4 56.4 65.62 93.8 116.0 79.8 62.4 90.2 83.2 79.43 88.4 84.0 88.0 62.4 73.2 90.4 65.64 112.6 68.669.4 73.8 87.8 85.670.2答:溶液种类的显著性概率P=0.038 5,P <0.05,不同种类的溶液影响显著。

其中1、2、5、6间差异不显著;2、5、6、3、7、4间差异不显著。

以上结果可以归纳成下表:变差来源平方和自由度均方 F P溶液间 2 419.105 00 6 403.184 17 2.77 0.038 5重复间 3 061.307 50 21 145.776 55总和 5 480.412 50 271(ck) 2 5 6 3 7 48.3 人类绒毛组织培养,通常的方法是,向培养瓶中接入大量组织碎片,加入适当的基质使组织碎片贴壁,经过一段时间,将贴壁的组织块浸入到培养基中。

生物统计学-单因素方差分析知识分享

生物统计学-单因素方差分析知识分享

均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外,还与其自由度有关,由于各部 分自由度不相等,因此各部分离均差平方和不能直接比较,须将各部分离 均差平方和除以相应自由度,其比值称为均方差,简称均方。
MS总
SS总 v总
MS组间
S S组间 v组间
MS组内
SS组内 v组内
总变异(Total variation, SS总):全部测量值Yij与总均数Y
间的差异 组间变异( between group variation, SS组间):各组的均
数 Yi 与总均数 Y 间的差异
组内变异(within group variation,SS组内):每组的每个测量Yij与该组均数 Yi 的差异
生物统计学-单因素方差分析
一. 方差分析基础
单因素方差分析的典型数据
重复次数 Y1
Y2
Y3

Yi
… Ya (level)
1
y11
y21
y31
yi1
y.1
2
y12
y22
y32
yi2
y.2
3
y13
y23
y33
yi3
y.3
.
.
j
y1j
y2j
y3j
.
yij
y.j
.
n
y1n
y2n
y3n
yin
y.n
平均数 Y1.
Y2.
Y3.

Yi.

Y..
因素也称为处理(treatment) 因素(factor),每一处理因素至少有两个水 平(level)(也称“处理组”, a个处理组),各重复n次。

生物统计第7章 单因素方差分析

生物统计第7章 单因素方差分析
2020/6/19
7.2 固定效应模型
7.2.1 线性统计模型
在固定效应模型中,αi是处理平均数与总体 平均数的离差,是个常量,故:∑αi=0(i=1,
2,…n),要检验a个处理效应的相等性,就 要判断各αi是否都等于0。若各αi都等于0,则
各处理效应之间无差异。因此,零假设为:H0: α1=α2= … =αa =0 备择假设为:HA: αi≠0(至少有一个i)
2020/6/19
7.3.3 不等重复时平方和的计算
• 上述情况,无论是固定效应模型,还是随机效 应模型,各处理的观测次数都是相同的。若不 同处理观测次数不同,以上的方差分析方法仍 然适用,但在计算平方和时,公式要作改动。
• 检验程序及结果分析同上述讨论。
2020/6/19
7.4 多重比较(multiple comparison)
2020/6/19
7.1 方差分析的基本原理
7.1.1 方差分析的一般概念
方 差 分 析 ( analysis of variance , ANOV)是一类特定情况下的统计假设检验, 平均数差异显著性检验----成组数据 t检验的一 种引伸。t检验可以判断两组数据平均数间的差 异显著性,而方差分析则可以同时判断多组数 据平均数之间的差异显著性。当然,在多组数 据的平均数之间做比较时,可以在平均数的所 有对之间做t检验。但这样做会提高犯Ⅰ型错误 的概率,因而是不可取的。
2020/6/19
7.2.3 均方期望与统计量F
2020/6/19
7.2.4 平方和的简易计算方法
• 实际应用时,总的平 方和与处理平方和一 般按右式计算:
• 式中的被减数C通常被称 为校正项(correction) :
• 误差平方由右式算出 : • 用SAS软件更简便

大学生物统计学课程要点

大学生物统计学课程要点

第一章1、总体:研究的全部对象,构成总体的基本单位称为个体。

总体按总体单位的数目多少可分为:有限总体:含有有限个个体的总体。

无限总体:包含有无限多个个体的总体2、样本:从总体中抽出的若干个个体所构成的集合。

3、算术平均数:一个数量资料中各个观察值的总和除以观察值的个数所得的商,记为y4、中值(数):将资料内所有观察值从大到小排列,居中间位置的观察值称为中数,记为Md5、标准差:用平均数作为样本的代表,其代表性的强弱受样本资料中各观测值变异程度的影响。

仅用平均数对一个资料的特征作统计描述是不全面的,还需引入一个表示资料中观测值变异程度大小的统计量。

6、变异系数(CV ):变异系数是衡量资料中各观测值变异程度的另一个统计量 。

变异系数可以消除单位 和 (或)平 均数不同对两个或多个资料变异程度比较的影响。

7、课内习题:1.2 既然方差和标准差都是衡量数据变异程度的,有了方差为什么还要计算标准差?答:标准差的单位与数据的原始单位一致,能更直观地反映数据地离散程度。

1.3 标准差是描述数据变异程度的量,变异系数也是描述数据变异程度的量,两者之间有什么不同?答:变异系数可以说是用平均数标准化了的标准差。

在比较两个平均数不同的样本时所得结果更可靠。

第二章1、事物:在一定条件下所产生的结果称为事件,分为:确定性事件和非确定性事件(随机事件)。

2、必然事件:是指在同一组条件的实现之下必然要发生的事件。

例如,将小鼠放在充满一氧化碳的罐子中,它必然死亡。

不可能事件:是指在同一组条件的实现之下必然不发生的事件。

非确定性事件(随机事件):是指在同一组条件的实现之下可能发生也可能不发生的事件。

3、事件的和:对于任意两事件A 和B ,―A ,B 至少发生一个‖而构成的新事件称为事件A ,B 的和或并。

记作―A ∪B ‖。

4、 事件的交:对于任意两事件A 和B ,―A ,B 同时发生‖而构成的新事件称为事件A 和B的积。

记作 ―AB ‖或―A ∩B ‖5、 例题:试求:在死亡者中,接受甲药物处理者的概率P(B/A)?解:首先求出以下概率(1)在200只螟虫中,死虫的概率:ys CVP(A)=160/200=0.80(2)在200只螟虫中,接受甲药物处理且死亡的概率:P(AB)=96/200=0.48进一步求得:在死亡者中,接受甲药物处理的概率:P(B/A)=P(AB)/P(A)=0.48/0.80=0.60验证: P(B/A)=96/160=0.60⏹ 例:在一个布袋中有4粒种子,其中2粒为黄色,2粒为白色,采用放回式抽样,任意抽取2粒种子,试求:(1)―两粒种子都是黄粒‖ 的概率?(2)―第一次抽到黄粒、第二次抽到白粒‖的概率。

生物统计学课件单因素方差分析

生物统计学课件单因素方差分析

(i
)]2
n a 1
E[
a i 1
( i.
..)2
2
a i1
( i.
..) (i
)
a i 1
(i
)2
]
处理均方的数学期望
n [E a 1
a i1
(i. )2
a
E
(
2 ..
)]
n a 1
a
2 i
i1
n (a 2
]
i 1
( E(ij ) 0,
E
(
2 ij
)
2
)
1 (an 2 na 2 )
an a
n
2
处理均方的数学期望
E ( MS A
)
a
1 1
E(SSA
)
1
a
E[
a 1 i1
n
( xi.
j1
x..)2 ]
1 a 1
E[n
a i 1
(
i
i.
..)2
]
n a 1
E
a i 1
[( i
..)
均方
称为处理间均方
MS A
SSA a 1
称为误差均方
MSe
SSe a(n 1)
为了估计σ2,除以相应的自由度而得到的
误差均方数学期望
E(MSe )
1 na
a
E(SSe )
1
a
E[
an a i1
n
( xi j xi. )2 ]
j1
1 an a
a
E[
i1
n i1
(
i
ij
i
i. )2 ]

生物统计学第6章

生物统计学第6章

ANOVA基本步骤
生物统计
Chap.6 Analysis of Variance I
• 零假设:处理无效( 1= 2= 3= 4) • 备择假设:处理有效(至少两个均数不等)
• 基本计算(1): X i. X i.
X .. X
• 基本计算(2): SST SSE SSA dfT dfA dfE
组内变异: 由于同组内的个体来自同一总体(接受同
一处里),因此组内变异仅仅是由于个体之间的 随机误差造成。 组间变异:
不同组个体间的变异,除了个体之间的随机 误差以外,还包括不用处理(不同的组来自不用 总体)所造成的差异。
方差分析法的基本思想:
组间变异 组内变异
检验统计量
比较组间变异和组内变异,如果组间变异显
误差均方
• 显著性水平:
c
总的一型错误概率 需要比较的次数
饲料
1 2 • 34例
增重 57 42 60 37 54 13 33 19 39 41 13 29 20 15 13 18 22 13 24 38
N = 20, X·· = 600, X
生物统计
Chap.6 Analysis of Variance I
dfT N 1 32 1 31
dfE N k 32 4 28 dfA k 1 4 1 3
定义统计量 均方(MS) 平方和自由度
MSA
SSA df A
85.8563 3 16.855, MSE
SSE dfE
47.5409 1.6979 28
实例-小鼠脾脏
生物统计
Chap.6 Analysis of Variance I
生物统计
Chap.6 Analysis of Variance I

生物统计学:方差分析

生物统计学:方差分析
每 个 观 测 值 都包含处理效应(μi-μ 或 xi. x.. ),与误差( xij i 或 xij xi. ),故 kn个观测值的总变异可分解为处理间的变异 和处理内的变异两部分。
二、平方和与自由度的剖分
在方差分析中是用样本方差即均方(mean squares)来度量资料的变异程度的。
表1中全部观测值的总变异可以用总均方来度 量。
ai 是 第 i 个 处理的效应 (treatment effects) 表示处理i对试验结果产生的影响。显然有
k
i 0 (5)
i 1
εij是试验误差,相互独立,且服从正态分布N (0,σ2)。
(4)式叫做单因素试验的线性模型(linear
model)亦称数学模型。
在这个模型中Xii表示为总平均数μ、处理效应 αi、试验误差εij之和。
2. 试验因素(experimental factor) 试验中所研究的影响试验指标的因素叫试验 因素。如研究如何提高猪的日增重时,饲料的配 方、猪的品种、饲养方式、环境温湿度等都对日 增重有影响,均可作为试验因素来考虑。
当试验中考察的因素只有一个时,称为单因 素试验;
若同时研究两个或两个以上的因素对试验指 标的影响时,则称为两因素或多因素试验。试验
由εij 相 互独立且服从正态分布 N(0,σ2), 可知各处理Ai(i=1,2,…,k)所属总体亦应具正 态性,即服从正态分布N(μi,σ2)。尽管各总体的均 数 i 可以不等或相等,σ2则必须是相等的。所 以,单因素试验的数学模型可归纳为:
效应的可加 性(additivity)、分布的正态性 (normality)、方差的同质性(homogeneity)。 这也是进行其它类型方差分析的前提或基本假定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

每组具有n个观测值的k组样本数据资料
处理 重 复 A1 A2 … Ai … Ak x11 x21 … xi1 … xk1 x12 x22 … xi2 … xk2 … x1j x2j … xij … xkj … x1n x2n … xin … xkn T1. T2. … Ti. … Tk.
三、数学模型
方差分析的基本原理
组别 重 复
A1
A2 … Ai xi1 xi2 xij Ti.
x i
x11 x21 … x12 x22 … … x1j x2j … T1. T2. …
x1
x 2

总和Ti.
T xij
平均 xi
x
x
x
ij
x ( xij xi ) ( xi x )
x xij xi xi x
2
n 2 a n
ij


2
x
a i 1 j 1 a n i 1 j 1
ij x xij xi xi x i 1 j 1 a


2
x
ij
验方法,是将总变异按照来源分为处理效应和试验
误差,并做出其数量估计。
发现各变异原因在总变异中相对重要程度的一
种统计分析方法。
二、方差分析的基本原理
总变异分解为组间变异和组内变异。 组内变异是个体差异所致,是抽样误差。 组间变异可能由两种原因所致, 一是抽样误差; 二是处理不同。 在抽样研究中抽样误差是不可避免的,故 导致组间变异的第一种原因肯定存在;第二种原因 是否存在,需通过假设检验作出推断
方差分析的应用条件和用途
方差分析应用条件: 1、各样本须是相互独立的随机样本 2、各样本来自正态分布总体 3、各总体方差相等,即方差齐 方差分析基本用途: 1、多个样本平均数的比较 2、多个因素间的交互作用 3、回归方程的假设检验 4、方差的同质性检验
第一节 方差分析的基本原理
一、相关术语
• 试验指标(Experimental index):试验测定的项目或 者性状。 –日增重、产仔数、瘦肉率 • 试验因素(Experimental factor):影响试验指标的因 素,也称:处理因素,简称因素或因子。 1、可控因素(固定因素):人为可控 2、非控因素(随机因素):不能人为控制 试验因素的表示: 大写字母A, B, C, …等来表示
例1.为了分析重庆大学2012年本科生中各地生源的高考
成绩情况,从2012年新生中,分别从生物、电气、机 械、土木、管理、外语等学院中调查四川、重庆、辽 宁、江苏、陕西、广西6地生源的高考成绩,试问这6 地生源的高考成绩有无差异?
例 2. 为调查不同品种的小麦产量,分别从 3 种不同小麦
品种的试验田中抽取 100 株小麦株,测试每株的小麦 重量,试问这三种品种的小麦哪种的产量最高?
应用统计学
第六章 方差分析
重庆大学生物工程学院
两个样本数据平均数比较
1、当总体方差 和 已知,或总体方差 和 未 知,但两样本均为大样本
2 1 2 2 2 1 2 2
u 检验 t 检验
2、当总体方差 和 未知,且两样本均为小样本
2 1 2 2
— 成对数据:直接 t检验 — 成组数据:首先 F检验,考察 12=or 12,然后再t检验
一、相关术语
• 因素水平(Level of factor):试验因素所处的特定状态 或者数量等级。简称水平 水平的表示方法:
用代表该因素的字母添加下标表示,如A1,A2,B1,B2…
• 试验处理(Treatment):实施在试验单位上的具体项目, 简称处理。 –单因素:试验因素的一个水平 –多因素:试验因素的一个水平组合
总和Ti. 平均 xi
T xij
x1
x 2 …
x i … x k
x
三、数学模型
xij i ij xij : 第i个处理的第j个观测值
方差分析的意义
k个样本均数的比较: 如果仍用t检验或u检验,有以下问题: 1、检验过程繁琐 2、无统一的试验误差,误差估计的精确性和检 验的灵敏性低 3、推断的可靠性降低,犯第1类错误的概率增加
方差分析由英国 统计学家R.A.Fisher首 创,为纪念Fisher,以F 命名,故方差分析又称 F 检验 (F -test)。用 于推断多个总体均数有 无差异
一、相关术语
• 试验单位(Experimental unit):试验载体,即根据研 究目的而确定的观测总体 • 重复(Repetition):一个处理实施在两个或者两个以 上的试验单位上,称为处理有重复。 试验单位数称为处理的重复数
ห้องสมุดไป่ตู้、方差分析的基本原理
方差分析是关于k(k≥3)个样本平均数的假设测
a i 1 j 1 a a n
x
i 1 j 1
ij x n xi x xij xi 2 2 i 1 i 1 j 1
2
方差分析的意义
方差分析基本思想: 1、把k个总体当作一个整体看待 2、把观察值的总变异的平方和及自由度分 解为不同来源的平方和及自由度 3、计算不同方差估计值的比值 4、检验各样本所属的平均数是否相等 • 实际上是观察值变异原因的数量分析
xi

2
2 x
n i 1 j 1
ij
xi
x
i
x xi x
i 1 j 1
n
a
n
2
x
a n i 1 j 1 a n
ij
xi xi x xi x xij xi 0
方差分析的意义
k个样本均数的比较: 如果仍用t检验或u检验,需比较次数为:
k! C 次 2!(k 2)!
2 k
例如4个样本均数需比较次数为6次。
假设每次比较所确定的检验水准为0.05, 则每次检验拒绝H0不犯第一类错误的概率为1-0.05=0.95; 那么6次检验都不犯第一类错误的概率为(1-0.05)6=0.7351, 而犯第一类错误的概率为0.2649
相关文档
最新文档